Properties

Label 546.2.i.h
Level $546$
Weight $2$
Character orbit 546.i
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 225382016 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [546,2,Mod(79,546)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("546.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(546, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + \beta_{2} q^{3} + \beta_{2} q^{4} + \beta_1 q^{5} + q^{6} + ( - 2 \beta_{3} + \beta_{2} - \beta_1 + 1) q^{7} + q^{8} + ( - \beta_{2} - 1) q^{9} + ( - \beta_{3} - \beta_1) q^{10}+ \cdots + ( - \beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} + 4 q^{6} + 2 q^{7} + 4 q^{8} - 2 q^{9} + 2 q^{11} - 2 q^{12} + 4 q^{13} + 2 q^{14} - 2 q^{16} - 2 q^{17} - 2 q^{18} - 6 q^{19} - 4 q^{21} - 4 q^{22} + 4 q^{23} - 2 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1 - \beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i −0.707107 + 1.22474i 1.00000 −1.62132 2.09077i 1.00000 −0.500000 + 0.866025i −0.707107 1.22474i
79.2 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.707107 1.22474i 1.00000 2.62132 + 0.358719i 1.00000 −0.500000 + 0.866025i 0.707107 + 1.22474i
235.1 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i −0.707107 1.22474i 1.00000 −1.62132 + 2.09077i 1.00000 −0.500000 0.866025i −0.707107 + 1.22474i
235.2 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.707107 + 1.22474i 1.00000 2.62132 0.358719i 1.00000 −0.500000 0.866025i 0.707107 1.22474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.i.h 4
3.b odd 2 1 1638.2.j.n 4
7.c even 3 1 inner 546.2.i.h 4
7.c even 3 1 3822.2.a.bs 2
7.d odd 6 1 3822.2.a.bp 2
21.h odd 6 1 1638.2.j.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.h 4 1.a even 1 1 trivial
546.2.i.h 4 7.c even 3 1 inner
1638.2.j.n 4 3.b odd 2 1
1638.2.j.n 4 21.h odd 6 1
3822.2.a.bp 2 7.d odd 6 1
3822.2.a.bs 2 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{4} + 2T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{17}^{4} + 2T_{17}^{3} + 21T_{17}^{2} - 34T_{17} + 289 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$19$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$29$ \( (T - 5)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 34)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 16129 \) Copy content Toggle raw display
$59$ \( T^{4} + 18 T^{3} + \cdots + 6241 \) Copy content Toggle raw display
$61$ \( T^{4} - 2 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$67$ \( T^{4} - 18 T^{3} + \cdots + 2401 \) Copy content Toggle raw display
$71$ \( (T + 1)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$79$ \( T^{4} + 4 T^{3} + \cdots + 15376 \) Copy content Toggle raw display
$83$ \( (T^{2} + 4 T - 28)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 4 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$97$ \( (T^{2} + 4 T - 94)^{2} \) Copy content Toggle raw display
show more
show less