Properties

Label 5472.2.f.c.1025.11
Level $5472$
Weight $2$
Character 5472.1025
Analytic conductor $43.694$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(1025,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.1025"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,28,0,0,0,-16,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(59)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 38 x^{18} + 528 x^{16} + 3442 x^{14} + 11480 x^{12} + 20550 x^{10} + 20369 x^{8} + 11136 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1025.11
Root \(-2.39458i\) of defining polynomial
Character \(\chi\) \(=\) 5472.1025
Dual form 5472.2.f.c.1025.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.375576i q^{5} -4.49473 q^{7} +5.61106i q^{11} +5.52430i q^{13} +1.09153i q^{17} +(3.38510 + 2.74610i) q^{19} -0.447559i q^{23} +4.85894 q^{25} -7.25896 q^{29} -4.33970i q^{31} -1.68811i q^{35} +9.75290i q^{37} +8.27147 q^{41} -6.29271 q^{43} -2.13567i q^{47} +13.2026 q^{49} +9.33376 q^{53} -2.10738 q^{55} -10.9555 q^{59} -7.93374 q^{61} -2.07480 q^{65} -3.84460i q^{67} -6.18083 q^{71} +1.42246 q^{73} -25.2202i q^{77} +4.52873i q^{79} +10.2795i q^{83} -0.409951 q^{85} -0.458924 q^{89} -24.8303i q^{91} +(-1.03137 + 1.27136i) q^{95} -13.8453i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{25} - 16 q^{41} + 28 q^{49} - 16 q^{53} + 16 q^{65} + 16 q^{73} - 32 q^{85} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.375576i 0.167963i 0.996467 + 0.0839813i \(0.0267636\pi\)
−0.996467 + 0.0839813i \(0.973236\pi\)
\(6\) 0 0
\(7\) −4.49473 −1.69885 −0.849425 0.527710i \(-0.823051\pi\)
−0.849425 + 0.527710i \(0.823051\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.61106i 1.69180i 0.533342 + 0.845900i \(0.320936\pi\)
−0.533342 + 0.845900i \(0.679064\pi\)
\(12\) 0 0
\(13\) 5.52430i 1.53217i 0.642742 + 0.766083i \(0.277797\pi\)
−0.642742 + 0.766083i \(0.722203\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.09153i 0.264734i 0.991201 + 0.132367i \(0.0422577\pi\)
−0.991201 + 0.132367i \(0.957742\pi\)
\(18\) 0 0
\(19\) 3.38510 + 2.74610i 0.776596 + 0.629999i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.447559i 0.0933225i −0.998911 0.0466612i \(-0.985142\pi\)
0.998911 0.0466612i \(-0.0148581\pi\)
\(24\) 0 0
\(25\) 4.85894 0.971789
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.25896 −1.34796 −0.673978 0.738752i \(-0.735416\pi\)
−0.673978 + 0.738752i \(0.735416\pi\)
\(30\) 0 0
\(31\) 4.33970i 0.779433i −0.920935 0.389717i \(-0.872573\pi\)
0.920935 0.389717i \(-0.127427\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.68811i 0.285343i
\(36\) 0 0
\(37\) 9.75290i 1.60337i 0.597749 + 0.801683i \(0.296062\pi\)
−0.597749 + 0.801683i \(0.703938\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.27147 1.29179 0.645893 0.763428i \(-0.276485\pi\)
0.645893 + 0.763428i \(0.276485\pi\)
\(42\) 0 0
\(43\) −6.29271 −0.959630 −0.479815 0.877370i \(-0.659296\pi\)
−0.479815 + 0.877370i \(0.659296\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.13567i 0.311520i −0.987795 0.155760i \(-0.950217\pi\)
0.987795 0.155760i \(-0.0497826\pi\)
\(48\) 0 0
\(49\) 13.2026 1.88609
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.33376 1.28209 0.641045 0.767503i \(-0.278501\pi\)
0.641045 + 0.767503i \(0.278501\pi\)
\(54\) 0 0
\(55\) −2.10738 −0.284159
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.9555 −1.42629 −0.713145 0.701017i \(-0.752730\pi\)
−0.713145 + 0.701017i \(0.752730\pi\)
\(60\) 0 0
\(61\) −7.93374 −1.01581 −0.507906 0.861413i \(-0.669580\pi\)
−0.507906 + 0.861413i \(0.669580\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.07480 −0.257347
\(66\) 0 0
\(67\) 3.84460i 0.469692i −0.972033 0.234846i \(-0.924541\pi\)
0.972033 0.234846i \(-0.0754586\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.18083 −0.733530 −0.366765 0.930314i \(-0.619535\pi\)
−0.366765 + 0.930314i \(0.619535\pi\)
\(72\) 0 0
\(73\) 1.42246 0.166486 0.0832430 0.996529i \(-0.473472\pi\)
0.0832430 + 0.996529i \(0.473472\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 25.2202i 2.87411i
\(78\) 0 0
\(79\) 4.52873i 0.509522i 0.967004 + 0.254761i \(0.0819968\pi\)
−0.967004 + 0.254761i \(0.918003\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.2795i 1.12832i 0.825666 + 0.564159i \(0.190799\pi\)
−0.825666 + 0.564159i \(0.809201\pi\)
\(84\) 0 0
\(85\) −0.409951 −0.0444654
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.458924 −0.0486458 −0.0243229 0.999704i \(-0.507743\pi\)
−0.0243229 + 0.999704i \(0.507743\pi\)
\(90\) 0 0
\(91\) 24.8303i 2.60292i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.03137 + 1.27136i −0.105816 + 0.130439i
\(96\) 0 0
\(97\) 13.8453i 1.40578i −0.711300 0.702889i \(-0.751893\pi\)
0.711300 0.702889i \(-0.248107\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.6247i 1.35570i 0.735198 + 0.677852i \(0.237089\pi\)
−0.735198 + 0.677852i \(0.762911\pi\)
\(102\) 0 0
\(103\) 11.5605i 1.13909i −0.821959 0.569546i \(-0.807119\pi\)
0.821959 0.569546i \(-0.192881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.46733 0.818568 0.409284 0.912407i \(-0.365779\pi\)
0.409284 + 0.912407i \(0.365779\pi\)
\(108\) 0 0
\(109\) 8.45851i 0.810178i −0.914277 0.405089i \(-0.867241\pi\)
0.914277 0.405089i \(-0.132759\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.44642 0.324212 0.162106 0.986773i \(-0.448171\pi\)
0.162106 + 0.986773i \(0.448171\pi\)
\(114\) 0 0
\(115\) 0.168092 0.0156747
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.90612i 0.449743i
\(120\) 0 0
\(121\) −20.4840 −1.86218
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.70278i 0.331187i
\(126\) 0 0
\(127\) 3.74392i 0.332219i −0.986107 0.166109i \(-0.946879\pi\)
0.986107 0.166109i \(-0.0531205\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.9676i 1.04561i 0.852452 + 0.522806i \(0.175115\pi\)
−0.852452 + 0.522806i \(0.824885\pi\)
\(132\) 0 0
\(133\) −15.2151 12.3430i −1.31932 1.07027i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.19427i 0.614648i 0.951605 + 0.307324i \(0.0994335\pi\)
−0.951605 + 0.307324i \(0.900566\pi\)
\(138\) 0 0
\(139\) 2.86485 0.242993 0.121497 0.992592i \(-0.461231\pi\)
0.121497 + 0.992592i \(0.461231\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −30.9972 −2.59212
\(144\) 0 0
\(145\) 2.72629i 0.226406i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.955334i 0.0782640i −0.999234 0.0391320i \(-0.987541\pi\)
0.999234 0.0391320i \(-0.0124593\pi\)
\(150\) 0 0
\(151\) 10.9647i 0.892298i −0.894959 0.446149i \(-0.852795\pi\)
0.894959 0.446149i \(-0.147205\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.62989 0.130916
\(156\) 0 0
\(157\) 8.87483 0.708289 0.354144 0.935191i \(-0.384772\pi\)
0.354144 + 0.935191i \(0.384772\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.01166i 0.158541i
\(162\) 0 0
\(163\) −13.2715 −1.03950 −0.519751 0.854318i \(-0.673975\pi\)
−0.519751 + 0.854318i \(0.673975\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.02340 −0.543487 −0.271743 0.962370i \(-0.587600\pi\)
−0.271743 + 0.962370i \(0.587600\pi\)
\(168\) 0 0
\(169\) −17.5179 −1.34753
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.2965 −1.08694 −0.543471 0.839428i \(-0.682890\pi\)
−0.543471 + 0.839428i \(0.682890\pi\)
\(174\) 0 0
\(175\) −21.8397 −1.65092
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.5299 −1.68396 −0.841981 0.539507i \(-0.818611\pi\)
−0.841981 + 0.539507i \(0.818611\pi\)
\(180\) 0 0
\(181\) 15.7937i 1.17393i −0.809611 0.586967i \(-0.800322\pi\)
0.809611 0.586967i \(-0.199678\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.66295 −0.269306
\(186\) 0 0
\(187\) −6.12462 −0.447877
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1201i 0.949336i 0.880165 + 0.474668i \(0.157432\pi\)
−0.880165 + 0.474668i \(0.842568\pi\)
\(192\) 0 0
\(193\) 7.40556i 0.533064i 0.963826 + 0.266532i \(0.0858778\pi\)
−0.963826 + 0.266532i \(0.914122\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.47255i 0.603644i 0.953364 + 0.301822i \(0.0975949\pi\)
−0.953364 + 0.301822i \(0.902405\pi\)
\(198\) 0 0
\(199\) −26.3344 −1.86680 −0.933398 0.358844i \(-0.883171\pi\)
−0.933398 + 0.358844i \(0.883171\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 32.6271 2.28997
\(204\) 0 0
\(205\) 3.10656i 0.216972i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −15.4086 + 18.9940i −1.06583 + 1.31384i
\(210\) 0 0
\(211\) 3.84460i 0.264673i −0.991205 0.132336i \(-0.957752\pi\)
0.991205 0.132336i \(-0.0422479\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.36339i 0.161182i
\(216\) 0 0
\(217\) 19.5058i 1.32414i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.02992 −0.405616
\(222\) 0 0
\(223\) 13.8655i 0.928505i 0.885703 + 0.464252i \(0.153677\pi\)
−0.885703 + 0.464252i \(0.846323\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.5854 0.835324 0.417662 0.908602i \(-0.362850\pi\)
0.417662 + 0.908602i \(0.362850\pi\)
\(228\) 0 0
\(229\) 9.04090 0.597440 0.298720 0.954341i \(-0.403440\pi\)
0.298720 + 0.954341i \(0.403440\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.1401i 0.795326i −0.917531 0.397663i \(-0.869821\pi\)
0.917531 0.397663i \(-0.130179\pi\)
\(234\) 0 0
\(235\) 0.802107 0.0523237
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.644772i 0.0417069i −0.999783 0.0208534i \(-0.993362\pi\)
0.999783 0.0208534i \(-0.00663833\pi\)
\(240\) 0 0
\(241\) 15.6575i 1.00859i −0.863532 0.504293i \(-0.831753\pi\)
0.863532 0.504293i \(-0.168247\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.95859i 0.316793i
\(246\) 0 0
\(247\) −15.1703 + 18.7003i −0.965263 + 1.18987i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8430i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 2.51128 0.157883
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.1713 1.44539 0.722693 0.691169i \(-0.242904\pi\)
0.722693 + 0.691169i \(0.242904\pi\)
\(258\) 0 0
\(259\) 43.8367i 2.72388i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.2783i 0.818775i 0.912361 + 0.409388i \(0.134258\pi\)
−0.912361 + 0.409388i \(0.865742\pi\)
\(264\) 0 0
\(265\) 3.50553i 0.215343i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −27.9961 −1.70695 −0.853477 0.521131i \(-0.825510\pi\)
−0.853477 + 0.521131i \(0.825510\pi\)
\(270\) 0 0
\(271\) 21.9111 1.33100 0.665502 0.746396i \(-0.268218\pi\)
0.665502 + 0.746396i \(0.268218\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 27.2638i 1.64407i
\(276\) 0 0
\(277\) 24.2343 1.45610 0.728049 0.685526i \(-0.240428\pi\)
0.728049 + 0.685526i \(0.240428\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −28.6648 −1.71000 −0.855000 0.518629i \(-0.826443\pi\)
−0.855000 + 0.518629i \(0.826443\pi\)
\(282\) 0 0
\(283\) −8.57921 −0.509981 −0.254991 0.966944i \(-0.582072\pi\)
−0.254991 + 0.966944i \(0.582072\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −37.1780 −2.19455
\(288\) 0 0
\(289\) 15.8086 0.929916
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.1020 0.823848 0.411924 0.911218i \(-0.364857\pi\)
0.411924 + 0.911218i \(0.364857\pi\)
\(294\) 0 0
\(295\) 4.11464i 0.239563i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.47245 0.142986
\(300\) 0 0
\(301\) 28.2841 1.63027
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.97972i 0.170618i
\(306\) 0 0
\(307\) 0.595783i 0.0340031i 0.999855 + 0.0170016i \(0.00541202\pi\)
−0.999855 + 0.0170016i \(0.994588\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 32.2691i 1.82981i −0.403665 0.914907i \(-0.632264\pi\)
0.403665 0.914907i \(-0.367736\pi\)
\(312\) 0 0
\(313\) −17.6501 −0.997643 −0.498821 0.866705i \(-0.666234\pi\)
−0.498821 + 0.866705i \(0.666234\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.4888 0.589112 0.294556 0.955634i \(-0.404828\pi\)
0.294556 + 0.955634i \(0.404828\pi\)
\(318\) 0 0
\(319\) 40.7305i 2.28047i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.99744 + 3.69493i −0.166782 + 0.205591i
\(324\) 0 0
\(325\) 26.8423i 1.48894i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.59928i 0.529225i
\(330\) 0 0
\(331\) 34.7629i 1.91074i −0.295413 0.955370i \(-0.595457\pi\)
0.295413 0.955370i \(-0.404543\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.44394 0.0788907
\(336\) 0 0
\(337\) 24.8235i 1.35222i 0.736800 + 0.676111i \(0.236336\pi\)
−0.736800 + 0.676111i \(0.763664\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24.3503 1.31864
\(342\) 0 0
\(343\) −27.8792 −1.50533
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.9463i 1.12446i 0.826982 + 0.562228i \(0.190056\pi\)
−0.826982 + 0.562228i \(0.809944\pi\)
\(348\) 0 0
\(349\) −25.8277 −1.38253 −0.691263 0.722603i \(-0.742945\pi\)
−0.691263 + 0.722603i \(0.742945\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.3569i 1.03026i −0.857111 0.515131i \(-0.827743\pi\)
0.857111 0.515131i \(-0.172257\pi\)
\(354\) 0 0
\(355\) 2.32137i 0.123206i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.7658i 1.25431i −0.778894 0.627156i \(-0.784219\pi\)
0.778894 0.627156i \(-0.215781\pi\)
\(360\) 0 0
\(361\) 3.91785 + 18.5917i 0.206202 + 0.978509i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.534241i 0.0279634i
\(366\) 0 0
\(367\) −17.9789 −0.938493 −0.469246 0.883067i \(-0.655474\pi\)
−0.469246 + 0.883067i \(0.655474\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −41.9528 −2.17808
\(372\) 0 0
\(373\) 14.9331i 0.773206i −0.922246 0.386603i \(-0.873648\pi\)
0.922246 0.386603i \(-0.126352\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40.1007i 2.06529i
\(378\) 0 0
\(379\) 8.74102i 0.448996i −0.974475 0.224498i \(-0.927926\pi\)
0.974475 0.224498i \(-0.0720742\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.3490 0.835397 0.417699 0.908586i \(-0.362837\pi\)
0.417699 + 0.908586i \(0.362837\pi\)
\(384\) 0 0
\(385\) 9.47211 0.482744
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.2781i 0.926735i 0.886166 + 0.463368i \(0.153359\pi\)
−0.886166 + 0.463368i \(0.846641\pi\)
\(390\) 0 0
\(391\) 0.488522 0.0247056
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.70088 −0.0855807
\(396\) 0 0
\(397\) −1.57205 −0.0788988 −0.0394494 0.999222i \(-0.512560\pi\)
−0.0394494 + 0.999222i \(0.512560\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.2584 0.911780 0.455890 0.890036i \(-0.349321\pi\)
0.455890 + 0.890036i \(0.349321\pi\)
\(402\) 0 0
\(403\) 23.9738 1.19422
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −54.7241 −2.71257
\(408\) 0 0
\(409\) 20.1475i 0.996231i 0.867111 + 0.498116i \(0.165975\pi\)
−0.867111 + 0.498116i \(0.834025\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 49.2422 2.42305
\(414\) 0 0
\(415\) −3.86072 −0.189515
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.9114i 1.41242i −0.708004 0.706208i \(-0.750404\pi\)
0.708004 0.706208i \(-0.249596\pi\)
\(420\) 0 0
\(421\) 0.707523i 0.0344826i −0.999851 0.0172413i \(-0.994512\pi\)
0.999851 0.0172413i \(-0.00548834\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.30366i 0.257265i
\(426\) 0 0
\(427\) 35.6600 1.72571
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4018 1.80158 0.900791 0.434253i \(-0.142988\pi\)
0.900791 + 0.434253i \(0.142988\pi\)
\(432\) 0 0
\(433\) 39.8612i 1.91561i −0.287421 0.957804i \(-0.592798\pi\)
0.287421 0.957804i \(-0.407202\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.22904 1.51503i 0.0587931 0.0724739i
\(438\) 0 0
\(439\) 25.2444i 1.20485i 0.798176 + 0.602424i \(0.205798\pi\)
−0.798176 + 0.602424i \(0.794202\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 28.3362i 1.34629i 0.739510 + 0.673146i \(0.235057\pi\)
−0.739510 + 0.673146i \(0.764943\pi\)
\(444\) 0 0
\(445\) 0.172361i 0.00817068i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.2907 −0.816001 −0.408000 0.912982i \(-0.633774\pi\)
−0.408000 + 0.912982i \(0.633774\pi\)
\(450\) 0 0
\(451\) 46.4117i 2.18544i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.32565 0.437193
\(456\) 0 0
\(457\) 32.1961 1.50607 0.753034 0.657982i \(-0.228590\pi\)
0.753034 + 0.657982i \(0.228590\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.9148i 0.508354i −0.967158 0.254177i \(-0.918195\pi\)
0.967158 0.254177i \(-0.0818046\pi\)
\(462\) 0 0
\(463\) −9.62348 −0.447241 −0.223621 0.974676i \(-0.571788\pi\)
−0.223621 + 0.974676i \(0.571788\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.151182i 0.00699588i −0.999994 0.00349794i \(-0.998887\pi\)
0.999994 0.00349794i \(-0.00111343\pi\)
\(468\) 0 0
\(469\) 17.2804i 0.797936i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.3088i 1.62350i
\(474\) 0 0
\(475\) 16.4480 + 13.3432i 0.754687 + 0.612226i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.4222i 0.567584i 0.958886 + 0.283792i \(0.0915925\pi\)
−0.958886 + 0.283792i \(0.908408\pi\)
\(480\) 0 0
\(481\) −53.8780 −2.45662
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.19996 0.236118
\(486\) 0 0
\(487\) 35.9840i 1.63059i −0.579044 0.815296i \(-0.696574\pi\)
0.579044 0.815296i \(-0.303426\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.5565i 0.747184i −0.927593 0.373592i \(-0.878126\pi\)
0.927593 0.373592i \(-0.121874\pi\)
\(492\) 0 0
\(493\) 7.92334i 0.356849i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27.7812 1.24616
\(498\) 0 0
\(499\) −39.0879 −1.74981 −0.874907 0.484290i \(-0.839078\pi\)
−0.874907 + 0.484290i \(0.839078\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.5784i 1.00672i −0.864077 0.503360i \(-0.832097\pi\)
0.864077 0.503360i \(-0.167903\pi\)
\(504\) 0 0
\(505\) −5.11709 −0.227708
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.55417 −0.0688874 −0.0344437 0.999407i \(-0.510966\pi\)
−0.0344437 + 0.999407i \(0.510966\pi\)
\(510\) 0 0
\(511\) −6.39357 −0.282835
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.34185 0.191325
\(516\) 0 0
\(517\) 11.9834 0.527029
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.15425 0.138190 0.0690950 0.997610i \(-0.477989\pi\)
0.0690950 + 0.997610i \(0.477989\pi\)
\(522\) 0 0
\(523\) 22.1772i 0.969743i −0.874585 0.484872i \(-0.838866\pi\)
0.874585 0.484872i \(-0.161134\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.73689 0.206342
\(528\) 0 0
\(529\) 22.7997 0.991291
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 45.6941i 1.97923i
\(534\) 0 0
\(535\) 3.18013i 0.137489i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 74.0808i 3.19089i
\(540\) 0 0
\(541\) −34.8451 −1.49811 −0.749055 0.662508i \(-0.769492\pi\)
−0.749055 + 0.662508i \(0.769492\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.17681 0.136080
\(546\) 0 0
\(547\) 28.9390i 1.23734i −0.785650 0.618671i \(-0.787671\pi\)
0.785650 0.618671i \(-0.212329\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24.5723 19.9338i −1.04682 0.849211i
\(552\) 0 0
\(553\) 20.3554i 0.865601i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.2239i 0.984030i −0.870587 0.492015i \(-0.836261\pi\)
0.870587 0.492015i \(-0.163739\pi\)
\(558\) 0 0
\(559\) 34.7629i 1.47031i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.7735 1.29695 0.648473 0.761237i \(-0.275408\pi\)
0.648473 + 0.761237i \(0.275408\pi\)
\(564\) 0 0
\(565\) 1.29439i 0.0544555i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.5091 −1.11132 −0.555660 0.831409i \(-0.687535\pi\)
−0.555660 + 0.831409i \(0.687535\pi\)
\(570\) 0 0
\(571\) 36.3355 1.52059 0.760296 0.649576i \(-0.225054\pi\)
0.760296 + 0.649576i \(0.225054\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.17466i 0.0906897i
\(576\) 0 0
\(577\) 21.4443 0.892738 0.446369 0.894849i \(-0.352717\pi\)
0.446369 + 0.894849i \(0.352717\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 46.2034i 1.91684i
\(582\) 0 0
\(583\) 52.3723i 2.16904i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.9699i 0.948068i 0.880507 + 0.474034i \(0.157203\pi\)
−0.880507 + 0.474034i \(0.842797\pi\)
\(588\) 0 0
\(589\) 11.9173 14.6903i 0.491042 0.605305i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.71685i 0.234763i −0.993087 0.117382i \(-0.962550\pi\)
0.993087 0.117382i \(-0.0374500\pi\)
\(594\) 0 0
\(595\) 1.84262 0.0755400
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.2570 −1.39970 −0.699851 0.714289i \(-0.746750\pi\)
−0.699851 + 0.714289i \(0.746750\pi\)
\(600\) 0 0
\(601\) 7.40556i 0.302079i 0.988528 + 0.151040i \(0.0482621\pi\)
−0.988528 + 0.151040i \(0.951738\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.69331i 0.312777i
\(606\) 0 0
\(607\) 20.4906i 0.831687i 0.909436 + 0.415843i \(0.136514\pi\)
−0.909436 + 0.415843i \(0.863486\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.7981 0.477300
\(612\) 0 0
\(613\) −15.5020 −0.626121 −0.313061 0.949733i \(-0.601354\pi\)
−0.313061 + 0.949733i \(0.601354\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.0662i 1.25068i 0.780354 + 0.625338i \(0.215039\pi\)
−0.780354 + 0.625338i \(0.784961\pi\)
\(618\) 0 0
\(619\) −19.5794 −0.786962 −0.393481 0.919333i \(-0.628729\pi\)
−0.393481 + 0.919333i \(0.628729\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.06274 0.0826419
\(624\) 0 0
\(625\) 22.9040 0.916162
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.6455 −0.424465
\(630\) 0 0
\(631\) −8.42688 −0.335469 −0.167734 0.985832i \(-0.553645\pi\)
−0.167734 + 0.985832i \(0.553645\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.40613 0.0558004
\(636\) 0 0
\(637\) 72.9353i 2.88980i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −39.4719 −1.55904 −0.779522 0.626374i \(-0.784538\pi\)
−0.779522 + 0.626374i \(0.784538\pi\)
\(642\) 0 0
\(643\) 2.96194 0.116808 0.0584038 0.998293i \(-0.481399\pi\)
0.0584038 + 0.998293i \(0.481399\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.1798i 1.30443i 0.758032 + 0.652217i \(0.226161\pi\)
−0.758032 + 0.652217i \(0.773839\pi\)
\(648\) 0 0
\(649\) 61.4722i 2.41300i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.8127i 1.01013i 0.863081 + 0.505065i \(0.168531\pi\)
−0.863081 + 0.505065i \(0.831469\pi\)
\(654\) 0 0
\(655\) −4.49473 −0.175624
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.7953 1.66707 0.833534 0.552468i \(-0.186314\pi\)
0.833534 + 0.552468i \(0.186314\pi\)
\(660\) 0 0
\(661\) 42.2086i 1.64172i −0.571127 0.820862i \(-0.693494\pi\)
0.571127 0.820862i \(-0.306506\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.63573 5.71444i 0.179766 0.221596i
\(666\) 0 0
\(667\) 3.24881i 0.125795i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 44.5167i 1.71855i
\(672\) 0 0
\(673\) 0.849647i 0.0327515i 0.999866 + 0.0163757i \(0.00521279\pi\)
−0.999866 + 0.0163757i \(0.994787\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.653149 −0.0251025 −0.0125513 0.999921i \(-0.503995\pi\)
−0.0125513 + 0.999921i \(0.503995\pi\)
\(678\) 0 0
\(679\) 62.2309i 2.38820i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.7160 0.410037 0.205019 0.978758i \(-0.434275\pi\)
0.205019 + 0.978758i \(0.434275\pi\)
\(684\) 0 0
\(685\) −2.70199 −0.103238
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 51.5625i 1.96437i
\(690\) 0 0
\(691\) −10.2249 −0.388972 −0.194486 0.980905i \(-0.562304\pi\)
−0.194486 + 0.980905i \(0.562304\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.07597i 0.0408138i
\(696\) 0 0
\(697\) 9.02852i 0.341980i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 43.1180i 1.62855i 0.580482 + 0.814273i \(0.302864\pi\)
−0.580482 + 0.814273i \(0.697136\pi\)
\(702\) 0 0
\(703\) −26.7825 + 33.0146i −1.01012 + 1.24517i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 61.2392i 2.30314i
\(708\) 0 0
\(709\) −20.2688 −0.761210 −0.380605 0.924738i \(-0.624284\pi\)
−0.380605 + 0.924738i \(0.624284\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.94227 −0.0727386
\(714\) 0 0
\(715\) 11.6418i 0.435379i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.2532i 1.50119i 0.660761 + 0.750596i \(0.270234\pi\)
−0.660761 + 0.750596i \(0.729766\pi\)
\(720\) 0 0
\(721\) 51.9615i 1.93515i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −35.2709 −1.30993
\(726\) 0 0
\(727\) −0.970200 −0.0359827 −0.0179914 0.999838i \(-0.505727\pi\)
−0.0179914 + 0.999838i \(0.505727\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.86866i 0.254047i
\(732\) 0 0
\(733\) −24.6175 −0.909268 −0.454634 0.890678i \(-0.650230\pi\)
−0.454634 + 0.890678i \(0.650230\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.5723 0.794625
\(738\) 0 0
\(739\) 15.6740 0.576579 0.288289 0.957543i \(-0.406914\pi\)
0.288289 + 0.957543i \(0.406914\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.54627 −0.203473 −0.101737 0.994811i \(-0.532440\pi\)
−0.101737 + 0.994811i \(0.532440\pi\)
\(744\) 0 0
\(745\) 0.358800 0.0131454
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −38.0584 −1.39062
\(750\) 0 0
\(751\) 1.62794i 0.0594044i 0.999559 + 0.0297022i \(0.00945590\pi\)
−0.999559 + 0.0297022i \(0.990544\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.11809 0.149873
\(756\) 0 0
\(757\) −0.941337 −0.0342135 −0.0171067 0.999854i \(-0.505446\pi\)
−0.0171067 + 0.999854i \(0.505446\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.80696i 0.319252i 0.987178 + 0.159626i \(0.0510288\pi\)
−0.987178 + 0.159626i \(0.948971\pi\)
\(762\) 0 0
\(763\) 38.0187i 1.37637i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 60.5217i 2.18531i
\(768\) 0 0
\(769\) −24.2773 −0.875462 −0.437731 0.899106i \(-0.644218\pi\)
−0.437731 + 0.899106i \(0.644218\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −53.0322 −1.90744 −0.953718 0.300702i \(-0.902779\pi\)
−0.953718 + 0.300702i \(0.902779\pi\)
\(774\) 0 0
\(775\) 21.0864i 0.757444i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.9998 + 22.7143i 1.00320 + 0.813824i
\(780\) 0 0
\(781\) 34.6810i 1.24099i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.33317i 0.118966i
\(786\) 0 0
\(787\) 28.9913i 1.03343i −0.856158 0.516714i \(-0.827155\pi\)
0.856158 0.516714i \(-0.172845\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.4907 −0.550787
\(792\) 0 0
\(793\) 43.8284i 1.55639i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.714596 −0.0253123 −0.0126561 0.999920i \(-0.504029\pi\)
−0.0126561 + 0.999920i \(0.504029\pi\)
\(798\) 0 0
\(799\) 2.33114 0.0824699
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.98150i 0.281661i
\(804\) 0 0
\(805\) −0.755530 −0.0266289
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.0231i 1.51261i 0.654218 + 0.756306i \(0.272998\pi\)
−0.654218 + 0.756306i \(0.727002\pi\)
\(810\) 0 0
\(811\) 16.9644i 0.595700i 0.954613 + 0.297850i \(0.0962695\pi\)
−0.954613 + 0.297850i \(0.903731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.98444i 0.174597i
\(816\) 0 0
\(817\) −21.3015 17.2804i −0.745245 0.604566i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40.4763i 1.41263i −0.707897 0.706316i \(-0.750356\pi\)
0.707897 0.706316i \(-0.249644\pi\)
\(822\) 0 0
\(823\) −13.5966 −0.473949 −0.236974 0.971516i \(-0.576156\pi\)
−0.236974 + 0.971516i \(0.576156\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.48821 −0.0865234 −0.0432617 0.999064i \(-0.513775\pi\)
−0.0432617 + 0.999064i \(0.513775\pi\)
\(828\) 0 0
\(829\) 9.09694i 0.315950i −0.987443 0.157975i \(-0.949503\pi\)
0.987443 0.157975i \(-0.0504965\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.4110i 0.499312i
\(834\) 0 0
\(835\) 2.63782i 0.0912855i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.2042 −0.455861 −0.227930 0.973677i \(-0.573196\pi\)
−0.227930 + 0.973677i \(0.573196\pi\)
\(840\) 0 0
\(841\) 23.6925 0.816984
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.57931i 0.226335i
\(846\) 0 0
\(847\) 92.0703 3.16357
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.36500 0.149630
\(852\) 0 0
\(853\) 14.1496 0.484473 0.242236 0.970217i \(-0.422119\pi\)
0.242236 + 0.970217i \(0.422119\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.1781 0.381836 0.190918 0.981606i \(-0.438854\pi\)
0.190918 + 0.981606i \(0.438854\pi\)
\(858\) 0 0
\(859\) 31.8960 1.08828 0.544139 0.838995i \(-0.316857\pi\)
0.544139 + 0.838995i \(0.316857\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.90530 −0.0988977 −0.0494488 0.998777i \(-0.515746\pi\)
−0.0494488 + 0.998777i \(0.515746\pi\)
\(864\) 0 0
\(865\) 5.36941i 0.182566i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.4110 −0.862009
\(870\) 0 0
\(871\) 21.2387 0.719646
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.6430i 0.562637i
\(876\) 0 0
\(877\) 16.7613i 0.565990i −0.959121 0.282995i \(-0.908672\pi\)
0.959121 0.282995i \(-0.0913280\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27.4606i 0.925172i 0.886575 + 0.462586i \(0.153078\pi\)
−0.886575 + 0.462586i \(0.846922\pi\)
\(882\) 0 0
\(883\) 22.2342 0.748239 0.374119 0.927381i \(-0.377945\pi\)
0.374119 + 0.927381i \(0.377945\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.9736 1.20788 0.603938 0.797031i \(-0.293597\pi\)
0.603938 + 0.797031i \(0.293597\pi\)
\(888\) 0 0
\(889\) 16.8279i 0.564390i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.86478 7.22947i 0.196257 0.241925i
\(894\) 0 0
\(895\) 8.46168i 0.282843i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31.5017i 1.05064i
\(900\) 0 0
\(901\) 10.1880i 0.339413i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.93172 0.197177
\(906\) 0 0
\(907\) 6.60565i 0.219337i −0.993968 0.109668i \(-0.965021\pi\)
0.993968 0.109668i \(-0.0349789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 21.6716 0.718011 0.359005 0.933335i \(-0.383116\pi\)
0.359005 + 0.933335i \(0.383116\pi\)
\(912\) 0 0
\(913\) −57.6787 −1.90889
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 53.7911i 1.77634i
\(918\) 0 0
\(919\) 40.7446 1.34404 0.672020 0.740533i \(-0.265427\pi\)
0.672020 + 0.740533i \(0.265427\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 34.1448i 1.12389i
\(924\) 0 0
\(925\) 47.3888i 1.55813i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.4809i 0.803192i 0.915817 + 0.401596i \(0.131544\pi\)
−0.915817 + 0.401596i \(0.868456\pi\)
\(930\) 0 0
\(931\) 44.6923 + 36.2558i 1.46473 + 1.18823i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.30026i 0.0752265i
\(936\) 0 0
\(937\) 21.7162 0.709439 0.354719 0.934973i \(-0.384576\pi\)
0.354719 + 0.934973i \(0.384576\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.7451 0.774068 0.387034 0.922065i \(-0.373500\pi\)
0.387034 + 0.922065i \(0.373500\pi\)
\(942\) 0 0
\(943\) 3.70197i 0.120553i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 53.0643i 1.72436i −0.506603 0.862179i \(-0.669099\pi\)
0.506603 0.862179i \(-0.330901\pi\)
\(948\) 0 0
\(949\) 7.85808i 0.255084i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −52.7366 −1.70831 −0.854153 0.520023i \(-0.825924\pi\)
−0.854153 + 0.520023i \(0.825924\pi\)
\(954\) 0 0
\(955\) −4.92759 −0.159453
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 32.3363i 1.04419i
\(960\) 0 0
\(961\) 12.1670 0.392484
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.78135 −0.0895349
\(966\) 0 0
\(967\) 17.6547 0.567738 0.283869 0.958863i \(-0.408382\pi\)
0.283869 + 0.958863i \(0.408382\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.71197 −0.0870312 −0.0435156 0.999053i \(-0.513856\pi\)
−0.0435156 + 0.999053i \(0.513856\pi\)
\(972\) 0 0
\(973\) −12.8767 −0.412809
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.6515 0.532730 0.266365 0.963872i \(-0.414177\pi\)
0.266365 + 0.963872i \(0.414177\pi\)
\(978\) 0 0
\(979\) 2.57505i 0.0822989i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29.7928 0.950243 0.475121 0.879920i \(-0.342404\pi\)
0.475121 + 0.879920i \(0.342404\pi\)
\(984\) 0 0
\(985\) −3.18209 −0.101390
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.81636i 0.0895550i
\(990\) 0 0
\(991\) 34.2748i 1.08878i 0.838834 + 0.544388i \(0.183238\pi\)
−0.838834 + 0.544388i \(0.816762\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.89056i 0.313552i
\(996\) 0 0
\(997\) 46.7522 1.48066 0.740329 0.672245i \(-0.234670\pi\)
0.740329 + 0.672245i \(0.234670\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.f.c.1025.11 yes 20
3.2 odd 2 5472.2.f.d.1025.9 yes 20
4.3 odd 2 inner 5472.2.f.c.1025.12 yes 20
12.11 even 2 5472.2.f.d.1025.10 yes 20
19.18 odd 2 5472.2.f.d.1025.11 yes 20
57.56 even 2 inner 5472.2.f.c.1025.9 20
76.75 even 2 5472.2.f.d.1025.12 yes 20
228.227 odd 2 inner 5472.2.f.c.1025.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5472.2.f.c.1025.9 20 57.56 even 2 inner
5472.2.f.c.1025.10 yes 20 228.227 odd 2 inner
5472.2.f.c.1025.11 yes 20 1.1 even 1 trivial
5472.2.f.c.1025.12 yes 20 4.3 odd 2 inner
5472.2.f.d.1025.9 yes 20 3.2 odd 2
5472.2.f.d.1025.10 yes 20 12.11 even 2
5472.2.f.d.1025.11 yes 20 19.18 odd 2
5472.2.f.d.1025.12 yes 20 76.75 even 2