Properties

Label 5440.2.a.bv
Level $5440$
Weight $2$
Character orbit 5440.a
Self dual yes
Analytic conductor $43.439$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5440,2,Mod(1,5440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5440.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5440 = 2^{6} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,4,0,0,0,4,0,0,0,-4,0,-4,0,-4,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4386186996\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4752.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 3x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2720)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{3} + q^{5} - \beta_{3} q^{7} + ( - 2 \beta_{2} + 1) q^{9} + (\beta_{2} - \beta_1) q^{11} + (\beta_{3} + \beta_{2} - 1) q^{13} + (\beta_{2} - 1) q^{15} - q^{17} + (2 \beta_{2} - 2) q^{19}+ \cdots + (2 \beta_{3} + \beta_{2} + \beta_1 - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{5} + 4 q^{9} - 4 q^{13} - 4 q^{15} - 4 q^{17} - 8 q^{19} - 8 q^{23} + 4 q^{25} - 16 q^{27} + 4 q^{29} + 12 q^{31} + 12 q^{33} - 4 q^{37} + 16 q^{39} + 12 q^{41} - 4 q^{43} + 4 q^{45}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 3x^{2} + 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 3\nu^{2} - 5\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + \beta _1 + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 3\beta_{2} + 4\beta _1 + 7 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.219687
1.21969
2.49551
−1.49551
0 −2.73205 0 1.00000 0 −3.93244 0 4.46410 0
1.2 0 −2.73205 0 1.00000 0 3.93244 0 4.46410 0
1.3 0 0.732051 0 1.00000 0 −2.92163 0 −2.46410 0
1.4 0 0.732051 0 1.00000 0 2.92163 0 −2.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5440.2.a.bv 4
4.b odd 2 1 5440.2.a.cd 4
8.b even 2 1 2720.2.a.r yes 4
8.d odd 2 1 2720.2.a.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2720.2.a.j 4 8.d odd 2 1
2720.2.a.r yes 4 8.b even 2 1
5440.2.a.bv 4 1.a even 1 1 trivial
5440.2.a.cd 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5440))\):

\( T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 24T_{7}^{2} + 132 \) Copy content Toggle raw display
\( T_{11}^{4} - 24T_{11}^{2} - 48T_{11} - 12 \) Copy content Toggle raw display
\( T_{13}^{4} + 4T_{13}^{3} - 24T_{13}^{2} - 32T_{13} + 64 \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 24T^{2} + 132 \) Copy content Toggle raw display
$11$ \( T^{4} - 24 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$13$ \( T^{4} + 4 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots + 916 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots - 1164 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 976 \) Copy content Toggle raw display
$41$ \( T^{4} - 12 T^{3} + \cdots - 48 \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots + 208 \) Copy content Toggle raw display
$47$ \( T^{4} + 4 T^{3} + \cdots + 1168 \) Copy content Toggle raw display
$53$ \( T^{4} - 72T^{2} + 528 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$61$ \( (T - 6)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 20 T^{3} + \cdots - 5744 \) Copy content Toggle raw display
$71$ \( T^{4} - 20 T^{3} + \cdots - 1868 \) Copy content Toggle raw display
$73$ \( T^{4} + 4 T^{3} + \cdots - 752 \) Copy content Toggle raw display
$79$ \( T^{4} - 20 T^{3} + \cdots - 92 \) Copy content Toggle raw display
$83$ \( T^{4} - 12 T^{3} + \cdots - 624 \) Copy content Toggle raw display
$89$ \( T^{4} - 16 T^{3} + \cdots - 3008 \) Copy content Toggle raw display
$97$ \( T^{4} - 312 T^{2} + \cdots + 15696 \) Copy content Toggle raw display
show more
show less