Properties

Label 544.4.b.e
Level $544$
Weight $4$
Character orbit 544.b
Analytic conductor $32.097$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,4,Mod(33,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.33"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 544.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,208,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0970390431\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 60x^{6} + 866x^{4} + 3840x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} - \beta_1 q^{5} + ( - \beta_{4} + \beta_{3}) q^{7} + ( - 3 \beta_{2} - 1) q^{9} + (4 \beta_{4} + \beta_{3}) q^{11} + ( - \beta_{2} + 26) q^{13} + \beta_{6} q^{15} + (\beta_{7} - 5 \beta_{2} - 7) q^{17}+ \cdots + (86 \beta_{4} - 73 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 208 q^{13} - 56 q^{17} - 256 q^{21} - 472 q^{25} - 96 q^{33} + 1752 q^{49} - 464 q^{53} - 3712 q^{69} + 2688 q^{77} - 856 q^{81} - 256 q^{85} - 3120 q^{89} - 3520 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 60x^{6} + 866x^{4} + 3840x^{2} + 4096 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + 60\nu^{5} + 866\nu^{3} + 4352\nu ) / 256 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 60\nu^{4} + 802\nu^{2} + 1920 ) / 96 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -11\nu^{7} - 628\nu^{5} - 7862\nu^{3} - 24256\nu ) / 2304 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 17\nu^{7} + 892\nu^{5} + 8066\nu^{3} + 7168\nu ) / 2304 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -33\nu^{6} - 1724\nu^{4} - 15330\nu^{2} - 15872 ) / 144 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -15\nu^{6} - 836\nu^{4} - 10110\nu^{2} - 29888 ) / 144 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -35\nu^{7} - 2036\nu^{5} - 25958\nu^{3} - 66176\nu ) / 768 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + 4\beta_{3} + 3\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -4\beta_{6} + \beta_{5} - 18\beta_{2} - 360 ) / 24 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 9\beta_{7} - 38\beta_{4} - 206\beta_{3} - 75\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 29\beta_{6} - 5\beta_{5} + 180\beta_{2} + 1868 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -234\beta_{7} + 619\beta_{4} + 4312\beta_{3} + 1371\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -3616\beta_{6} + 499\beta_{5} - 24030\beta_{2} - 214920 ) / 12 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 10143\beta_{7} - 22862\beta_{4} - 178226\beta_{3} - 54777\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
33.1
1.24675i
6.41666i
3.44803i
2.32017i
2.32017i
3.44803i
6.41666i
1.24675i
0 7.31135i 0 15.3268i 0 5.53732i 0 −26.4558 0
33.2 0 7.31135i 0 15.3268i 0 5.53732i 0 −26.4558 0
33.3 0 1.59504i 0 11.5364i 0 14.7424i 0 24.4558 0
33.4 0 1.59504i 0 11.5364i 0 14.7424i 0 24.4558 0
33.5 0 1.59504i 0 11.5364i 0 14.7424i 0 24.4558 0
33.6 0 1.59504i 0 11.5364i 0 14.7424i 0 24.4558 0
33.7 0 7.31135i 0 15.3268i 0 5.53732i 0 −26.4558 0
33.8 0 7.31135i 0 15.3268i 0 5.53732i 0 −26.4558 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 33.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
17.b even 2 1 inner
68.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 544.4.b.e 8
4.b odd 2 1 inner 544.4.b.e 8
17.b even 2 1 inner 544.4.b.e 8
68.d odd 2 1 inner 544.4.b.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
544.4.b.e 8 1.a even 1 1 trivial
544.4.b.e 8 4.b odd 2 1 inner
544.4.b.e 8 17.b even 2 1 inner
544.4.b.e 8 68.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(544, [\chi])\):

\( T_{3}^{4} + 56T_{3}^{2} + 136 \) Copy content Toggle raw display
\( T_{19}^{4} - 23744T_{19}^{2} + 17007616 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 56 T^{2} + 136)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 368 T^{2} + 31264)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 248 T^{2} + 6664)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 2808 T^{2} + 539784)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 52 T + 604)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 28 T^{3} + \cdots + 24137569)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 23744 T^{2} + 17007616)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 16952 T^{2} + 2552584)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 25136 T^{2} + 157601824)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 27992 T^{2} + 163663624)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 109808 T^{2} + 2575184416)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 29376 T^{2} + 40518144)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 108896 T^{2} + 2249257216)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 116064 T^{2} + 344404224)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 116 T - 1244)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} - 712544 T^{2} + 118581350656)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 643248 T^{2} + 57740887584)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 1857600 T^{2} + 861010560000)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 253208 T^{2} + 9856078984)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 574848 T^{2} + 162072576)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 1173368 T^{2} + 3836114056)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 394848 T^{2} + 16875806976)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 780 T + 42588)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 1472 T^{2} + 500224)^{2} \) Copy content Toggle raw display
show more
show less