Properties

Label 5472.2.d.g.2015.5
Level $5472$
Weight $2$
Character 5472.2015
Analytic conductor $43.694$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(2015,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.2015"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 5x^{12} + 4x^{10} - 20x^{8} + 16x^{6} + 80x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2015.5
Root \(1.33768 + 0.458926i\) of defining polynomial
Character \(\chi\) \(=\) 5472.2015
Dual form 5472.2.d.g.2015.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.436116i q^{5} -3.45559i q^{7} -0.436116 q^{11} -5.08157 q^{13} -3.60784i q^{17} -1.00000i q^{19} +3.12943 q^{23} +4.80980 q^{25} +4.35800i q^{29} +3.08157i q^{31} -1.50704 q^{35} -5.08157 q^{37} -9.77387i q^{41} -6.23549i q^{43} +5.13741 q^{47} -4.94108 q^{49} -6.07321i q^{53} +0.190197i q^{55} -5.23023 q^{59} -1.92765 q^{61} +2.21615i q^{65} -2.91117i q^{67} -1.11321 q^{71} -5.94108 q^{73} +1.50704i q^{77} +13.2447i q^{79} -5.95786 q^{83} -1.57344 q^{85} -13.7155i q^{89} +17.5598i q^{91} -0.436116 q^{95} -9.88215 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{13} - 48 q^{25} - 16 q^{37} + 8 q^{49} - 80 q^{61} - 8 q^{73} - 152 q^{85} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.436116i − 0.195037i −0.995234 0.0975186i \(-0.968909\pi\)
0.995234 0.0975186i \(-0.0310905\pi\)
\(6\) 0 0
\(7\) − 3.45559i − 1.30609i −0.757320 0.653044i \(-0.773491\pi\)
0.757320 0.653044i \(-0.226509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.436116 −0.131494 −0.0657470 0.997836i \(-0.520943\pi\)
−0.0657470 + 0.997836i \(0.520943\pi\)
\(12\) 0 0
\(13\) −5.08157 −1.40937 −0.704687 0.709518i \(-0.748912\pi\)
−0.704687 + 0.709518i \(0.748912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.60784i − 0.875029i −0.899211 0.437514i \(-0.855859\pi\)
0.899211 0.437514i \(-0.144141\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.12943 0.652531 0.326266 0.945278i \(-0.394210\pi\)
0.326266 + 0.945278i \(0.394210\pi\)
\(24\) 0 0
\(25\) 4.80980 0.961961
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.35800i 0.809260i 0.914481 + 0.404630i \(0.132600\pi\)
−0.914481 + 0.404630i \(0.867400\pi\)
\(30\) 0 0
\(31\) 3.08157i 0.553466i 0.960947 + 0.276733i \(0.0892518\pi\)
−0.960947 + 0.276733i \(0.910748\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50704 −0.254736
\(36\) 0 0
\(37\) −5.08157 −0.835405 −0.417702 0.908584i \(-0.637165\pi\)
−0.417702 + 0.908584i \(0.637165\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 9.77387i − 1.52642i −0.646149 0.763211i \(-0.723622\pi\)
0.646149 0.763211i \(-0.276378\pi\)
\(42\) 0 0
\(43\) − 6.23549i − 0.950903i −0.879742 0.475451i \(-0.842285\pi\)
0.879742 0.475451i \(-0.157715\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.13741 0.749368 0.374684 0.927153i \(-0.377751\pi\)
0.374684 + 0.927153i \(0.377751\pi\)
\(48\) 0 0
\(49\) −4.94108 −0.705868
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.07321i − 0.834220i −0.908856 0.417110i \(-0.863043\pi\)
0.908856 0.417110i \(-0.136957\pi\)
\(54\) 0 0
\(55\) 0.190197i 0.0256462i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.23023 −0.680918 −0.340459 0.940259i \(-0.610582\pi\)
−0.340459 + 0.940259i \(0.610582\pi\)
\(60\) 0 0
\(61\) −1.92765 −0.246811 −0.123405 0.992356i \(-0.539382\pi\)
−0.123405 + 0.992356i \(0.539382\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.21615i 0.274880i
\(66\) 0 0
\(67\) − 2.91117i − 0.355656i −0.984062 0.177828i \(-0.943093\pi\)
0.984062 0.177828i \(-0.0569071\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.11321 −0.132114 −0.0660569 0.997816i \(-0.521042\pi\)
−0.0660569 + 0.997816i \(0.521042\pi\)
\(72\) 0 0
\(73\) −5.94108 −0.695350 −0.347675 0.937615i \(-0.613029\pi\)
−0.347675 + 0.937615i \(0.613029\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50704i 0.171743i
\(78\) 0 0
\(79\) 13.2447i 1.49015i 0.666983 + 0.745073i \(0.267585\pi\)
−0.666983 + 0.745073i \(0.732415\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.95786 −0.653960 −0.326980 0.945031i \(-0.606031\pi\)
−0.326980 + 0.945031i \(0.606031\pi\)
\(84\) 0 0
\(85\) −1.57344 −0.170663
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 13.7155i − 1.45384i −0.686722 0.726921i \(-0.740951\pi\)
0.686722 0.726921i \(-0.259049\pi\)
\(90\) 0 0
\(91\) 17.5598i 1.84077i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.436116 −0.0447446
\(96\) 0 0
\(97\) −9.88215 −1.00338 −0.501690 0.865047i \(-0.667288\pi\)
−0.501690 + 0.865047i \(0.667288\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.88923i 0.984015i 0.870591 + 0.492008i \(0.163737\pi\)
−0.870591 + 0.492008i \(0.836263\pi\)
\(102\) 0 0
\(103\) 12.0525i 1.18757i 0.804623 + 0.593786i \(0.202368\pi\)
−0.804623 + 0.593786i \(0.797632\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.2603 −1.18524 −0.592622 0.805481i \(-0.701907\pi\)
−0.592622 + 0.805481i \(0.701907\pi\)
\(108\) 0 0
\(109\) −2.17040 −0.207886 −0.103943 0.994583i \(-0.533146\pi\)
−0.103943 + 0.994583i \(0.533146\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.43043i 0.322708i 0.986897 + 0.161354i \(0.0515861\pi\)
−0.986897 + 0.161354i \(0.948414\pi\)
\(114\) 0 0
\(115\) − 1.36480i − 0.127268i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.4672 −1.14287
\(120\) 0 0
\(121\) −10.8098 −0.982709
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 4.27821i − 0.382655i
\(126\) 0 0
\(127\) 10.2553i 0.910009i 0.890489 + 0.455005i \(0.150362\pi\)
−0.890489 + 0.455005i \(0.849638\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.352784 0.0308229 0.0154114 0.999881i \(-0.495094\pi\)
0.0154114 + 0.999881i \(0.495094\pi\)
\(132\) 0 0
\(133\) −3.45559 −0.299637
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 0.862741i − 0.0737090i −0.999321 0.0368545i \(-0.988266\pi\)
0.999321 0.0368545i \(-0.0117338\pi\)
\(138\) 0 0
\(139\) 17.6601i 1.49791i 0.662621 + 0.748955i \(0.269444\pi\)
−0.662621 + 0.748955i \(0.730556\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.21615 0.185324
\(144\) 0 0
\(145\) 1.90059 0.157836
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 11.2106i − 0.918410i −0.888330 0.459205i \(-0.848134\pi\)
0.888330 0.459205i \(-0.151866\pi\)
\(150\) 0 0
\(151\) 2.11059i 0.171757i 0.996306 + 0.0858787i \(0.0273698\pi\)
−0.996306 + 0.0858787i \(0.972630\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.34392 0.107946
\(156\) 0 0
\(157\) −9.19216 −0.733614 −0.366807 0.930297i \(-0.619549\pi\)
−0.366807 + 0.930297i \(0.619549\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 10.8140i − 0.852264i
\(162\) 0 0
\(163\) − 11.1341i − 0.872091i −0.899925 0.436046i \(-0.856379\pi\)
0.899925 0.436046i \(-0.143621\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.3880 −0.881232 −0.440616 0.897696i \(-0.645240\pi\)
−0.440616 + 0.897696i \(0.645240\pi\)
\(168\) 0 0
\(169\) 12.8223 0.986334
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.3030i 1.23949i 0.784803 + 0.619746i \(0.212764\pi\)
−0.784803 + 0.619746i \(0.787236\pi\)
\(174\) 0 0
\(175\) − 16.6207i − 1.25641i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −25.2307 −1.88583 −0.942915 0.333034i \(-0.891928\pi\)
−0.942915 + 0.333034i \(0.891928\pi\)
\(180\) 0 0
\(181\) 4.25529 0.316293 0.158146 0.987416i \(-0.449448\pi\)
0.158146 + 0.987416i \(0.449448\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.21615i 0.162935i
\(186\) 0 0
\(187\) 1.57344i 0.115061i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.3531 −0.893837 −0.446919 0.894575i \(-0.647479\pi\)
−0.446919 + 0.894575i \(0.647479\pi\)
\(192\) 0 0
\(193\) 20.7520 1.49376 0.746879 0.664960i \(-0.231551\pi\)
0.746879 + 0.664960i \(0.231551\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 17.0013i − 1.21130i −0.795733 0.605648i \(-0.792914\pi\)
0.795733 0.605648i \(-0.207086\pi\)
\(198\) 0 0
\(199\) 13.7914i 0.977644i 0.872384 + 0.488822i \(0.162573\pi\)
−0.872384 + 0.488822i \(0.837427\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.0594 1.05696
\(204\) 0 0
\(205\) −4.26254 −0.297709
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.436116i 0.0301668i
\(210\) 0 0
\(211\) 11.1324i 0.766383i 0.923669 + 0.383191i \(0.125175\pi\)
−0.923669 + 0.383191i \(0.874825\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.71940 −0.185461
\(216\) 0 0
\(217\) 10.6486 0.722876
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.3335i 1.23324i
\(222\) 0 0
\(223\) − 4.75922i − 0.318701i −0.987222 0.159350i \(-0.949060\pi\)
0.987222 0.159350i \(-0.0509400\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.43043 0.227686 0.113843 0.993499i \(-0.463684\pi\)
0.113843 + 0.993499i \(0.463684\pi\)
\(228\) 0 0
\(229\) 1.42765 0.0943415 0.0471707 0.998887i \(-0.484980\pi\)
0.0471707 + 0.998887i \(0.484980\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 14.9215i − 0.977543i −0.872412 0.488771i \(-0.837445\pi\)
0.872412 0.488771i \(-0.162555\pi\)
\(234\) 0 0
\(235\) − 2.24051i − 0.146154i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.3139 1.57273 0.786366 0.617760i \(-0.211960\pi\)
0.786366 + 0.617760i \(0.211960\pi\)
\(240\) 0 0
\(241\) −27.9257 −1.79885 −0.899425 0.437074i \(-0.856015\pi\)
−0.899425 + 0.437074i \(0.856015\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.15488i 0.137670i
\(246\) 0 0
\(247\) 5.08157i 0.323332i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.1417 1.65005 0.825023 0.565099i \(-0.191162\pi\)
0.825023 + 0.565099i \(0.191162\pi\)
\(252\) 0 0
\(253\) −1.36480 −0.0858040
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 8.93089i − 0.557094i −0.960423 0.278547i \(-0.910147\pi\)
0.960423 0.278547i \(-0.0898527\pi\)
\(258\) 0 0
\(259\) 17.5598i 1.09111i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.83682 −0.544902 −0.272451 0.962170i \(-0.587834\pi\)
−0.272451 + 0.962170i \(0.587834\pi\)
\(264\) 0 0
\(265\) −2.64863 −0.162704
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.0487i 1.22239i 0.791480 + 0.611195i \(0.209311\pi\)
−0.791480 + 0.611195i \(0.790689\pi\)
\(270\) 0 0
\(271\) 15.3386i 0.931755i 0.884849 + 0.465877i \(0.154261\pi\)
−0.884849 + 0.465877i \(0.845739\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.09763 −0.126492
\(276\) 0 0
\(277\) −1.22098 −0.0733617 −0.0366808 0.999327i \(-0.511678\pi\)
−0.0366808 + 0.999327i \(0.511678\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3.04016i − 0.181361i −0.995880 0.0906803i \(-0.971096\pi\)
0.995880 0.0906803i \(-0.0289041\pi\)
\(282\) 0 0
\(283\) 30.8657i 1.83477i 0.397997 + 0.917387i \(0.369706\pi\)
−0.397997 + 0.917387i \(0.630294\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −33.7745 −1.99364
\(288\) 0 0
\(289\) 3.98352 0.234325
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.1421i 0.826192i 0.910687 + 0.413096i \(0.135553\pi\)
−0.910687 + 0.413096i \(0.864447\pi\)
\(294\) 0 0
\(295\) 2.28099i 0.132804i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.9024 −0.919661
\(300\) 0 0
\(301\) −21.5473 −1.24196
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.840681i 0.0481372i
\(306\) 0 0
\(307\) − 11.7625i − 0.671324i −0.941983 0.335662i \(-0.891040\pi\)
0.941983 0.335662i \(-0.108960\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.4511 0.932857 0.466429 0.884559i \(-0.345540\pi\)
0.466429 + 0.884559i \(0.345540\pi\)
\(312\) 0 0
\(313\) −8.32628 −0.470629 −0.235314 0.971919i \(-0.575612\pi\)
−0.235314 + 0.971919i \(0.575612\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 27.0787i − 1.52089i −0.649401 0.760446i \(-0.724980\pi\)
0.649401 0.760446i \(-0.275020\pi\)
\(318\) 0 0
\(319\) − 1.90059i − 0.106413i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.60784 −0.200745
\(324\) 0 0
\(325\) −24.4413 −1.35576
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 17.7527i − 0.978741i
\(330\) 0 0
\(331\) 21.0743i 1.15835i 0.815204 + 0.579174i \(0.196625\pi\)
−0.815204 + 0.579174i \(0.803375\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.26961 −0.0693662
\(336\) 0 0
\(337\) −7.33686 −0.399664 −0.199832 0.979830i \(-0.564040\pi\)
−0.199832 + 0.979830i \(0.564040\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 1.34392i − 0.0727775i
\(342\) 0 0
\(343\) − 7.11479i − 0.384163i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.7645 0.846284 0.423142 0.906063i \(-0.360927\pi\)
0.423142 + 0.906063i \(0.360927\pi\)
\(348\) 0 0
\(349\) −33.3377 −1.78453 −0.892264 0.451514i \(-0.850884\pi\)
−0.892264 + 0.451514i \(0.850884\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 0.151704i − 0.00807438i −0.999992 0.00403719i \(-0.998715\pi\)
0.999992 0.00403719i \(-0.00128508\pi\)
\(354\) 0 0
\(355\) 0.485489i 0.0257671i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.49098 −0.395359 −0.197679 0.980267i \(-0.563340\pi\)
−0.197679 + 0.980267i \(0.563340\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.59100i 0.135619i
\(366\) 0 0
\(367\) − 6.89273i − 0.359798i −0.983685 0.179899i \(-0.942423\pi\)
0.983685 0.179899i \(-0.0575770\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −20.9865 −1.08957
\(372\) 0 0
\(373\) −24.6994 −1.27889 −0.639444 0.768838i \(-0.720835\pi\)
−0.639444 + 0.768838i \(0.720835\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 22.1455i − 1.14055i
\(378\) 0 0
\(379\) − 12.1302i − 0.623085i −0.950232 0.311543i \(-0.899154\pi\)
0.950232 0.311543i \(-0.100846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.4943 −1.04721 −0.523605 0.851961i \(-0.675413\pi\)
−0.523605 + 0.851961i \(0.675413\pi\)
\(384\) 0 0
\(385\) 0.657243 0.0334962
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 11.4548i − 0.580780i −0.956908 0.290390i \(-0.906215\pi\)
0.956908 0.290390i \(-0.0937850\pi\)
\(390\) 0 0
\(391\) − 11.2905i − 0.570984i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.77623 0.290634
\(396\) 0 0
\(397\) −25.1003 −1.25975 −0.629873 0.776698i \(-0.716893\pi\)
−0.629873 + 0.776698i \(0.716893\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 20.1308i − 1.00528i −0.864495 0.502641i \(-0.832362\pi\)
0.864495 0.502641i \(-0.167638\pi\)
\(402\) 0 0
\(403\) − 15.6592i − 0.780041i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.21615 0.109851
\(408\) 0 0
\(409\) 10.6715 0.527674 0.263837 0.964567i \(-0.415012\pi\)
0.263837 + 0.964567i \(0.415012\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 18.0735i 0.889339i
\(414\) 0 0
\(415\) 2.59832i 0.127546i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.4775 0.951536 0.475768 0.879571i \(-0.342170\pi\)
0.475768 + 0.879571i \(0.342170\pi\)
\(420\) 0 0
\(421\) 2.53804 0.123696 0.0618482 0.998086i \(-0.480301\pi\)
0.0618482 + 0.998086i \(0.480301\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 17.3530i − 0.841743i
\(426\) 0 0
\(427\) 6.66117i 0.322357i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.8370 −0.955512 −0.477756 0.878492i \(-0.658550\pi\)
−0.477756 + 0.878492i \(0.658550\pi\)
\(432\) 0 0
\(433\) −16.9380 −0.813989 −0.406995 0.913431i \(-0.633423\pi\)
−0.406995 + 0.913431i \(0.633423\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 3.12943i − 0.149701i
\(438\) 0 0
\(439\) 21.9514i 1.04768i 0.851816 + 0.523841i \(0.175501\pi\)
−0.851816 + 0.523841i \(0.824499\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.2649 0.820278 0.410139 0.912023i \(-0.365480\pi\)
0.410139 + 0.912023i \(0.365480\pi\)
\(444\) 0 0
\(445\) −5.98156 −0.283553
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 30.0185i − 1.41666i −0.705882 0.708330i \(-0.749449\pi\)
0.705882 0.708330i \(-0.250551\pi\)
\(450\) 0 0
\(451\) 4.26254i 0.200715i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.65811 0.359018
\(456\) 0 0
\(457\) 32.4969 1.52014 0.760071 0.649840i \(-0.225164\pi\)
0.760071 + 0.649840i \(0.225164\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 16.3855i − 0.763150i −0.924338 0.381575i \(-0.875382\pi\)
0.924338 0.381575i \(-0.124618\pi\)
\(462\) 0 0
\(463\) − 37.4110i − 1.73863i −0.494254 0.869317i \(-0.664559\pi\)
0.494254 0.869317i \(-0.335441\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.44716 −0.344613 −0.172307 0.985043i \(-0.555122\pi\)
−0.172307 + 0.985043i \(0.555122\pi\)
\(468\) 0 0
\(469\) −10.0598 −0.464519
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.71940i 0.125038i
\(474\) 0 0
\(475\) − 4.80980i − 0.220689i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −32.6463 −1.49165 −0.745824 0.666144i \(-0.767944\pi\)
−0.745824 + 0.666144i \(0.767944\pi\)
\(480\) 0 0
\(481\) 25.8223 1.17740
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.30977i 0.195696i
\(486\) 0 0
\(487\) − 11.1229i − 0.504028i −0.967724 0.252014i \(-0.918907\pi\)
0.967724 0.252014i \(-0.0810929\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.47778 −0.292338 −0.146169 0.989260i \(-0.546694\pi\)
−0.146169 + 0.989260i \(0.546694\pi\)
\(492\) 0 0
\(493\) 15.7229 0.708125
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.84679i 0.172552i
\(498\) 0 0
\(499\) 10.3254i 0.462228i 0.972927 + 0.231114i \(0.0742371\pi\)
−0.972927 + 0.231114i \(0.925763\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.6729 1.10011 0.550055 0.835129i \(-0.314607\pi\)
0.550055 + 0.835129i \(0.314607\pi\)
\(504\) 0 0
\(505\) 4.31285 0.191919
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.8733i 0.880869i 0.897785 + 0.440434i \(0.145176\pi\)
−0.897785 + 0.440434i \(0.854824\pi\)
\(510\) 0 0
\(511\) 20.5299i 0.908189i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.25631 0.231621
\(516\) 0 0
\(517\) −2.24051 −0.0985373
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 42.6658i − 1.86922i −0.355669 0.934612i \(-0.615747\pi\)
0.355669 0.934612i \(-0.384253\pi\)
\(522\) 0 0
\(523\) 1.76037i 0.0769758i 0.999259 + 0.0384879i \(0.0122541\pi\)
−0.999259 + 0.0384879i \(0.987746\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.1178 0.484299
\(528\) 0 0
\(529\) −13.2067 −0.574203
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 49.6666i 2.15130i
\(534\) 0 0
\(535\) 5.34690i 0.231166i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.15488 0.0928174
\(540\) 0 0
\(541\) −16.8109 −0.722756 −0.361378 0.932419i \(-0.617694\pi\)
−0.361378 + 0.932419i \(0.617694\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.946545i 0.0405455i
\(546\) 0 0
\(547\) 3.10727i 0.132857i 0.997791 + 0.0664287i \(0.0211605\pi\)
−0.997791 + 0.0664287i \(0.978840\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.35800 0.185657
\(552\) 0 0
\(553\) 45.7682 1.94626
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.71980i 0.199984i 0.994988 + 0.0999922i \(0.0318818\pi\)
−0.994988 + 0.0999922i \(0.968118\pi\)
\(558\) 0 0
\(559\) 31.6861i 1.34018i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.61353 0.110147 0.0550736 0.998482i \(-0.482461\pi\)
0.0550736 + 0.998482i \(0.482461\pi\)
\(564\) 0 0
\(565\) 1.49607 0.0629401
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.5675i 1.11377i 0.830590 + 0.556884i \(0.188003\pi\)
−0.830590 + 0.556884i \(0.811997\pi\)
\(570\) 0 0
\(571\) − 34.6570i − 1.45035i −0.688564 0.725176i \(-0.741758\pi\)
0.688564 0.725176i \(-0.258242\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15.0519 0.627709
\(576\) 0 0
\(577\) −36.3388 −1.51280 −0.756402 0.654107i \(-0.773045\pi\)
−0.756402 + 0.654107i \(0.773045\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 20.5879i 0.854130i
\(582\) 0 0
\(583\) 2.64863i 0.109695i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.8276 −1.14857 −0.574284 0.818656i \(-0.694720\pi\)
−0.574284 + 0.818656i \(0.694720\pi\)
\(588\) 0 0
\(589\) 3.08157 0.126974
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.53062i 0.268180i 0.990969 + 0.134090i \(0.0428112\pi\)
−0.990969 + 0.134090i \(0.957189\pi\)
\(594\) 0 0
\(595\) 5.43714i 0.222901i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.4599 1.65315 0.826574 0.562828i \(-0.190287\pi\)
0.826574 + 0.562828i \(0.190287\pi\)
\(600\) 0 0
\(601\) −15.0761 −0.614966 −0.307483 0.951554i \(-0.599487\pi\)
−0.307483 + 0.951554i \(0.599487\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.71433i 0.191665i
\(606\) 0 0
\(607\) − 34.8441i − 1.41428i −0.707074 0.707139i \(-0.749985\pi\)
0.707074 0.707139i \(-0.250015\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.1061 −1.05614
\(612\) 0 0
\(613\) 26.6198 1.07516 0.537582 0.843212i \(-0.319338\pi\)
0.537582 + 0.843212i \(0.319338\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 12.5857i − 0.506682i −0.967377 0.253341i \(-0.918471\pi\)
0.967377 0.253341i \(-0.0815294\pi\)
\(618\) 0 0
\(619\) − 31.1196i − 1.25080i −0.780303 0.625401i \(-0.784935\pi\)
0.780303 0.625401i \(-0.215065\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −47.3951 −1.89885
\(624\) 0 0
\(625\) 22.1832 0.887329
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.3335i 0.731003i
\(630\) 0 0
\(631\) − 16.6477i − 0.662736i −0.943502 0.331368i \(-0.892490\pi\)
0.943502 0.331368i \(-0.107510\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.47250 0.177486
\(636\) 0 0
\(637\) 25.1084 0.994832
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 20.3086i − 0.802143i −0.916047 0.401072i \(-0.868638\pi\)
0.916047 0.401072i \(-0.131362\pi\)
\(642\) 0 0
\(643\) 24.8696i 0.980761i 0.871508 + 0.490381i \(0.163142\pi\)
−0.871508 + 0.490381i \(0.836858\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.0835 1.49722 0.748608 0.663013i \(-0.230723\pi\)
0.748608 + 0.663013i \(0.230723\pi\)
\(648\) 0 0
\(649\) 2.28099 0.0895366
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 18.7593i − 0.734109i −0.930199 0.367054i \(-0.880366\pi\)
0.930199 0.367054i \(-0.119634\pi\)
\(654\) 0 0
\(655\) − 0.153855i − 0.00601160i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −31.6491 −1.23287 −0.616437 0.787404i \(-0.711425\pi\)
−0.616437 + 0.787404i \(0.711425\pi\)
\(660\) 0 0
\(661\) −23.0090 −0.894947 −0.447473 0.894297i \(-0.647676\pi\)
−0.447473 + 0.894297i \(0.647676\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.50704i 0.0584404i
\(666\) 0 0
\(667\) 13.6380i 0.528067i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.840681 0.0324541
\(672\) 0 0
\(673\) 40.4112 1.55774 0.778868 0.627188i \(-0.215794\pi\)
0.778868 + 0.627188i \(0.215794\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 30.3235i − 1.16543i −0.812678 0.582713i \(-0.801991\pi\)
0.812678 0.582713i \(-0.198009\pi\)
\(678\) 0 0
\(679\) 34.1486i 1.31050i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.1431 1.11513 0.557564 0.830134i \(-0.311736\pi\)
0.557564 + 0.830134i \(0.311736\pi\)
\(684\) 0 0
\(685\) −0.376255 −0.0143760
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 30.8615i 1.17573i
\(690\) 0 0
\(691\) − 12.1488i − 0.462163i −0.972934 0.231082i \(-0.925774\pi\)
0.972934 0.231082i \(-0.0742265\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.70185 0.292148
\(696\) 0 0
\(697\) −35.2625 −1.33566
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.8565i 0.712199i 0.934448 + 0.356099i \(0.115894\pi\)
−0.934448 + 0.356099i \(0.884106\pi\)
\(702\) 0 0
\(703\) 5.08157i 0.191655i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.1731 1.28521
\(708\) 0 0
\(709\) 5.88039 0.220843 0.110421 0.993885i \(-0.464780\pi\)
0.110421 + 0.993885i \(0.464780\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.64356i 0.361154i
\(714\) 0 0
\(715\) − 0.966501i − 0.0361451i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −25.9370 −0.967288 −0.483644 0.875265i \(-0.660687\pi\)
−0.483644 + 0.875265i \(0.660687\pi\)
\(720\) 0 0
\(721\) 41.6486 1.55108
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20.9611i 0.778476i
\(726\) 0 0
\(727\) − 2.45843i − 0.0911781i −0.998960 0.0455891i \(-0.985484\pi\)
0.998960 0.0455891i \(-0.0145165\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −22.4966 −0.832067
\(732\) 0 0
\(733\) 32.4525 1.19866 0.599331 0.800502i \(-0.295433\pi\)
0.599331 + 0.800502i \(0.295433\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.26961i 0.0467667i
\(738\) 0 0
\(739\) 10.6311i 0.391070i 0.980697 + 0.195535i \(0.0626443\pi\)
−0.980697 + 0.195535i \(0.937356\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.8223 −0.653835 −0.326918 0.945053i \(-0.606010\pi\)
−0.326918 + 0.945053i \(0.606010\pi\)
\(744\) 0 0
\(745\) −4.88913 −0.179124
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 42.3664i 1.54803i
\(750\) 0 0
\(751\) − 16.1972i − 0.591046i −0.955336 0.295523i \(-0.904506\pi\)
0.955336 0.295523i \(-0.0954939\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.920463 0.0334991
\(756\) 0 0
\(757\) 36.1194 1.31278 0.656391 0.754421i \(-0.272082\pi\)
0.656391 + 0.754421i \(0.272082\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 6.83613i − 0.247810i −0.992294 0.123905i \(-0.960458\pi\)
0.992294 0.123905i \(-0.0395417\pi\)
\(762\) 0 0
\(763\) 7.49999i 0.271518i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26.5778 0.959668
\(768\) 0 0
\(769\) 20.1031 0.724937 0.362468 0.931996i \(-0.381934\pi\)
0.362468 + 0.931996i \(0.381934\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1.79730i − 0.0646445i −0.999477 0.0323223i \(-0.989710\pi\)
0.999477 0.0323223i \(-0.0102903\pi\)
\(774\) 0 0
\(775\) 14.8217i 0.532413i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.77387 −0.350185
\(780\) 0 0
\(781\) 0.485489 0.0173722
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.00885i 0.143082i
\(786\) 0 0
\(787\) − 32.1319i − 1.14538i −0.819772 0.572690i \(-0.805900\pi\)
0.819772 0.572690i \(-0.194100\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.8542 0.421485
\(792\) 0 0
\(793\) 9.79550 0.347848
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.17171i 0.0415040i 0.999785 + 0.0207520i \(0.00660603\pi\)
−0.999785 + 0.0207520i \(0.993394\pi\)
\(798\) 0 0
\(799\) − 18.5349i − 0.655718i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.59100 0.0914344
\(804\) 0 0
\(805\) −4.71617 −0.166223
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 47.6176i 1.67415i 0.547092 + 0.837073i \(0.315735\pi\)
−0.547092 + 0.837073i \(0.684265\pi\)
\(810\) 0 0
\(811\) 4.20666i 0.147716i 0.997269 + 0.0738580i \(0.0235312\pi\)
−0.997269 + 0.0738580i \(0.976469\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.85577 −0.170090
\(816\) 0 0
\(817\) −6.23549 −0.218152
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 9.89470i − 0.345327i −0.984981 0.172664i \(-0.944763\pi\)
0.984981 0.172664i \(-0.0552374\pi\)
\(822\) 0 0
\(823\) − 21.0567i − 0.733992i −0.930222 0.366996i \(-0.880386\pi\)
0.930222 0.366996i \(-0.119614\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.5006 −0.469462 −0.234731 0.972060i \(-0.575421\pi\)
−0.234731 + 0.972060i \(0.575421\pi\)
\(828\) 0 0
\(829\) −17.5275 −0.608754 −0.304377 0.952552i \(-0.598448\pi\)
−0.304377 + 0.952552i \(0.598448\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17.8266i 0.617655i
\(834\) 0 0
\(835\) 4.96650i 0.171873i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 54.9687 1.89773 0.948864 0.315684i \(-0.102234\pi\)
0.948864 + 0.315684i \(0.102234\pi\)
\(840\) 0 0
\(841\) 10.0079 0.345099
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 5.59203i − 0.192372i
\(846\) 0 0
\(847\) 37.3542i 1.28351i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −15.9024 −0.545128
\(852\) 0 0
\(853\) 27.7063 0.948644 0.474322 0.880351i \(-0.342693\pi\)
0.474322 + 0.880351i \(0.342693\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 24.8041i − 0.847290i −0.905828 0.423645i \(-0.860750\pi\)
0.905828 0.423645i \(-0.139250\pi\)
\(858\) 0 0
\(859\) 7.94108i 0.270946i 0.990781 + 0.135473i \(0.0432554\pi\)
−0.990781 + 0.135473i \(0.956745\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.57354 0.257806 0.128903 0.991657i \(-0.458854\pi\)
0.128903 + 0.991657i \(0.458854\pi\)
\(864\) 0 0
\(865\) 7.10999 0.241747
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 5.77623i − 0.195945i
\(870\) 0 0
\(871\) 14.7933i 0.501253i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.7837 −0.499782
\(876\) 0 0
\(877\) −36.9906 −1.24908 −0.624541 0.780992i \(-0.714714\pi\)
−0.624541 + 0.780992i \(0.714714\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32.2046i 1.08500i 0.840056 + 0.542500i \(0.182522\pi\)
−0.840056 + 0.542500i \(0.817478\pi\)
\(882\) 0 0
\(883\) − 53.2383i − 1.79161i −0.444445 0.895806i \(-0.646599\pi\)
0.444445 0.895806i \(-0.353401\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.0798 0.372024 0.186012 0.982547i \(-0.440444\pi\)
0.186012 + 0.982547i \(0.440444\pi\)
\(888\) 0 0
\(889\) 35.4380 1.18855
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 5.13741i − 0.171917i
\(894\) 0 0
\(895\) 11.0035i 0.367807i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.4295 −0.447898
\(900\) 0 0
\(901\) −21.9112 −0.729967
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1.85580i − 0.0616889i
\(906\) 0 0
\(907\) − 21.6218i − 0.717939i −0.933349 0.358970i \(-0.883128\pi\)
0.933349 0.358970i \(-0.116872\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.0004 −0.530118 −0.265059 0.964232i \(-0.585391\pi\)
−0.265059 + 0.964232i \(0.585391\pi\)
\(912\) 0 0
\(913\) 2.59832 0.0859918
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.21907i − 0.0402574i
\(918\) 0 0
\(919\) 41.7933i 1.37863i 0.724460 + 0.689317i \(0.242089\pi\)
−0.724460 + 0.689317i \(0.757911\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.65685 0.186198
\(924\) 0 0
\(925\) −24.4413 −0.803626
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 43.9401i − 1.44163i −0.693128 0.720815i \(-0.743768\pi\)
0.693128 0.720815i \(-0.256232\pi\)
\(930\) 0 0
\(931\) 4.94108i 0.161937i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.686201 0.0224412
\(936\) 0 0
\(937\) −42.8830 −1.40093 −0.700464 0.713688i \(-0.747023\pi\)
−0.700464 + 0.713688i \(0.747023\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.4545i 0.634197i 0.948393 + 0.317098i \(0.102709\pi\)
−0.948393 + 0.317098i \(0.897291\pi\)
\(942\) 0 0
\(943\) − 30.5867i − 0.996039i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.6867 0.964687 0.482344 0.875982i \(-0.339786\pi\)
0.482344 + 0.875982i \(0.339786\pi\)
\(948\) 0 0
\(949\) 30.1900 0.980008
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 9.21444i − 0.298485i −0.988801 0.149242i \(-0.952316\pi\)
0.988801 0.149242i \(-0.0476835\pi\)
\(954\) 0 0
\(955\) 5.38738i 0.174331i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.98128 −0.0962704
\(960\) 0 0
\(961\) 21.5039 0.693675
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 9.05027i − 0.291338i
\(966\) 0 0
\(967\) 20.1051i 0.646536i 0.946307 + 0.323268i \(0.104782\pi\)
−0.946307 + 0.323268i \(0.895218\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 26.5398 0.851703 0.425851 0.904793i \(-0.359975\pi\)
0.425851 + 0.904793i \(0.359975\pi\)
\(972\) 0 0
\(973\) 61.0260 1.95640
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.4666i 0.654784i 0.944889 + 0.327392i \(0.106170\pi\)
−0.944889 + 0.327392i \(0.893830\pi\)
\(978\) 0 0
\(979\) 5.98156i 0.191171i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.8039 0.535961 0.267981 0.963424i \(-0.413644\pi\)
0.267981 + 0.963424i \(0.413644\pi\)
\(984\) 0 0
\(985\) −7.41456 −0.236248
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 19.5135i − 0.620494i
\(990\) 0 0
\(991\) − 46.6498i − 1.48188i −0.671572 0.740939i \(-0.734381\pi\)
0.671572 0.740939i \(-0.265619\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.01464 0.190677
\(996\) 0 0
\(997\) −40.6814 −1.28839 −0.644196 0.764860i \(-0.722808\pi\)
−0.644196 + 0.764860i \(0.722808\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.d.g.2015.5 16
3.2 odd 2 inner 5472.2.d.g.2015.11 yes 16
4.3 odd 2 inner 5472.2.d.g.2015.6 yes 16
12.11 even 2 inner 5472.2.d.g.2015.12 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5472.2.d.g.2015.5 16 1.1 even 1 trivial
5472.2.d.g.2015.6 yes 16 4.3 odd 2 inner
5472.2.d.g.2015.11 yes 16 3.2 odd 2 inner
5472.2.d.g.2015.12 yes 16 12.11 even 2 inner