Properties

Label 5472.2.d.g.2015.13
Level $5472$
Weight $2$
Character 5472.2015
Analytic conductor $43.694$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(2015,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.2015"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 5x^{12} + 4x^{10} - 20x^{8} + 16x^{6} + 80x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2015.13
Root \(0.310269 + 1.37976i\) of defining polynomial
Character \(\chi\) \(=\) 5472.2015
Dual form 5472.2.d.g.2015.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.62563i q^{5} -0.712386i q^{7} -3.62563 q^{11} -3.02497 q^{13} +5.59147i q^{17} +1.00000i q^{19} -2.37259 q^{23} -8.14521 q^{25} +1.44953i q^{29} -1.02497i q^{31} +2.58285 q^{35} -3.02497 q^{37} +2.01493i q^{41} -7.78986i q^{43} +6.97037 q^{47} +6.49251 q^{49} -2.40790i q^{53} -13.1452i q^{55} -5.80173 q^{59} -11.8398 q^{61} -10.9674i q^{65} -5.42477i q^{67} +1.87005 q^{71} +5.49251 q^{73} +2.58285i q^{77} -7.07492i q^{79} +5.20102 q^{83} -20.2726 q^{85} -2.68355i q^{89} +2.15495i q^{91} -3.62563 q^{95} +12.9850 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{13} - 48 q^{25} - 16 q^{37} + 8 q^{49} - 80 q^{61} - 8 q^{73} - 152 q^{85} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.62563i 1.62143i 0.585440 + 0.810716i \(0.300922\pi\)
−0.585440 + 0.810716i \(0.699078\pi\)
\(6\) 0 0
\(7\) − 0.712386i − 0.269257i −0.990896 0.134628i \(-0.957016\pi\)
0.990896 0.134628i \(-0.0429840\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.62563 −1.09317 −0.546585 0.837404i \(-0.684072\pi\)
−0.546585 + 0.837404i \(0.684072\pi\)
\(12\) 0 0
\(13\) −3.02497 −0.838976 −0.419488 0.907761i \(-0.637790\pi\)
−0.419488 + 0.907761i \(0.637790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.59147i 1.35613i 0.735001 + 0.678066i \(0.237182\pi\)
−0.735001 + 0.678066i \(0.762818\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.37259 −0.494719 −0.247359 0.968924i \(-0.579563\pi\)
−0.247359 + 0.968924i \(0.579563\pi\)
\(24\) 0 0
\(25\) −8.14521 −1.62904
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.44953i 0.269171i 0.990902 + 0.134585i \(0.0429703\pi\)
−0.990902 + 0.134585i \(0.957030\pi\)
\(30\) 0 0
\(31\) − 1.02497i − 0.184090i −0.995755 0.0920452i \(-0.970660\pi\)
0.995755 0.0920452i \(-0.0293404\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.58285 0.436581
\(36\) 0 0
\(37\) −3.02497 −0.497302 −0.248651 0.968593i \(-0.579987\pi\)
−0.248651 + 0.968593i \(0.579987\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.01493i 0.314680i 0.987545 + 0.157340i \(0.0502918\pi\)
−0.987545 + 0.157340i \(0.949708\pi\)
\(42\) 0 0
\(43\) − 7.78986i − 1.18794i −0.804486 0.593971i \(-0.797559\pi\)
0.804486 0.593971i \(-0.202441\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.97037 1.01673 0.508367 0.861141i \(-0.330249\pi\)
0.508367 + 0.861141i \(0.330249\pi\)
\(48\) 0 0
\(49\) 6.49251 0.927501
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2.40790i − 0.330751i −0.986231 0.165376i \(-0.947116\pi\)
0.986231 0.165376i \(-0.0528836\pi\)
\(54\) 0 0
\(55\) − 13.1452i − 1.77250i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.80173 −0.755322 −0.377661 0.925944i \(-0.623271\pi\)
−0.377661 + 0.925944i \(0.623271\pi\)
\(60\) 0 0
\(61\) −11.8398 −1.51593 −0.757966 0.652294i \(-0.773807\pi\)
−0.757966 + 0.652294i \(0.773807\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 10.9674i − 1.36034i
\(66\) 0 0
\(67\) − 5.42477i − 0.662741i −0.943501 0.331371i \(-0.892489\pi\)
0.943501 0.331371i \(-0.107511\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.87005 0.221934 0.110967 0.993824i \(-0.464605\pi\)
0.110967 + 0.993824i \(0.464605\pi\)
\(72\) 0 0
\(73\) 5.49251 0.642849 0.321425 0.946935i \(-0.395838\pi\)
0.321425 + 0.946935i \(0.395838\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.58285i 0.294343i
\(78\) 0 0
\(79\) − 7.07492i − 0.795990i −0.917388 0.397995i \(-0.869706\pi\)
0.917388 0.397995i \(-0.130294\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.20102 0.570886 0.285443 0.958396i \(-0.407859\pi\)
0.285443 + 0.958396i \(0.407859\pi\)
\(84\) 0 0
\(85\) −20.2726 −2.19887
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 2.68355i − 0.284455i −0.989834 0.142228i \(-0.954573\pi\)
0.989834 0.142228i \(-0.0454265\pi\)
\(90\) 0 0
\(91\) 2.15495i 0.225900i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.62563 −0.371982
\(96\) 0 0
\(97\) 12.9850 1.31843 0.659214 0.751955i \(-0.270889\pi\)
0.659214 + 0.751955i \(0.270889\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 4.80804i − 0.478418i −0.970968 0.239209i \(-0.923112\pi\)
0.970968 0.239209i \(-0.0768881\pi\)
\(102\) 0 0
\(103\) 4.53527i 0.446873i 0.974718 + 0.223437i \(0.0717276\pi\)
−0.974718 + 0.223437i \(0.928272\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.3220 −1.86792 −0.933962 0.357372i \(-0.883673\pi\)
−0.933962 + 0.357372i \(0.883673\pi\)
\(108\) 0 0
\(109\) −8.44974 −0.809339 −0.404669 0.914463i \(-0.632613\pi\)
−0.404669 + 0.914463i \(0.632613\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.91675i 0.180313i 0.995928 + 0.0901564i \(0.0287367\pi\)
−0.995928 + 0.0901564i \(0.971263\pi\)
\(114\) 0 0
\(115\) − 8.60213i − 0.802153i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.98329 0.365147
\(120\) 0 0
\(121\) 2.14521 0.195019
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.4034i − 1.01995i
\(126\) 0 0
\(127\) − 2.90560i − 0.257831i −0.991656 0.128915i \(-0.958850\pi\)
0.991656 0.128915i \(-0.0411495\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19.8785 1.73679 0.868396 0.495872i \(-0.165151\pi\)
0.868396 + 0.495872i \(0.165151\pi\)
\(132\) 0 0
\(133\) 0.712386 0.0617717
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 7.83296i − 0.669215i −0.942358 0.334607i \(-0.891396\pi\)
0.942358 0.334607i \(-0.108604\pi\)
\(138\) 0 0
\(139\) 12.5275i 1.06257i 0.847195 + 0.531283i \(0.178290\pi\)
−0.847195 + 0.531283i \(0.821710\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.9674 0.917143
\(144\) 0 0
\(145\) −5.25546 −0.436442
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.56247i 0.373772i 0.982382 + 0.186886i \(0.0598395\pi\)
−0.982382 + 0.186886i \(0.940161\pi\)
\(150\) 0 0
\(151\) − 14.5852i − 1.18693i −0.804861 0.593464i \(-0.797760\pi\)
0.804861 0.593464i \(-0.202240\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.71617 0.298490
\(156\) 0 0
\(157\) −19.6102 −1.56506 −0.782532 0.622611i \(-0.786072\pi\)
−0.782532 + 0.622611i \(0.786072\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.69020i 0.133206i
\(162\) 0 0
\(163\) − 7.51030i − 0.588252i −0.955767 0.294126i \(-0.904972\pi\)
0.955767 0.294126i \(-0.0950285\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0707 −0.934058 −0.467029 0.884242i \(-0.654676\pi\)
−0.467029 + 0.884242i \(0.654676\pi\)
\(168\) 0 0
\(169\) −3.84954 −0.296119
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 3.60934i − 0.274413i −0.990542 0.137207i \(-0.956188\pi\)
0.990542 0.137207i \(-0.0438124\pi\)
\(174\) 0 0
\(175\) 5.80253i 0.438630i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.8719 1.78427 0.892136 0.451767i \(-0.149206\pi\)
0.892136 + 0.451767i \(0.149206\pi\)
\(180\) 0 0
\(181\) −3.09440 −0.230005 −0.115002 0.993365i \(-0.536688\pi\)
−0.115002 + 0.993365i \(0.536688\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 10.9674i − 0.806342i
\(186\) 0 0
\(187\) − 20.2726i − 1.48248i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.1533 −1.31353 −0.656764 0.754096i \(-0.728075\pi\)
−0.656764 + 0.754096i \(0.728075\pi\)
\(192\) 0 0
\(193\) 11.4552 0.824566 0.412283 0.911056i \(-0.364732\pi\)
0.412283 + 0.911056i \(0.364732\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.8543i − 1.62830i −0.580653 0.814151i \(-0.697203\pi\)
0.580653 0.814151i \(-0.302797\pi\)
\(198\) 0 0
\(199\) 14.8748i 1.05444i 0.849728 + 0.527222i \(0.176766\pi\)
−0.849728 + 0.527222i \(0.823234\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.03262 0.0724760
\(204\) 0 0
\(205\) −7.30540 −0.510232
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 3.62563i − 0.250790i
\(210\) 0 0
\(211\) − 27.7457i − 1.91009i −0.296462 0.955045i \(-0.595807\pi\)
0.296462 0.955045i \(-0.404193\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 28.2432 1.92617
\(216\) 0 0
\(217\) −0.730176 −0.0495676
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 16.9141i − 1.13776i
\(222\) 0 0
\(223\) 5.85504i 0.392082i 0.980596 + 0.196041i \(0.0628086\pi\)
−0.980596 + 0.196041i \(0.937191\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.91675 −0.127219 −0.0636096 0.997975i \(-0.520261\pi\)
−0.0636096 + 0.997975i \(0.520261\pi\)
\(228\) 0 0
\(229\) −2.17968 −0.144037 −0.0720186 0.997403i \(-0.522944\pi\)
−0.0720186 + 0.997403i \(0.522944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 5.72223i − 0.374876i −0.982276 0.187438i \(-0.939982\pi\)
0.982276 0.187438i \(-0.0600184\pi\)
\(234\) 0 0
\(235\) 25.2720i 1.64856i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.6748 1.01392 0.506959 0.861970i \(-0.330770\pi\)
0.506959 + 0.861970i \(0.330770\pi\)
\(240\) 0 0
\(241\) −13.3359 −0.859039 −0.429519 0.903058i \(-0.641317\pi\)
−0.429519 + 0.903058i \(0.641317\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 23.5394i 1.50388i
\(246\) 0 0
\(247\) − 3.02497i − 0.192474i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.9245 0.878904 0.439452 0.898266i \(-0.355173\pi\)
0.439452 + 0.898266i \(0.355173\pi\)
\(252\) 0 0
\(253\) 8.60213 0.540812
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.2246i 0.637791i 0.947790 + 0.318896i \(0.103312\pi\)
−0.947790 + 0.318896i \(0.896688\pi\)
\(258\) 0 0
\(259\) 2.15495i 0.133902i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.5365 0.834697 0.417348 0.908747i \(-0.362959\pi\)
0.417348 + 0.908747i \(0.362959\pi\)
\(264\) 0 0
\(265\) 8.73018 0.536290
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 15.9557i − 0.972835i −0.873727 0.486417i \(-0.838303\pi\)
0.873727 0.486417i \(-0.161697\pi\)
\(270\) 0 0
\(271\) 29.3254i 1.78139i 0.454602 + 0.890695i \(0.349782\pi\)
−0.454602 + 0.890695i \(0.650218\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 29.5315 1.78082
\(276\) 0 0
\(277\) 6.55050 0.393581 0.196791 0.980446i \(-0.436948\pi\)
0.196791 + 0.980446i \(0.436948\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 27.4106i − 1.63518i −0.575799 0.817591i \(-0.695309\pi\)
0.575799 0.817591i \(-0.304691\pi\)
\(282\) 0 0
\(283\) 10.2496i 0.609275i 0.952468 + 0.304637i \(0.0985353\pi\)
−0.952468 + 0.304637i \(0.901465\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.43541 0.0847296
\(288\) 0 0
\(289\) −14.2646 −0.839093
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.1421i 0.826192i 0.910687 + 0.413096i \(0.135553\pi\)
−0.910687 + 0.413096i \(0.864447\pi\)
\(294\) 0 0
\(295\) − 21.0350i − 1.22470i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.17701 0.415057
\(300\) 0 0
\(301\) −5.54939 −0.319861
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 42.9268i − 2.45798i
\(306\) 0 0
\(307\) 1.28592i 0.0733915i 0.999326 + 0.0366957i \(0.0116832\pi\)
−0.999326 + 0.0366957i \(0.988317\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.34334 −0.246288 −0.123144 0.992389i \(-0.539298\pi\)
−0.123144 + 0.992389i \(0.539298\pi\)
\(312\) 0 0
\(313\) −0.0998878 −0.00564599 −0.00282300 0.999996i \(-0.500899\pi\)
−0.00282300 + 0.999996i \(0.500899\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.4759i 1.65553i 0.561074 + 0.827766i \(0.310388\pi\)
−0.561074 + 0.827766i \(0.689612\pi\)
\(318\) 0 0
\(319\) − 5.25546i − 0.294249i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.59147 −0.311118
\(324\) 0 0
\(325\) 24.6390 1.36673
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 4.96560i − 0.273762i
\(330\) 0 0
\(331\) − 8.62517i − 0.474082i −0.971500 0.237041i \(-0.923822\pi\)
0.971500 0.237041i \(-0.0761776\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.6682 1.07459
\(336\) 0 0
\(337\) 2.06942 0.112729 0.0563644 0.998410i \(-0.482049\pi\)
0.0563644 + 0.998410i \(0.482049\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.71617i 0.201242i
\(342\) 0 0
\(343\) − 9.61187i − 0.518992i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.9319 −0.747902 −0.373951 0.927448i \(-0.621997\pi\)
−0.373951 + 0.927448i \(0.621997\pi\)
\(348\) 0 0
\(349\) −6.30260 −0.337371 −0.168685 0.985670i \(-0.553952\pi\)
−0.168685 + 0.985670i \(0.553952\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 34.1594i − 1.81812i −0.416665 0.909060i \(-0.636801\pi\)
0.416665 0.909060i \(-0.363199\pi\)
\(354\) 0 0
\(355\) 6.78012i 0.359851i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.0288 1.58486 0.792430 0.609963i \(-0.208816\pi\)
0.792430 + 0.609963i \(0.208816\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.9138i 1.04234i
\(366\) 0 0
\(367\) − 17.1543i − 0.895448i −0.894172 0.447724i \(-0.852235\pi\)
0.894172 0.447724i \(-0.147765\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.71536 −0.0890569
\(372\) 0 0
\(373\) −31.9905 −1.65641 −0.828203 0.560429i \(-0.810636\pi\)
−0.828203 + 0.560429i \(0.810636\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4.38479i − 0.225828i
\(378\) 0 0
\(379\) − 28.4792i − 1.46288i −0.681906 0.731439i \(-0.738849\pi\)
0.681906 0.731439i \(-0.261151\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −34.6655 −1.77133 −0.885663 0.464329i \(-0.846296\pi\)
−0.885663 + 0.464329i \(0.846296\pi\)
\(384\) 0 0
\(385\) −9.36446 −0.477257
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 33.1470i 1.68062i 0.542106 + 0.840310i \(0.317627\pi\)
−0.542106 + 0.840310i \(0.682373\pi\)
\(390\) 0 0
\(391\) − 13.2663i − 0.670904i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 25.6510 1.29064
\(396\) 0 0
\(397\) 12.4115 0.622914 0.311457 0.950260i \(-0.399183\pi\)
0.311457 + 0.950260i \(0.399183\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 25.2269i − 1.25977i −0.776688 0.629886i \(-0.783102\pi\)
0.776688 0.629886i \(-0.216898\pi\)
\(402\) 0 0
\(403\) 3.10051i 0.154447i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.9674 0.543636
\(408\) 0 0
\(409\) −38.3247 −1.89504 −0.947518 0.319701i \(-0.896417\pi\)
−0.947518 + 0.319701i \(0.896417\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.13308i 0.203375i
\(414\) 0 0
\(415\) 18.8570i 0.925652i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.16025 0.447507 0.223754 0.974646i \(-0.428169\pi\)
0.223754 + 0.974646i \(0.428169\pi\)
\(420\) 0 0
\(421\) −21.3154 −1.03885 −0.519424 0.854517i \(-0.673854\pi\)
−0.519424 + 0.854517i \(0.673854\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 45.5437i − 2.20919i
\(426\) 0 0
\(427\) 8.43451i 0.408175i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −40.5379 −1.95264 −0.976321 0.216328i \(-0.930592\pi\)
−0.976321 + 0.216328i \(0.930592\pi\)
\(432\) 0 0
\(433\) 34.0894 1.63823 0.819116 0.573628i \(-0.194465\pi\)
0.819116 + 0.573628i \(0.194465\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.37259i − 0.113496i
\(438\) 0 0
\(439\) − 33.4652i − 1.59721i −0.601857 0.798604i \(-0.705572\pi\)
0.601857 0.798604i \(-0.294428\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −28.0139 −1.33098 −0.665490 0.746407i \(-0.731777\pi\)
−0.665490 + 0.746407i \(0.731777\pi\)
\(444\) 0 0
\(445\) 9.72955 0.461225
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.925796i 0.0436910i 0.999761 + 0.0218455i \(0.00695419\pi\)
−0.999761 + 0.0218455i \(0.993046\pi\)
\(450\) 0 0
\(451\) − 7.30540i − 0.343998i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.81305 −0.366281
\(456\) 0 0
\(457\) −20.6164 −0.964393 −0.482197 0.876063i \(-0.660161\pi\)
−0.482197 + 0.876063i \(0.660161\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.1482i 0.798673i 0.916804 + 0.399337i \(0.130760\pi\)
−0.916804 + 0.399337i \(0.869240\pi\)
\(462\) 0 0
\(463\) − 17.1652i − 0.797733i −0.917009 0.398867i \(-0.869404\pi\)
0.917009 0.398867i \(-0.130596\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.0226 0.602614 0.301307 0.953527i \(-0.402577\pi\)
0.301307 + 0.953527i \(0.402577\pi\)
\(468\) 0 0
\(469\) −3.86453 −0.178448
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 28.2432i 1.29862i
\(474\) 0 0
\(475\) − 8.14521i − 0.373728i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.21902 0.0556983 0.0278491 0.999612i \(-0.491134\pi\)
0.0278491 + 0.999612i \(0.491134\pi\)
\(480\) 0 0
\(481\) 9.15046 0.417225
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 47.0789i 2.13774i
\(486\) 0 0
\(487\) − 12.8400i − 0.581838i −0.956748 0.290919i \(-0.906039\pi\)
0.956748 0.290919i \(-0.0939610\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −36.8932 −1.66497 −0.832484 0.554049i \(-0.813082\pi\)
−0.832484 + 0.554049i \(0.813082\pi\)
\(492\) 0 0
\(493\) −8.10500 −0.365031
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1.33220i − 0.0597573i
\(498\) 0 0
\(499\) − 19.7279i − 0.883140i −0.897227 0.441570i \(-0.854422\pi\)
0.897227 0.441570i \(-0.145578\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7.66905 −0.341946 −0.170973 0.985276i \(-0.554691\pi\)
−0.170973 + 0.985276i \(0.554691\pi\)
\(504\) 0 0
\(505\) 17.4322 0.775723
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 3.58541i − 0.158920i −0.996838 0.0794602i \(-0.974680\pi\)
0.996838 0.0794602i \(-0.0253197\pi\)
\(510\) 0 0
\(511\) − 3.91279i − 0.173091i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.4432 −0.724574
\(516\) 0 0
\(517\) −25.2720 −1.11146
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.03580i 0.352055i 0.984385 + 0.176027i \(0.0563247\pi\)
−0.984385 + 0.176027i \(0.943675\pi\)
\(522\) 0 0
\(523\) 38.9000i 1.70098i 0.525994 + 0.850489i \(0.323694\pi\)
−0.525994 + 0.850489i \(0.676306\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.73110 0.249651
\(528\) 0 0
\(529\) −17.3708 −0.755253
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 6.09511i − 0.264009i
\(534\) 0 0
\(535\) − 70.0543i − 3.02871i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −23.5394 −1.01392
\(540\) 0 0
\(541\) −18.9477 −0.814627 −0.407314 0.913288i \(-0.633534\pi\)
−0.407314 + 0.913288i \(0.633534\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 30.6357i − 1.31229i
\(546\) 0 0
\(547\) − 27.1543i − 1.16104i −0.814248 0.580518i \(-0.802850\pi\)
0.814248 0.580518i \(-0.197150\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.44953 −0.0617520
\(552\) 0 0
\(553\) −5.04007 −0.214326
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.2083i 0.898624i 0.893375 + 0.449312i \(0.148331\pi\)
−0.893375 + 0.449312i \(0.851669\pi\)
\(558\) 0 0
\(559\) 23.5641i 0.996656i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.9521 −0.672299 −0.336150 0.941809i \(-0.609125\pi\)
−0.336150 + 0.941809i \(0.609125\pi\)
\(564\) 0 0
\(565\) −6.94943 −0.292365
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 32.2576i − 1.35231i −0.736759 0.676155i \(-0.763645\pi\)
0.736759 0.676155i \(-0.236355\pi\)
\(570\) 0 0
\(571\) − 35.1243i − 1.46991i −0.678117 0.734954i \(-0.737204\pi\)
0.678117 0.734954i \(-0.262796\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.3252 0.805918
\(576\) 0 0
\(577\) −24.3956 −1.01560 −0.507800 0.861475i \(-0.669541\pi\)
−0.507800 + 0.861475i \(0.669541\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 3.70513i − 0.153715i
\(582\) 0 0
\(583\) 8.73018i 0.361567i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.49483 0.102972 0.0514862 0.998674i \(-0.483604\pi\)
0.0514862 + 0.998674i \(0.483604\pi\)
\(588\) 0 0
\(589\) 1.02497 0.0422332
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.7502i 0.811045i 0.914085 + 0.405523i \(0.132910\pi\)
−0.914085 + 0.405523i \(0.867090\pi\)
\(594\) 0 0
\(595\) 14.4419i 0.592062i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.6392 −0.720717 −0.360359 0.932814i \(-0.617346\pi\)
−0.360359 + 0.932814i \(0.617346\pi\)
\(600\) 0 0
\(601\) 32.6308 1.33104 0.665519 0.746381i \(-0.268210\pi\)
0.665519 + 0.746381i \(0.268210\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.77773i 0.316210i
\(606\) 0 0
\(607\) 22.3109i 0.905571i 0.891619 + 0.452786i \(0.149570\pi\)
−0.891619 + 0.452786i \(0.850430\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.0852 −0.853015
\(612\) 0 0
\(613\) 33.4305 1.35025 0.675123 0.737705i \(-0.264091\pi\)
0.675123 + 0.737705i \(0.264091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.5157i 1.47007i 0.678032 + 0.735033i \(0.262833\pi\)
−0.678032 + 0.735033i \(0.737167\pi\)
\(618\) 0 0
\(619\) − 8.30990i − 0.334003i −0.985957 0.167001i \(-0.946592\pi\)
0.985957 0.167001i \(-0.0534085\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.91172 −0.0765915
\(624\) 0 0
\(625\) 0.618370 0.0247348
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 16.9141i − 0.674407i
\(630\) 0 0
\(631\) 22.8978i 0.911547i 0.890096 + 0.455773i \(0.150637\pi\)
−0.890096 + 0.455773i \(0.849363\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.5346 0.418055
\(636\) 0 0
\(637\) −19.6396 −0.778151
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.0028i 1.46152i 0.682633 + 0.730761i \(0.260835\pi\)
−0.682633 + 0.730761i \(0.739165\pi\)
\(642\) 0 0
\(643\) 21.3196i 0.840764i 0.907347 + 0.420382i \(0.138104\pi\)
−0.907347 + 0.420382i \(0.861896\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.7225 −0.736058 −0.368029 0.929814i \(-0.619967\pi\)
−0.368029 + 0.929814i \(0.619967\pi\)
\(648\) 0 0
\(649\) 21.0350 0.825694
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.2472i 1.37933i 0.724128 + 0.689665i \(0.242242\pi\)
−0.724128 + 0.689665i \(0.757758\pi\)
\(654\) 0 0
\(655\) 72.0721i 2.81609i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.70944 0.339272 0.169636 0.985507i \(-0.445741\pi\)
0.169636 + 0.985507i \(0.445741\pi\)
\(660\) 0 0
\(661\) 28.8951 1.12389 0.561945 0.827175i \(-0.310053\pi\)
0.561945 + 0.827175i \(0.310053\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.58285i 0.100159i
\(666\) 0 0
\(667\) − 3.43914i − 0.133164i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 42.9268 1.65717
\(672\) 0 0
\(673\) 18.5557 0.715271 0.357636 0.933861i \(-0.383583\pi\)
0.357636 + 0.933861i \(0.383583\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.8964i 1.14901i 0.818500 + 0.574506i \(0.194806\pi\)
−0.818500 + 0.574506i \(0.805194\pi\)
\(678\) 0 0
\(679\) − 9.25034i − 0.354996i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −44.0313 −1.68481 −0.842406 0.538844i \(-0.818861\pi\)
−0.842406 + 0.538844i \(0.818861\pi\)
\(684\) 0 0
\(685\) 28.3994 1.08509
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.28384i 0.277492i
\(690\) 0 0
\(691\) 47.0102i 1.78835i 0.447714 + 0.894177i \(0.352238\pi\)
−0.447714 + 0.894177i \(0.647762\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −45.4200 −1.72288
\(696\) 0 0
\(697\) −11.2664 −0.426747
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.9199i 0.827902i 0.910299 + 0.413951i \(0.135852\pi\)
−0.910299 + 0.413951i \(0.864148\pi\)
\(702\) 0 0
\(703\) − 3.02497i − 0.114089i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.42518 −0.128817
\(708\) 0 0
\(709\) 18.2709 0.686179 0.343090 0.939303i \(-0.388527\pi\)
0.343090 + 0.939303i \(0.388527\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.43184i 0.0910730i
\(714\) 0 0
\(715\) 39.7639i 1.48708i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.9067 0.518633 0.259316 0.965792i \(-0.416503\pi\)
0.259316 + 0.965792i \(0.416503\pi\)
\(720\) 0 0
\(721\) 3.23086 0.120324
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 11.8067i − 0.438490i
\(726\) 0 0
\(727\) − 21.8754i − 0.811313i −0.914026 0.405657i \(-0.867043\pi\)
0.914026 0.405657i \(-0.132957\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 43.5568 1.61101
\(732\) 0 0
\(733\) −11.3093 −0.417718 −0.208859 0.977946i \(-0.566975\pi\)
−0.208859 + 0.977946i \(0.566975\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.6682i 0.724489i
\(738\) 0 0
\(739\) 34.0877i 1.25394i 0.779045 + 0.626968i \(0.215704\pi\)
−0.779045 + 0.626968i \(0.784296\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.6958 −0.722568 −0.361284 0.932456i \(-0.617662\pi\)
−0.361284 + 0.932456i \(0.617662\pi\)
\(744\) 0 0
\(745\) −16.5418 −0.606046
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.7647i 0.502951i
\(750\) 0 0
\(751\) − 20.2149i − 0.737651i −0.929499 0.368826i \(-0.879760\pi\)
0.929499 0.368826i \(-0.120240\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 52.8806 1.92452
\(756\) 0 0
\(757\) −36.0308 −1.30956 −0.654781 0.755818i \(-0.727239\pi\)
−0.654781 + 0.755818i \(0.727239\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.7030i 0.931733i 0.884855 + 0.465866i \(0.154257\pi\)
−0.884855 + 0.465866i \(0.845743\pi\)
\(762\) 0 0
\(763\) 6.01948i 0.217920i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17.5501 0.633697
\(768\) 0 0
\(769\) −37.5745 −1.35497 −0.677485 0.735537i \(-0.736930\pi\)
−0.677485 + 0.735537i \(0.736930\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 42.1410i − 1.51570i −0.652426 0.757852i \(-0.726249\pi\)
0.652426 0.757852i \(-0.273751\pi\)
\(774\) 0 0
\(775\) 8.34861i 0.299891i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.01493 −0.0721924
\(780\) 0 0
\(781\) −6.78012 −0.242612
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 71.0993i − 2.53764i
\(786\) 0 0
\(787\) − 43.7352i − 1.55899i −0.626408 0.779495i \(-0.715476\pi\)
0.626408 0.779495i \(-0.284524\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.36547 0.0485504
\(792\) 0 0
\(793\) 35.8151 1.27183
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 29.0518i − 1.02907i −0.857471 0.514533i \(-0.827965\pi\)
0.857471 0.514533i \(-0.172035\pi\)
\(798\) 0 0
\(799\) 38.9746i 1.37882i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.9138 −0.702743
\(804\) 0 0
\(805\) −6.12804 −0.215985
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 17.3434i − 0.609763i −0.952390 0.304881i \(-0.901383\pi\)
0.952390 0.304881i \(-0.0986169\pi\)
\(810\) 0 0
\(811\) − 8.37082i − 0.293939i −0.989141 0.146970i \(-0.953048\pi\)
0.989141 0.146970i \(-0.0469520\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27.2296 0.953810
\(816\) 0 0
\(817\) 7.78986 0.272533
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 8.62252i − 0.300928i −0.988615 0.150464i \(-0.951923\pi\)
0.988615 0.150464i \(-0.0480768\pi\)
\(822\) 0 0
\(823\) − 24.7324i − 0.862116i −0.902324 0.431058i \(-0.858140\pi\)
0.902324 0.431058i \(-0.141860\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.8072 0.549669 0.274835 0.961491i \(-0.411377\pi\)
0.274835 + 0.961491i \(0.411377\pi\)
\(828\) 0 0
\(829\) 5.14607 0.178731 0.0893653 0.995999i \(-0.471516\pi\)
0.0893653 + 0.995999i \(0.471516\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 36.3027i 1.25781i
\(834\) 0 0
\(835\) − 43.7639i − 1.51451i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.5782 −0.503295 −0.251647 0.967819i \(-0.580972\pi\)
−0.251647 + 0.967819i \(0.580972\pi\)
\(840\) 0 0
\(841\) 26.8989 0.927547
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 13.9570i − 0.480137i
\(846\) 0 0
\(847\) − 1.52822i − 0.0525101i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.17701 0.246025
\(852\) 0 0
\(853\) −47.0905 −1.61235 −0.806174 0.591678i \(-0.798466\pi\)
−0.806174 + 0.591678i \(0.798466\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 12.4133i − 0.424032i −0.977266 0.212016i \(-0.931997\pi\)
0.977266 0.212016i \(-0.0680029\pi\)
\(858\) 0 0
\(859\) 3.49251i 0.119163i 0.998223 + 0.0595814i \(0.0189766\pi\)
−0.998223 + 0.0595814i \(0.981023\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.4899 −0.561323 −0.280662 0.959807i \(-0.590554\pi\)
−0.280662 + 0.959807i \(0.590554\pi\)
\(864\) 0 0
\(865\) 13.0861 0.444942
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 25.6510i 0.870152i
\(870\) 0 0
\(871\) 16.4098i 0.556024i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.12360 −0.274628
\(876\) 0 0
\(877\) 30.6247 1.03412 0.517061 0.855949i \(-0.327026\pi\)
0.517061 + 0.855949i \(0.327026\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 26.2241i − 0.883512i −0.897135 0.441756i \(-0.854356\pi\)
0.897135 0.441756i \(-0.145644\pi\)
\(882\) 0 0
\(883\) 19.0471i 0.640987i 0.947251 + 0.320494i \(0.103849\pi\)
−0.947251 + 0.320494i \(0.896151\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −54.6058 −1.83348 −0.916741 0.399481i \(-0.869190\pi\)
−0.916741 + 0.399481i \(0.869190\pi\)
\(888\) 0 0
\(889\) −2.06991 −0.0694226
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.97037i 0.233255i
\(894\) 0 0
\(895\) 86.5509i 2.89308i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.48573 0.0495518
\(900\) 0 0
\(901\) 13.4637 0.448542
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 11.2191i − 0.372937i
\(906\) 0 0
\(907\) 25.8955i 0.859845i 0.902866 + 0.429923i \(0.141459\pi\)
−0.902866 + 0.429923i \(0.858541\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.4982 −0.811660 −0.405830 0.913949i \(-0.633018\pi\)
−0.405830 + 0.913949i \(0.633018\pi\)
\(912\) 0 0
\(913\) −18.8570 −0.624075
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 14.1612i − 0.467643i
\(918\) 0 0
\(919\) 16.4487i 0.542594i 0.962496 + 0.271297i \(0.0874526\pi\)
−0.962496 + 0.271297i \(0.912547\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.65685 −0.186198
\(924\) 0 0
\(925\) 24.6390 0.810126
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.72877i 0.155146i 0.996987 + 0.0775729i \(0.0247170\pi\)
−0.996987 + 0.0775729i \(0.975283\pi\)
\(930\) 0 0
\(931\) 6.49251i 0.212783i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 73.5011 2.40374
\(936\) 0 0
\(937\) 24.6519 0.805344 0.402672 0.915344i \(-0.368082\pi\)
0.402672 + 0.915344i \(0.368082\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 49.5230i 1.61440i 0.590276 + 0.807201i \(0.299019\pi\)
−0.590276 + 0.807201i \(0.700981\pi\)
\(942\) 0 0
\(943\) − 4.78061i − 0.155678i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 44.5926 1.44906 0.724532 0.689241i \(-0.242056\pi\)
0.724532 + 0.689241i \(0.242056\pi\)
\(948\) 0 0
\(949\) −16.6147 −0.539335
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 40.8327i − 1.32270i −0.750077 0.661350i \(-0.769984\pi\)
0.750077 0.661350i \(-0.230016\pi\)
\(954\) 0 0
\(955\) − 65.8173i − 2.12980i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.58009 −0.180191
\(960\) 0 0
\(961\) 29.9494 0.966111
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41.5325i 1.33698i
\(966\) 0 0
\(967\) 13.0705i 0.420320i 0.977667 + 0.210160i \(0.0673985\pi\)
−0.977667 + 0.210160i \(0.932601\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −42.7868 −1.37309 −0.686547 0.727086i \(-0.740874\pi\)
−0.686547 + 0.727086i \(0.740874\pi\)
\(972\) 0 0
\(973\) 8.92439 0.286103
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.3789i 1.29184i 0.763407 + 0.645918i \(0.223525\pi\)
−0.763407 + 0.645918i \(0.776475\pi\)
\(978\) 0 0
\(979\) 9.72955i 0.310958i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.5352 0.495494 0.247747 0.968825i \(-0.420310\pi\)
0.247747 + 0.968825i \(0.420310\pi\)
\(984\) 0 0
\(985\) 82.8613 2.64018
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.4821i 0.587698i
\(990\) 0 0
\(991\) − 33.5241i − 1.06493i −0.846452 0.532465i \(-0.821266\pi\)
0.846452 0.532465i \(-0.178734\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −53.9304 −1.70971
\(996\) 0 0
\(997\) −6.03909 −0.191260 −0.0956300 0.995417i \(-0.530487\pi\)
−0.0956300 + 0.995417i \(0.530487\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.d.g.2015.13 yes 16
3.2 odd 2 inner 5472.2.d.g.2015.3 16
4.3 odd 2 inner 5472.2.d.g.2015.14 yes 16
12.11 even 2 inner 5472.2.d.g.2015.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5472.2.d.g.2015.3 16 3.2 odd 2 inner
5472.2.d.g.2015.4 yes 16 12.11 even 2 inner
5472.2.d.g.2015.13 yes 16 1.1 even 1 trivial
5472.2.d.g.2015.14 yes 16 4.3 odd 2 inner