Properties

Label 5472.2.f.c.1025.1
Level $5472$
Weight $2$
Character 5472.1025
Analytic conductor $43.694$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(1025,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.1025"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,28,0,0,0,-16,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(59)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 38 x^{18} + 528 x^{16} + 3442 x^{14} + 11480 x^{12} + 20550 x^{10} + 20369 x^{8} + 11136 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1025.1
Root \(-1.10730i\) of defining polynomial
Character \(\chi\) \(=\) 5472.1025
Dual form 5472.2.f.c.1025.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.50596i q^{5} -2.78457 q^{7} +3.14374i q^{11} -2.18316i q^{13} -1.90628i q^{17} +(-0.182595 + 4.35507i) q^{19} +2.24534i q^{23} -7.29179 q^{25} +5.61691 q^{29} -2.50357i q^{31} +9.76261i q^{35} +3.48569i q^{37} -7.87921 q^{41} -1.87923 q^{43} +12.0080i q^{47} +0.753846 q^{49} +2.03716 q^{53} +11.0218 q^{55} -12.5359 q^{59} -1.36228 q^{61} -7.65407 q^{65} -2.93912i q^{67} +15.0770 q^{71} +4.42105 q^{73} -8.75398i q^{77} -13.3186i q^{79} +8.96837i q^{83} -6.68335 q^{85} +10.9667 q^{89} +6.07916i q^{91} +(15.2687 + 0.640173i) q^{95} +1.89684i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{25} - 16 q^{41} + 28 q^{49} - 16 q^{53} + 16 q^{65} + 16 q^{73} - 32 q^{85} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.50596i 1.56791i −0.620815 0.783957i \(-0.713198\pi\)
0.620815 0.783957i \(-0.286802\pi\)
\(6\) 0 0
\(7\) −2.78457 −1.05247 −0.526235 0.850339i \(-0.676397\pi\)
−0.526235 + 0.850339i \(0.676397\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.14374i 0.947874i 0.880559 + 0.473937i \(0.157168\pi\)
−0.880559 + 0.473937i \(0.842832\pi\)
\(12\) 0 0
\(13\) 2.18316i 0.605499i −0.953070 0.302749i \(-0.902095\pi\)
0.953070 0.302749i \(-0.0979045\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.90628i 0.462341i −0.972913 0.231170i \(-0.925745\pi\)
0.972913 0.231170i \(-0.0742555\pi\)
\(18\) 0 0
\(19\) −0.182595 + 4.35507i −0.0418902 + 0.999122i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.24534i 0.468186i 0.972214 + 0.234093i \(0.0752120\pi\)
−0.972214 + 0.234093i \(0.924788\pi\)
\(24\) 0 0
\(25\) −7.29179 −1.45836
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.61691 1.04303 0.521517 0.853241i \(-0.325366\pi\)
0.521517 + 0.853241i \(0.325366\pi\)
\(30\) 0 0
\(31\) 2.50357i 0.449654i −0.974399 0.224827i \(-0.927818\pi\)
0.974399 0.224827i \(-0.0721817\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.76261i 1.65018i
\(36\) 0 0
\(37\) 3.48569i 0.573043i 0.958074 + 0.286522i \(0.0924990\pi\)
−0.958074 + 0.286522i \(0.907501\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.87921 −1.23053 −0.615263 0.788322i \(-0.710950\pi\)
−0.615263 + 0.788322i \(0.710950\pi\)
\(42\) 0 0
\(43\) −1.87923 −0.286580 −0.143290 0.989681i \(-0.545768\pi\)
−0.143290 + 0.989681i \(0.545768\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0080i 1.75154i 0.482729 + 0.875770i \(0.339646\pi\)
−0.482729 + 0.875770i \(0.660354\pi\)
\(48\) 0 0
\(49\) 0.753846 0.107692
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.03716 0.279825 0.139912 0.990164i \(-0.455318\pi\)
0.139912 + 0.990164i \(0.455318\pi\)
\(54\) 0 0
\(55\) 11.0218 1.48619
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.5359 −1.63203 −0.816017 0.578028i \(-0.803822\pi\)
−0.816017 + 0.578028i \(0.803822\pi\)
\(60\) 0 0
\(61\) −1.36228 −0.174422 −0.0872112 0.996190i \(-0.527796\pi\)
−0.0872112 + 0.996190i \(0.527796\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.65407 −0.949370
\(66\) 0 0
\(67\) 2.93912i 0.359071i −0.983752 0.179535i \(-0.942541\pi\)
0.983752 0.179535i \(-0.0574594\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0770 1.78930 0.894652 0.446763i \(-0.147423\pi\)
0.894652 + 0.446763i \(0.147423\pi\)
\(72\) 0 0
\(73\) 4.42105 0.517445 0.258723 0.965952i \(-0.416698\pi\)
0.258723 + 0.965952i \(0.416698\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.75398i 0.997608i
\(78\) 0 0
\(79\) 13.3186i 1.49847i −0.662307 0.749233i \(-0.730423\pi\)
0.662307 0.749233i \(-0.269577\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.96837i 0.984407i 0.870480 + 0.492203i \(0.163808\pi\)
−0.870480 + 0.492203i \(0.836192\pi\)
\(84\) 0 0
\(85\) −6.68335 −0.724911
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.9667 1.16246 0.581232 0.813738i \(-0.302571\pi\)
0.581232 + 0.813738i \(0.302571\pi\)
\(90\) 0 0
\(91\) 6.07916i 0.637269i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.2687 + 0.640173i 1.56654 + 0.0656803i
\(96\) 0 0
\(97\) 1.89684i 0.192595i 0.995353 + 0.0962975i \(0.0307000\pi\)
−0.995353 + 0.0962975i \(0.969300\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.1865i 1.41161i 0.708406 + 0.705805i \(0.249414\pi\)
−0.708406 + 0.705805i \(0.750586\pi\)
\(102\) 0 0
\(103\) 14.0825i 1.38759i 0.720171 + 0.693797i \(0.244063\pi\)
−0.720171 + 0.693797i \(0.755937\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.7020 −1.13128 −0.565640 0.824652i \(-0.691371\pi\)
−0.565640 + 0.824652i \(0.691371\pi\)
\(108\) 0 0
\(109\) 13.0076i 1.24591i 0.782259 + 0.622953i \(0.214067\pi\)
−0.782259 + 0.622953i \(0.785933\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.70436 −0.442549 −0.221275 0.975212i \(-0.571022\pi\)
−0.221275 + 0.975212i \(0.571022\pi\)
\(114\) 0 0
\(115\) 7.87208 0.734076
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.30817i 0.486600i
\(120\) 0 0
\(121\) 1.11689 0.101535
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.03492i 0.718665i
\(126\) 0 0
\(127\) 12.1763i 1.08047i −0.841513 0.540237i \(-0.818334\pi\)
0.841513 0.540237i \(-0.181666\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.794239i 0.0693930i −0.999398 0.0346965i \(-0.988954\pi\)
0.999398 0.0346965i \(-0.0110465\pi\)
\(132\) 0 0
\(133\) 0.508450 12.1270i 0.0440882 1.05155i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.8042i 0.923066i 0.887123 + 0.461533i \(0.152700\pi\)
−0.887123 + 0.461533i \(0.847300\pi\)
\(138\) 0 0
\(139\) 11.5620 0.980676 0.490338 0.871532i \(-0.336873\pi\)
0.490338 + 0.871532i \(0.336873\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.86328 0.573936
\(144\) 0 0
\(145\) 19.6927i 1.63539i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.9576i 1.06153i 0.847518 + 0.530766i \(0.178096\pi\)
−0.847518 + 0.530766i \(0.821904\pi\)
\(150\) 0 0
\(151\) 4.40977i 0.358862i 0.983771 + 0.179431i \(0.0574257\pi\)
−0.983771 + 0.179431i \(0.942574\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.77742 −0.705020
\(156\) 0 0
\(157\) 13.0038 1.03782 0.518909 0.854830i \(-0.326338\pi\)
0.518909 + 0.854830i \(0.326338\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.25231i 0.492751i
\(162\) 0 0
\(163\) 19.0340 1.49086 0.745428 0.666586i \(-0.232245\pi\)
0.745428 + 0.666586i \(0.232245\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.39760 0.108149 0.0540747 0.998537i \(-0.482779\pi\)
0.0540747 + 0.998537i \(0.482779\pi\)
\(168\) 0 0
\(169\) 8.23383 0.633371
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.40380 0.638929 0.319465 0.947598i \(-0.396497\pi\)
0.319465 + 0.947598i \(0.396497\pi\)
\(174\) 0 0
\(175\) 20.3045 1.53488
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.83876 −0.361666 −0.180833 0.983514i \(-0.557879\pi\)
−0.180833 + 0.983514i \(0.557879\pi\)
\(180\) 0 0
\(181\) 20.2854i 1.50780i −0.656987 0.753902i \(-0.728169\pi\)
0.656987 0.753902i \(-0.271831\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.2207 0.898483
\(186\) 0 0
\(187\) 5.99285 0.438241
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.41234i 0.391623i 0.980642 + 0.195812i \(0.0627341\pi\)
−0.980642 + 0.195812i \(0.937266\pi\)
\(192\) 0 0
\(193\) 16.0698i 1.15673i 0.815777 + 0.578366i \(0.196310\pi\)
−0.815777 + 0.578366i \(0.803690\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.9191i 1.63292i −0.577402 0.816460i \(-0.695933\pi\)
0.577402 0.816460i \(-0.304067\pi\)
\(198\) 0 0
\(199\) 17.5199 1.24196 0.620978 0.783828i \(-0.286736\pi\)
0.620978 + 0.783828i \(0.286736\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.6407 −1.09776
\(204\) 0 0
\(205\) 27.6242i 1.92936i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.6912 0.574033i −0.947042 0.0397067i
\(210\) 0 0
\(211\) 2.93912i 0.202337i −0.994869 0.101169i \(-0.967742\pi\)
0.994869 0.101169i \(-0.0322582\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.58852i 0.449333i
\(216\) 0 0
\(217\) 6.97137i 0.473247i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.16171 −0.279947
\(222\) 0 0
\(223\) 1.66938i 0.111790i −0.998437 0.0558951i \(-0.982199\pi\)
0.998437 0.0558951i \(-0.0178013\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.75846 0.249458 0.124729 0.992191i \(-0.460194\pi\)
0.124729 + 0.992191i \(0.460194\pi\)
\(228\) 0 0
\(229\) 18.7710 1.24042 0.620212 0.784435i \(-0.287047\pi\)
0.620212 + 0.784435i \(0.287047\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.27259i 0.410931i 0.978664 + 0.205466i \(0.0658709\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(234\) 0 0
\(235\) 42.0995 2.74627
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.15549i 0.139427i −0.997567 0.0697136i \(-0.977791\pi\)
0.997567 0.0697136i \(-0.0222085\pi\)
\(240\) 0 0
\(241\) 9.23406i 0.594818i −0.954750 0.297409i \(-0.903878\pi\)
0.954750 0.297409i \(-0.0961225\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.64296i 0.168852i
\(246\) 0 0
\(247\) 9.50781 + 0.398634i 0.604967 + 0.0253645i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.3023i 0.650277i 0.945666 + 0.325139i \(0.105411\pi\)
−0.945666 + 0.325139i \(0.894589\pi\)
\(252\) 0 0
\(253\) −7.05877 −0.443781
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.60001 0.286941 0.143470 0.989655i \(-0.454174\pi\)
0.143470 + 0.989655i \(0.454174\pi\)
\(258\) 0 0
\(259\) 9.70614i 0.603110i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.5673i 1.14491i −0.819936 0.572455i \(-0.805991\pi\)
0.819936 0.572455i \(-0.194009\pi\)
\(264\) 0 0
\(265\) 7.14219i 0.438742i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −26.6530 −1.62506 −0.812531 0.582917i \(-0.801911\pi\)
−0.812531 + 0.582917i \(0.801911\pi\)
\(270\) 0 0
\(271\) 25.0718 1.52300 0.761501 0.648164i \(-0.224463\pi\)
0.761501 + 0.648164i \(0.224463\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 22.9235i 1.38234i
\(276\) 0 0
\(277\) −10.9458 −0.657670 −0.328835 0.944387i \(-0.606656\pi\)
−0.328835 + 0.944387i \(0.606656\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.9458 1.84607 0.923035 0.384716i \(-0.125701\pi\)
0.923035 + 0.384716i \(0.125701\pi\)
\(282\) 0 0
\(283\) −5.25414 −0.312326 −0.156163 0.987731i \(-0.549913\pi\)
−0.156163 + 0.987731i \(0.549913\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 21.9402 1.29509
\(288\) 0 0
\(289\) 13.3661 0.786241
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −27.2043 −1.58929 −0.794646 0.607073i \(-0.792344\pi\)
−0.794646 + 0.607073i \(0.792344\pi\)
\(294\) 0 0
\(295\) 43.9504i 2.55889i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.90193 0.283486
\(300\) 0 0
\(301\) 5.23286 0.301617
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.77612i 0.273480i
\(306\) 0 0
\(307\) 9.67276i 0.552054i −0.961150 0.276027i \(-0.910982\pi\)
0.961150 0.276027i \(-0.0890179\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.44525i 0.365477i −0.983162 0.182738i \(-0.941504\pi\)
0.983162 0.182738i \(-0.0584961\pi\)
\(312\) 0 0
\(313\) −1.65031 −0.0932809 −0.0466405 0.998912i \(-0.514852\pi\)
−0.0466405 + 0.998912i \(0.514852\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.80495 −0.157542 −0.0787709 0.996893i \(-0.525100\pi\)
−0.0787709 + 0.996893i \(0.525100\pi\)
\(318\) 0 0
\(319\) 17.6581i 0.988665i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.30199 + 0.348078i 0.461935 + 0.0193676i
\(324\) 0 0
\(325\) 15.9191i 0.883033i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 33.4370i 1.84344i
\(330\) 0 0
\(331\) 4.10266i 0.225502i 0.993623 + 0.112751i \(0.0359663\pi\)
−0.993623 + 0.112751i \(0.964034\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.3044 −0.562992
\(336\) 0 0
\(337\) 10.9601i 0.597033i 0.954404 + 0.298517i \(0.0964918\pi\)
−0.954404 + 0.298517i \(0.903508\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.87058 0.426216
\(342\) 0 0
\(343\) 17.3929 0.939127
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.39498i 0.504349i 0.967682 + 0.252175i \(0.0811457\pi\)
−0.967682 + 0.252175i \(0.918854\pi\)
\(348\) 0 0
\(349\) −3.92874 −0.210301 −0.105150 0.994456i \(-0.533532\pi\)
−0.105150 + 0.994456i \(0.533532\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.5138i 0.985392i 0.870201 + 0.492696i \(0.163989\pi\)
−0.870201 + 0.492696i \(0.836011\pi\)
\(354\) 0 0
\(355\) 52.8593i 2.80548i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.0096i 1.37273i 0.727256 + 0.686367i \(0.240795\pi\)
−0.727256 + 0.686367i \(0.759205\pi\)
\(360\) 0 0
\(361\) −18.9333 1.59043i −0.996490 0.0837069i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.5001i 0.811310i
\(366\) 0 0
\(367\) −11.1383 −0.581414 −0.290707 0.956812i \(-0.593890\pi\)
−0.290707 + 0.956812i \(0.593890\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.67261 −0.294507
\(372\) 0 0
\(373\) 20.7683i 1.07534i −0.843154 0.537672i \(-0.819304\pi\)
0.843154 0.537672i \(-0.180696\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.2626i 0.631556i
\(378\) 0 0
\(379\) 21.3220i 1.09524i −0.836727 0.547620i \(-0.815534\pi\)
0.836727 0.547620i \(-0.184466\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.9157 1.01765 0.508823 0.860871i \(-0.330081\pi\)
0.508823 + 0.860871i \(0.330081\pi\)
\(384\) 0 0
\(385\) −30.6911 −1.56417
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.17372i 0.110212i −0.998481 0.0551059i \(-0.982450\pi\)
0.998481 0.0551059i \(-0.0175496\pi\)
\(390\) 0 0
\(391\) 4.28025 0.216461
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −46.6947 −2.34947
\(396\) 0 0
\(397\) −15.7292 −0.789426 −0.394713 0.918805i \(-0.629156\pi\)
−0.394713 + 0.918805i \(0.629156\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.2196 1.35928 0.679642 0.733544i \(-0.262135\pi\)
0.679642 + 0.733544i \(0.262135\pi\)
\(402\) 0 0
\(403\) −5.46568 −0.272265
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.9581 −0.543173
\(408\) 0 0
\(409\) 6.56956i 0.324844i −0.986721 0.162422i \(-0.948069\pi\)
0.986721 0.162422i \(-0.0519306\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 34.9071 1.71767
\(414\) 0 0
\(415\) 31.4428 1.54347
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.1525i 0.837953i 0.907997 + 0.418976i \(0.137611\pi\)
−0.907997 + 0.418976i \(0.862389\pi\)
\(420\) 0 0
\(421\) 14.7337i 0.718075i −0.933323 0.359037i \(-0.883105\pi\)
0.933323 0.359037i \(-0.116895\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.9002i 0.674258i
\(426\) 0 0
\(427\) 3.79338 0.183574
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.9721 0.576677 0.288339 0.957528i \(-0.406897\pi\)
0.288339 + 0.957528i \(0.406897\pi\)
\(432\) 0 0
\(433\) 30.1154i 1.44725i 0.690192 + 0.723626i \(0.257526\pi\)
−0.690192 + 0.723626i \(0.742474\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.77862 0.409989i −0.467775 0.0196124i
\(438\) 0 0
\(439\) 24.5526i 1.17183i 0.810372 + 0.585915i \(0.199265\pi\)
−0.810372 + 0.585915i \(0.800735\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.0911i 0.479444i 0.970842 + 0.239722i \(0.0770564\pi\)
−0.970842 + 0.239722i \(0.922944\pi\)
\(444\) 0 0
\(445\) 38.4487i 1.82264i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.9743 −1.74492 −0.872462 0.488681i \(-0.837478\pi\)
−0.872462 + 0.488681i \(0.837478\pi\)
\(450\) 0 0
\(451\) 24.7702i 1.16638i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21.3133 0.999184
\(456\) 0 0
\(457\) −26.6132 −1.24491 −0.622457 0.782654i \(-0.713865\pi\)
−0.622457 + 0.782654i \(0.713865\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.6438i 0.728605i 0.931281 + 0.364303i \(0.118693\pi\)
−0.931281 + 0.364303i \(0.881307\pi\)
\(462\) 0 0
\(463\) −39.7965 −1.84950 −0.924751 0.380574i \(-0.875727\pi\)
−0.924751 + 0.380574i \(0.875727\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 41.3231i 1.91220i 0.293033 + 0.956102i \(0.405335\pi\)
−0.293033 + 0.956102i \(0.594665\pi\)
\(468\) 0 0
\(469\) 8.18419i 0.377911i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.90782i 0.271642i
\(474\) 0 0
\(475\) 1.33145 31.7563i 0.0610909 1.45708i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.3039i 0.653560i 0.945101 + 0.326780i \(0.105964\pi\)
−0.945101 + 0.326780i \(0.894036\pi\)
\(480\) 0 0
\(481\) 7.60980 0.346977
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.65025 0.301973
\(486\) 0 0
\(487\) 26.3112i 1.19227i 0.802883 + 0.596136i \(0.203298\pi\)
−0.802883 + 0.596136i \(0.796702\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.81646i 0.352752i 0.984323 + 0.176376i \(0.0564375\pi\)
−0.984323 + 0.176376i \(0.943563\pi\)
\(492\) 0 0
\(493\) 10.7074i 0.482237i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −41.9829 −1.88319
\(498\) 0 0
\(499\) 5.88939 0.263645 0.131823 0.991273i \(-0.457917\pi\)
0.131823 + 0.991273i \(0.457917\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 29.5393i 1.31709i 0.752540 + 0.658546i \(0.228828\pi\)
−0.752540 + 0.658546i \(0.771172\pi\)
\(504\) 0 0
\(505\) 49.7374 2.21328
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.1322 0.537749 0.268875 0.963175i \(-0.413348\pi\)
0.268875 + 0.963175i \(0.413348\pi\)
\(510\) 0 0
\(511\) −12.3107 −0.544595
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 49.3729 2.17563
\(516\) 0 0
\(517\) −37.7499 −1.66024
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.4327 −0.588497 −0.294248 0.955729i \(-0.595069\pi\)
−0.294248 + 0.955729i \(0.595069\pi\)
\(522\) 0 0
\(523\) 28.3638i 1.24026i 0.784498 + 0.620131i \(0.212921\pi\)
−0.784498 + 0.620131i \(0.787079\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.77250 −0.207894
\(528\) 0 0
\(529\) 17.9584 0.780802
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.2015i 0.745082i
\(534\) 0 0
\(535\) 41.0270i 1.77375i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.36990i 0.102079i
\(540\) 0 0
\(541\) −14.3527 −0.617073 −0.308536 0.951213i \(-0.599839\pi\)
−0.308536 + 0.951213i \(0.599839\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 45.6043 1.95348
\(546\) 0 0
\(547\) 17.7618i 0.759440i −0.925101 0.379720i \(-0.876020\pi\)
0.925101 0.379720i \(-0.123980\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.02562 + 24.4621i −0.0436930 + 1.04212i
\(552\) 0 0
\(553\) 37.0868i 1.57709i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.2505i 0.815671i 0.913055 + 0.407835i \(0.133716\pi\)
−0.913055 + 0.407835i \(0.866284\pi\)
\(558\) 0 0
\(559\) 4.10266i 0.173524i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −40.7756 −1.71849 −0.859244 0.511565i \(-0.829066\pi\)
−0.859244 + 0.511565i \(0.829066\pi\)
\(564\) 0 0
\(565\) 16.4933i 0.693880i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.26712 0.220809 0.110404 0.993887i \(-0.464785\pi\)
0.110404 + 0.993887i \(0.464785\pi\)
\(570\) 0 0
\(571\) −35.6196 −1.49063 −0.745317 0.666711i \(-0.767702\pi\)
−0.745317 + 0.666711i \(0.767702\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.3725i 0.682782i
\(576\) 0 0
\(577\) −28.1508 −1.17193 −0.585966 0.810335i \(-0.699285\pi\)
−0.585966 + 0.810335i \(0.699285\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.9731i 1.03606i
\(582\) 0 0
\(583\) 6.40429i 0.265239i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.1580i 0.543090i 0.962426 + 0.271545i \(0.0875345\pi\)
−0.962426 + 0.271545i \(0.912465\pi\)
\(588\) 0 0
\(589\) 10.9032 + 0.457140i 0.449260 + 0.0188361i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.55647i 0.0639164i −0.999489 0.0319582i \(-0.989826\pi\)
0.999489 0.0319582i \(-0.0101743\pi\)
\(594\) 0 0
\(595\) 18.6103 0.762947
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.4181 0.997698 0.498849 0.866689i \(-0.333756\pi\)
0.498849 + 0.866689i \(0.333756\pi\)
\(600\) 0 0
\(601\) 16.0698i 0.655503i 0.944764 + 0.327751i \(0.106291\pi\)
−0.944764 + 0.327751i \(0.893709\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.91577i 0.159199i
\(606\) 0 0
\(607\) 8.58273i 0.348362i −0.984714 0.174181i \(-0.944272\pi\)
0.984714 0.174181i \(-0.0557278\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 26.2152 1.06056
\(612\) 0 0
\(613\) 26.5294 1.07151 0.535757 0.844372i \(-0.320026\pi\)
0.535757 + 0.844372i \(0.320026\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.1505i 0.408642i 0.978904 + 0.204321i \(0.0654987\pi\)
−0.978904 + 0.204321i \(0.934501\pi\)
\(618\) 0 0
\(619\) −37.3056 −1.49944 −0.749720 0.661755i \(-0.769812\pi\)
−0.749720 + 0.661755i \(0.769812\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −30.5375 −1.22346
\(624\) 0 0
\(625\) −8.28878 −0.331551
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.64469 0.264941
\(630\) 0 0
\(631\) −16.7181 −0.665535 −0.332768 0.943009i \(-0.607982\pi\)
−0.332768 + 0.943009i \(0.607982\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −42.6898 −1.69409
\(636\) 0 0
\(637\) 1.64576i 0.0652075i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.70807 0.304451 0.152225 0.988346i \(-0.451356\pi\)
0.152225 + 0.988346i \(0.451356\pi\)
\(642\) 0 0
\(643\) −36.0381 −1.42120 −0.710601 0.703595i \(-0.751577\pi\)
−0.710601 + 0.703595i \(0.751577\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.27270i 0.285920i −0.989729 0.142960i \(-0.954338\pi\)
0.989729 0.142960i \(-0.0456620\pi\)
\(648\) 0 0
\(649\) 39.4096i 1.54696i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.7361i 0.537537i 0.963205 + 0.268768i \(0.0866166\pi\)
−0.963205 + 0.268768i \(0.913383\pi\)
\(654\) 0 0
\(655\) −2.78457 −0.108802
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.3520 0.753845 0.376923 0.926245i \(-0.376982\pi\)
0.376923 + 0.926245i \(0.376982\pi\)
\(660\) 0 0
\(661\) 42.6995i 1.66082i 0.557153 + 0.830410i \(0.311894\pi\)
−0.557153 + 0.830410i \(0.688106\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −42.5169 1.78261i −1.64873 0.0691265i
\(666\) 0 0
\(667\) 12.6119i 0.488334i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.28267i 0.165330i
\(672\) 0 0
\(673\) 44.0581i 1.69832i −0.528139 0.849158i \(-0.677110\pi\)
0.528139 0.849158i \(-0.322890\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −33.0617 −1.27066 −0.635332 0.772239i \(-0.719137\pi\)
−0.635332 + 0.772239i \(0.719137\pi\)
\(678\) 0 0
\(679\) 5.28189i 0.202700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −40.7125 −1.55782 −0.778910 0.627136i \(-0.784227\pi\)
−0.778910 + 0.627136i \(0.784227\pi\)
\(684\) 0 0
\(685\) 37.8792 1.44729
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.44743i 0.169434i
\(690\) 0 0
\(691\) −15.8127 −0.601544 −0.300772 0.953696i \(-0.597244\pi\)
−0.300772 + 0.953696i \(0.597244\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40.5360i 1.53762i
\(696\) 0 0
\(697\) 15.0200i 0.568922i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.35127i 0.0510366i −0.999674 0.0255183i \(-0.991876\pi\)
0.999674 0.0255183i \(-0.00812362\pi\)
\(702\) 0 0
\(703\) −15.1804 0.636470i −0.572540 0.0240049i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 39.5033i 1.48568i
\(708\) 0 0
\(709\) 40.8993 1.53600 0.768002 0.640447i \(-0.221251\pi\)
0.768002 + 0.640447i \(0.221251\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.62137 0.210522
\(714\) 0 0
\(715\) 24.0624i 0.899883i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 41.3828i 1.54332i 0.636037 + 0.771659i \(0.280573\pi\)
−0.636037 + 0.771659i \(0.719427\pi\)
\(720\) 0 0
\(721\) 39.2139i 1.46040i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −40.9573 −1.52112
\(726\) 0 0
\(727\) −49.9715 −1.85334 −0.926671 0.375874i \(-0.877343\pi\)
−0.926671 + 0.375874i \(0.877343\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.58234i 0.132498i
\(732\) 0 0
\(733\) −23.1235 −0.854086 −0.427043 0.904231i \(-0.640445\pi\)
−0.427043 + 0.904231i \(0.640445\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.23983 0.340354
\(738\) 0 0
\(739\) 49.2328 1.81106 0.905529 0.424283i \(-0.139474\pi\)
0.905529 + 0.424283i \(0.139474\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.1799 0.520212 0.260106 0.965580i \(-0.416243\pi\)
0.260106 + 0.965580i \(0.416243\pi\)
\(744\) 0 0
\(745\) 45.4291 1.66439
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 32.5852 1.19064
\(750\) 0 0
\(751\) 16.0590i 0.586003i −0.956112 0.293001i \(-0.905346\pi\)
0.956112 0.293001i \(-0.0946540\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.4605 0.562666
\(756\) 0 0
\(757\) 13.5863 0.493803 0.246901 0.969041i \(-0.420588\pi\)
0.246901 + 0.969041i \(0.420588\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.3183i 1.42529i 0.701526 + 0.712644i \(0.252502\pi\)
−0.701526 + 0.712644i \(0.747498\pi\)
\(762\) 0 0
\(763\) 36.2207i 1.31128i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.3678i 0.988194i
\(768\) 0 0
\(769\) 37.8829 1.36609 0.683047 0.730375i \(-0.260654\pi\)
0.683047 + 0.730375i \(0.260654\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25.0425 0.900716 0.450358 0.892848i \(-0.351296\pi\)
0.450358 + 0.892848i \(0.351296\pi\)
\(774\) 0 0
\(775\) 18.2555i 0.655757i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.43871 34.3145i 0.0515470 1.22945i
\(780\) 0 0
\(781\) 47.3980i 1.69604i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 45.5909i 1.62721i
\(786\) 0 0
\(787\) 51.0994i 1.82150i 0.412963 + 0.910748i \(0.364494\pi\)
−0.412963 + 0.910748i \(0.635506\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 13.0996 0.465770
\(792\) 0 0
\(793\) 2.97408i 0.105613i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.7671 1.65658 0.828288 0.560303i \(-0.189315\pi\)
0.828288 + 0.560303i \(0.189315\pi\)
\(798\) 0 0
\(799\) 22.8905 0.809808
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.8987i 0.490473i
\(804\) 0 0
\(805\) −21.9204 −0.772592
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.2107i 0.745730i −0.927886 0.372865i \(-0.878376\pi\)
0.927886 0.372865i \(-0.121624\pi\)
\(810\) 0 0
\(811\) 1.21261i 0.0425806i 0.999773 + 0.0212903i \(0.00677743\pi\)
−0.999773 + 0.0212903i \(0.993223\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 66.7325i 2.33754i
\(816\) 0 0
\(817\) 0.343139 8.18419i 0.0120049 0.286329i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.75664i 0.305609i −0.988256 0.152804i \(-0.951170\pi\)
0.988256 0.152804i \(-0.0488304\pi\)
\(822\) 0 0
\(823\) 9.81448 0.342111 0.171056 0.985261i \(-0.445282\pi\)
0.171056 + 0.985261i \(0.445282\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.2379 −0.842836 −0.421418 0.906867i \(-0.638467\pi\)
−0.421418 + 0.906867i \(0.638467\pi\)
\(828\) 0 0
\(829\) 5.39609i 0.187414i 0.995600 + 0.0937069i \(0.0298717\pi\)
−0.995600 + 0.0937069i \(0.970128\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.43704i 0.0497905i
\(834\) 0 0
\(835\) 4.89993i 0.169569i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16.4745 0.568765 0.284382 0.958711i \(-0.408212\pi\)
0.284382 + 0.958711i \(0.408212\pi\)
\(840\) 0 0
\(841\) 2.54972 0.0879214
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 28.8675i 0.993072i
\(846\) 0 0
\(847\) −3.11005 −0.106863
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.82655 −0.268291
\(852\) 0 0
\(853\) 25.3081 0.866534 0.433267 0.901266i \(-0.357361\pi\)
0.433267 + 0.901266i \(0.357361\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.7158 1.08339 0.541696 0.840575i \(-0.317783\pi\)
0.541696 + 0.840575i \(0.317783\pi\)
\(858\) 0 0
\(859\) −2.26803 −0.0773841 −0.0386920 0.999251i \(-0.512319\pi\)
−0.0386920 + 0.999251i \(0.512319\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.8581 0.573857 0.286928 0.957952i \(-0.407366\pi\)
0.286928 + 0.957952i \(0.407366\pi\)
\(864\) 0 0
\(865\) 29.4634i 1.00179i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 41.8704 1.42036
\(870\) 0 0
\(871\) −6.41656 −0.217417
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 22.3738i 0.756373i
\(876\) 0 0
\(877\) 37.8920i 1.27952i −0.768575 0.639760i \(-0.779034\pi\)
0.768575 0.639760i \(-0.220966\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 33.6386i 1.13331i 0.823954 + 0.566657i \(0.191764\pi\)
−0.823954 + 0.566657i \(0.808236\pi\)
\(882\) 0 0
\(883\) −39.3255 −1.32341 −0.661704 0.749765i \(-0.730167\pi\)
−0.661704 + 0.749765i \(0.730167\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.6126 1.39721 0.698607 0.715506i \(-0.253804\pi\)
0.698607 + 0.715506i \(0.253804\pi\)
\(888\) 0 0
\(889\) 33.9059i 1.13717i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −52.2955 2.19260i −1.75000 0.0733724i
\(894\) 0 0
\(895\) 16.9645i 0.567062i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14.0623i 0.469005i
\(900\) 0 0
\(901\) 3.88339i 0.129374i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −71.1200 −2.36411
\(906\) 0 0
\(907\) 40.4688i 1.34375i −0.740667 0.671873i \(-0.765490\pi\)
0.740667 0.671873i \(-0.234510\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.1766 −0.933532 −0.466766 0.884381i \(-0.654581\pi\)
−0.466766 + 0.884381i \(0.654581\pi\)
\(912\) 0 0
\(913\) −28.1943 −0.933094
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.21162i 0.0730340i
\(918\) 0 0
\(919\) 11.1939 0.369251 0.184626 0.982809i \(-0.440893\pi\)
0.184626 + 0.982809i \(0.440893\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 32.9153i 1.08342i
\(924\) 0 0
\(925\) 25.4169i 0.835702i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 38.4148i 1.26035i 0.776454 + 0.630174i \(0.217016\pi\)
−0.776454 + 0.630174i \(0.782984\pi\)
\(930\) 0 0
\(931\) −0.137649 + 3.28305i −0.00451125 + 0.107598i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21.0107i 0.687124i
\(936\) 0 0
\(937\) −43.0028 −1.40484 −0.702421 0.711762i \(-0.747897\pi\)
−0.702421 + 0.711762i \(0.747897\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −47.4419 −1.54656 −0.773282 0.634063i \(-0.781386\pi\)
−0.773282 + 0.634063i \(0.781386\pi\)
\(942\) 0 0
\(943\) 17.6915i 0.576115i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.23073i 0.104985i −0.998621 0.0524923i \(-0.983284\pi\)
0.998621 0.0524923i \(-0.0167165\pi\)
\(948\) 0 0
\(949\) 9.65185i 0.313312i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −7.95190 −0.257587 −0.128794 0.991671i \(-0.541110\pi\)
−0.128794 + 0.991671i \(0.541110\pi\)
\(954\) 0 0
\(955\) 18.9755 0.614032
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 30.0851i 0.971499i
\(960\) 0 0
\(961\) 24.7321 0.797811
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 56.3403 1.81366
\(966\) 0 0
\(967\) −43.3014 −1.39248 −0.696240 0.717809i \(-0.745145\pi\)
−0.696240 + 0.717809i \(0.745145\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −58.1503 −1.86613 −0.933066 0.359705i \(-0.882877\pi\)
−0.933066 + 0.359705i \(0.882877\pi\)
\(972\) 0 0
\(973\) −32.1952 −1.03213
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.5957 −0.338985 −0.169492 0.985531i \(-0.554213\pi\)
−0.169492 + 0.985531i \(0.554213\pi\)
\(978\) 0 0
\(979\) 34.4763i 1.10187i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 56.6895 1.80812 0.904058 0.427410i \(-0.140574\pi\)
0.904058 + 0.427410i \(0.140574\pi\)
\(984\) 0 0
\(985\) −80.3536 −2.56028
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.21952i 0.134173i
\(990\) 0 0
\(991\) 48.3971i 1.53738i −0.639619 0.768692i \(-0.720908\pi\)
0.639619 0.768692i \(-0.279092\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 61.4243i 1.94728i
\(996\) 0 0
\(997\) −14.1796 −0.449073 −0.224537 0.974466i \(-0.572087\pi\)
−0.224537 + 0.974466i \(0.572087\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.f.c.1025.1 20
3.2 odd 2 5472.2.f.d.1025.19 yes 20
4.3 odd 2 inner 5472.2.f.c.1025.2 yes 20
12.11 even 2 5472.2.f.d.1025.20 yes 20
19.18 odd 2 5472.2.f.d.1025.1 yes 20
57.56 even 2 inner 5472.2.f.c.1025.19 yes 20
76.75 even 2 5472.2.f.d.1025.2 yes 20
228.227 odd 2 inner 5472.2.f.c.1025.20 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5472.2.f.c.1025.1 20 1.1 even 1 trivial
5472.2.f.c.1025.2 yes 20 4.3 odd 2 inner
5472.2.f.c.1025.19 yes 20 57.56 even 2 inner
5472.2.f.c.1025.20 yes 20 228.227 odd 2 inner
5472.2.f.d.1025.1 yes 20 19.18 odd 2
5472.2.f.d.1025.2 yes 20 76.75 even 2
5472.2.f.d.1025.19 yes 20 3.2 odd 2
5472.2.f.d.1025.20 yes 20 12.11 even 2