gp: [N,k,chi] = [544,2,Mod(69,544)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(544, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("544.69");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [128,0,0,0,0,20]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{128} + 8 T_{3}^{125} - 56 T_{3}^{123} + 16 T_{3}^{122} - 520 T_{3}^{121} + 33008 T_{3}^{120} + \cdots + 17\!\cdots\!76 \)
T3^128 + 8*T3^125 - 56*T3^123 + 16*T3^122 - 520*T3^121 + 33008*T3^120 - 5336*T3^119 - 9280*T3^118 + 281248*T3^117 - 13440*T3^116 - 2187984*T3^115 + 2190560*T3^114 - 12602064*T3^113 + 383855744*T3^112 - 123651728*T3^111 - 103116800*T3^110 + 3118785296*T3^109 - 254476672*T3^108 - 26701411280*T3^107 + 35893289472*T3^106 - 93565042048*T3^105 + 1997666376976*T3^104 - 867447256352*T3^103 + 490989984192*T3^102 + 11912959362816*T3^101 - 1084675714816*T3^100 - 115952326325088*T3^99 + 154328702778560*T3^98 - 298362610555552*T3^97 + 5409528379678592*T3^96 - 2827978324476704*T3^95 + 4695409076027904*T3^94 + 17212123854748672*T3^93 - 2074426283702016*T3^92 - 215847673493555264*T3^91 + 225327851249950592*T3^90 - 322819428658489920*T3^89 + 7716684505799039232*T3^88 - 3989860670617141312*T3^87 + 9527458664010041856*T3^86 + 6771789240117194176*T3^85 - 3065032026664110080*T3^84 - 181511390346247996096*T3^83 + 68481843232674293760*T3^82 + 119874890132681132288*T3^81 + 5342790856015903369824*T3^80 - 1448944999792793029248*T3^79 + 5722778682003462414592*T3^78 - 2537872995352804356608*T3^77 - 3708123792440155482112*T3^76 - 73230203229072169626752*T3^75 - 30676859769053575709952*T3^74 + 243221686618609755172224*T3^73 + 1809400717678271638486016*T3^72 + 342428695236706989764992*T3^71 + 719020390882594534481920*T3^70 - 2694202380335098562193408*T3^69 - 2180580837746624468291584*T3^68 - 12428533614189141151987456*T3^67 - 9121588287600202463596032*T3^66 + 74085227185935933036814592*T3^65 + 307071116077163383297205760*T3^64 + 183791073401161409138821376*T3^63 - 125319701871097359231209472*T3^62 - 807679455372532742926601472*T3^61 - 481768511213595512219375616*T3^60 + 28806410599393695326247168*T3^59 + 937932202237046301706555392*T3^58 + 7016642826688767632157743104*T3^57 + 18930439786416632426236408064*T3^56 + 15243098430149300719874759168*T3^55 - 17469408785508299138986609664*T3^54 - 62534514800521664295247951872*T3^53 - 32724225147040458607832805376*T3^52 + 81709305152342272499029784064*T3^51 + 176647396276719740181320295424*T3^50 + 193242190173344448735885881856*T3^49 + 172341231780095960828753684480*T3^48 + 82631226854962246174441249280*T3^47 - 160818974658501847388066586624*T3^46 - 486396500742560238510003302400*T3^45 - 217950351016390307443730132992*T3^44 + 848663319178582582676415910912*T3^43 + 1755989142305319927343426537472*T3^42 + 1592081200206664188729521579008*T3^41 + 691921864850504814846375428096*T3^40 + 110611667539487391217138738176*T3^39 + 213642718414030870327325057024*T3^38 + 116601619970307860775664194560*T3^37 - 131849702930546047266578710528*T3^36 + 38202548180837116604523699200*T3^35 + 322355420421235756220441051136*T3^34 + 309956801022672006465277898752*T3^33 + 99383298851501955948429484288*T3^32 - 47875801336014619259775956992*T3^31 + 65396845139691276660943695872*T3^30 + 56812303039276164033610741760*T3^29 - 48300206431367714781622632448*T3^28 - 8344975534062013127978549248*T3^27 + 36333415038676921123414343680*T3^26 + 14046563087922715965900902400*T3^25 + 1573723563800510568126795776*T3^24 - 6319156155958995621588312064*T3^23 + 7025865617914709439994281984*T3^22 + 5573062701500397593807495168*T3^21 - 6959393560742441206790553600*T3^20 + 230810609226686132508393472*T3^19 + 3894947824908476940502564864*T3^18 - 1770381905088965446798032896*T3^17 - 412985835816055539760537600*T3^16 + 957278921575785616329900032*T3^15 - 235331632760363596025102336*T3^14 - 154242724692358880410828800*T3^13 + 136417877118625368604409856*T3^12 - 22532538292023700827144192*T3^11 - 15677628717911559594573824*T3^10 + 10715632801597517089406976*T3^9 - 438435060121750536388608*T3^8 - 848681227009679820455936*T3^7 + 579916139154570667098112*T3^6 - 87120686414041526960128*T3^5 + 21524235684209654497280*T3^4 - 6451861393121209483264*T3^3 + 670652927235579707392*T3^2 - 26210187047178338304*T3 + 17069413088325861376
acting on \(S_{2}^{\mathrm{new}}(544, [\chi])\).