Properties

Label 544.2.b.d.33.4
Level $544$
Weight $2$
Character 544.33
Analytic conductor $4.344$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(33,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.33"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,0,0,8,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 33.4
Root \(0.765367i\) of defining polynomial
Character \(\chi\) \(=\) 544.33
Dual form 544.2.b.d.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61313i q^{3} +3.69552i q^{5} -1.08239i q^{7} -3.82843 q^{9} +2.61313i q^{11} +4.82843 q^{13} -9.65685 q^{15} +(3.82843 + 1.53073i) q^{17} -5.65685 q^{19} +2.82843 q^{21} -1.08239i q^{23} -8.65685 q^{25} -2.16478i q^{27} -6.75699i q^{29} -8.47343i q^{31} -6.82843 q^{33} +4.00000 q^{35} -3.69552i q^{37} +12.6173i q^{39} +3.06147i q^{41} -9.65685 q^{43} -14.1480i q^{45} +9.65685 q^{47} +5.82843 q^{49} +(-4.00000 + 10.0042i) q^{51} -2.00000 q^{53} -9.65685 q^{55} -14.7821i q^{57} +1.65685 q^{59} +8.02509i q^{61} +4.14386i q^{63} +17.8435i q^{65} +13.6569 q^{67} +2.82843 q^{69} +10.6382i q^{71} +10.4525i q^{73} -22.6215i q^{75} +2.82843 q^{77} +3.24718i q^{79} -5.82843 q^{81} +1.65685 q^{83} +(-5.65685 + 14.1480i) q^{85} +17.6569 q^{87} -6.48528 q^{89} -5.22625i q^{91} +22.1421 q^{93} -20.9050i q^{95} -13.5140i q^{97} -10.0042i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 8 q^{13} - 16 q^{15} + 4 q^{17} - 12 q^{25} - 16 q^{33} + 16 q^{35} - 16 q^{43} + 16 q^{47} + 12 q^{49} - 16 q^{51} - 8 q^{53} - 16 q^{55} - 16 q^{59} + 32 q^{67} - 12 q^{81} - 16 q^{83}+ \cdots + 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61313i 1.50869i 0.656479 + 0.754344i \(0.272045\pi\)
−0.656479 + 0.754344i \(0.727955\pi\)
\(4\) 0 0
\(5\) 3.69552i 1.65269i 0.563167 + 0.826343i \(0.309583\pi\)
−0.563167 + 0.826343i \(0.690417\pi\)
\(6\) 0 0
\(7\) 1.08239i 0.409106i −0.978856 0.204553i \(-0.934426\pi\)
0.978856 0.204553i \(-0.0655740\pi\)
\(8\) 0 0
\(9\) −3.82843 −1.27614
\(10\) 0 0
\(11\) 2.61313i 0.787887i 0.919135 + 0.393944i \(0.128889\pi\)
−0.919135 + 0.393944i \(0.871111\pi\)
\(12\) 0 0
\(13\) 4.82843 1.33916 0.669582 0.742738i \(-0.266473\pi\)
0.669582 + 0.742738i \(0.266473\pi\)
\(14\) 0 0
\(15\) −9.65685 −2.49339
\(16\) 0 0
\(17\) 3.82843 + 1.53073i 0.928530 + 0.371257i
\(18\) 0 0
\(19\) −5.65685 −1.29777 −0.648886 0.760886i \(-0.724765\pi\)
−0.648886 + 0.760886i \(0.724765\pi\)
\(20\) 0 0
\(21\) 2.82843 0.617213
\(22\) 0 0
\(23\) 1.08239i 0.225694i −0.993612 0.112847i \(-0.964003\pi\)
0.993612 0.112847i \(-0.0359971\pi\)
\(24\) 0 0
\(25\) −8.65685 −1.73137
\(26\) 0 0
\(27\) 2.16478i 0.416613i
\(28\) 0 0
\(29\) 6.75699i 1.25474i −0.778721 0.627370i \(-0.784131\pi\)
0.778721 0.627370i \(-0.215869\pi\)
\(30\) 0 0
\(31\) 8.47343i 1.52187i −0.648827 0.760936i \(-0.724740\pi\)
0.648827 0.760936i \(-0.275260\pi\)
\(32\) 0 0
\(33\) −6.82843 −1.18868
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 3.69552i 0.607539i −0.952745 0.303770i \(-0.901755\pi\)
0.952745 0.303770i \(-0.0982453\pi\)
\(38\) 0 0
\(39\) 12.6173i 2.02038i
\(40\) 0 0
\(41\) 3.06147i 0.478121i 0.971005 + 0.239060i \(0.0768394\pi\)
−0.971005 + 0.239060i \(0.923161\pi\)
\(42\) 0 0
\(43\) −9.65685 −1.47266 −0.736328 0.676625i \(-0.763442\pi\)
−0.736328 + 0.676625i \(0.763442\pi\)
\(44\) 0 0
\(45\) 14.1480i 2.10906i
\(46\) 0 0
\(47\) 9.65685 1.40860 0.704298 0.709904i \(-0.251262\pi\)
0.704298 + 0.709904i \(0.251262\pi\)
\(48\) 0 0
\(49\) 5.82843 0.832632
\(50\) 0 0
\(51\) −4.00000 + 10.0042i −0.560112 + 1.40086i
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −9.65685 −1.30213
\(56\) 0 0
\(57\) 14.7821i 1.95793i
\(58\) 0 0
\(59\) 1.65685 0.215704 0.107852 0.994167i \(-0.465603\pi\)
0.107852 + 0.994167i \(0.465603\pi\)
\(60\) 0 0
\(61\) 8.02509i 1.02751i 0.857938 + 0.513754i \(0.171745\pi\)
−0.857938 + 0.513754i \(0.828255\pi\)
\(62\) 0 0
\(63\) 4.14386i 0.522077i
\(64\) 0 0
\(65\) 17.8435i 2.21322i
\(66\) 0 0
\(67\) 13.6569 1.66845 0.834225 0.551424i \(-0.185915\pi\)
0.834225 + 0.551424i \(0.185915\pi\)
\(68\) 0 0
\(69\) 2.82843 0.340503
\(70\) 0 0
\(71\) 10.6382i 1.26252i 0.775570 + 0.631262i \(0.217463\pi\)
−0.775570 + 0.631262i \(0.782537\pi\)
\(72\) 0 0
\(73\) 10.4525i 1.22337i 0.791100 + 0.611687i \(0.209509\pi\)
−0.791100 + 0.611687i \(0.790491\pi\)
\(74\) 0 0
\(75\) 22.6215i 2.61210i
\(76\) 0 0
\(77\) 2.82843 0.322329
\(78\) 0 0
\(79\) 3.24718i 0.365336i 0.983175 + 0.182668i \(0.0584733\pi\)
−0.983175 + 0.182668i \(0.941527\pi\)
\(80\) 0 0
\(81\) −5.82843 −0.647603
\(82\) 0 0
\(83\) 1.65685 0.181863 0.0909317 0.995857i \(-0.471016\pi\)
0.0909317 + 0.995857i \(0.471016\pi\)
\(84\) 0 0
\(85\) −5.65685 + 14.1480i −0.613572 + 1.53457i
\(86\) 0 0
\(87\) 17.6569 1.89301
\(88\) 0 0
\(89\) −6.48528 −0.687438 −0.343719 0.939072i \(-0.611687\pi\)
−0.343719 + 0.939072i \(0.611687\pi\)
\(90\) 0 0
\(91\) 5.22625i 0.547860i
\(92\) 0 0
\(93\) 22.1421 2.29603
\(94\) 0 0
\(95\) 20.9050i 2.14481i
\(96\) 0 0
\(97\) 13.5140i 1.37214i −0.727537 0.686068i \(-0.759335\pi\)
0.727537 0.686068i \(-0.240665\pi\)
\(98\) 0 0
\(99\) 10.0042i 1.00546i
\(100\) 0 0
\(101\) 12.8284 1.27648 0.638238 0.769839i \(-0.279664\pi\)
0.638238 + 0.769839i \(0.279664\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 10.4525i 1.02006i
\(106\) 0 0
\(107\) 3.88123i 0.375212i 0.982244 + 0.187606i \(0.0600729\pi\)
−0.982244 + 0.187606i \(0.939927\pi\)
\(108\) 0 0
\(109\) 6.75699i 0.647202i 0.946194 + 0.323601i \(0.104894\pi\)
−0.946194 + 0.323601i \(0.895106\pi\)
\(110\) 0 0
\(111\) 9.65685 0.916588
\(112\) 0 0
\(113\) 4.32957i 0.407292i 0.979045 + 0.203646i \(0.0652791\pi\)
−0.979045 + 0.203646i \(0.934721\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) −18.4853 −1.70896
\(118\) 0 0
\(119\) 1.65685 4.14386i 0.151884 0.379867i
\(120\) 0 0
\(121\) 4.17157 0.379234
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) 13.5140i 1.20873i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 25.2346i 2.22178i
\(130\) 0 0
\(131\) 6.57128i 0.574135i −0.957910 0.287068i \(-0.907320\pi\)
0.957910 0.287068i \(-0.0926804\pi\)
\(132\) 0 0
\(133\) 6.12293i 0.530926i
\(134\) 0 0
\(135\) 8.00000 0.688530
\(136\) 0 0
\(137\) −8.82843 −0.754263 −0.377132 0.926160i \(-0.623090\pi\)
−0.377132 + 0.926160i \(0.623090\pi\)
\(138\) 0 0
\(139\) 2.61313i 0.221642i 0.993840 + 0.110821i \(0.0353481\pi\)
−0.993840 + 0.110821i \(0.964652\pi\)
\(140\) 0 0
\(141\) 25.2346i 2.12513i
\(142\) 0 0
\(143\) 12.6173i 1.05511i
\(144\) 0 0
\(145\) 24.9706 2.07369
\(146\) 0 0
\(147\) 15.2304i 1.25618i
\(148\) 0 0
\(149\) −13.3137 −1.09070 −0.545351 0.838208i \(-0.683604\pi\)
−0.545351 + 0.838208i \(0.683604\pi\)
\(150\) 0 0
\(151\) 3.31371 0.269666 0.134833 0.990868i \(-0.456950\pi\)
0.134833 + 0.990868i \(0.456950\pi\)
\(152\) 0 0
\(153\) −14.6569 5.86030i −1.18494 0.473777i
\(154\) 0 0
\(155\) 31.3137 2.51518
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) 5.22625i 0.414469i
\(160\) 0 0
\(161\) −1.17157 −0.0923329
\(162\) 0 0
\(163\) 16.1271i 1.26317i 0.775306 + 0.631586i \(0.217596\pi\)
−0.775306 + 0.631586i \(0.782404\pi\)
\(164\) 0 0
\(165\) 25.2346i 1.96451i
\(166\) 0 0
\(167\) 21.9874i 1.70144i −0.525622 0.850718i \(-0.676167\pi\)
0.525622 0.850718i \(-0.323833\pi\)
\(168\) 0 0
\(169\) 10.3137 0.793362
\(170\) 0 0
\(171\) 21.6569 1.65614
\(172\) 0 0
\(173\) 11.0866i 0.842895i −0.906853 0.421448i \(-0.861522\pi\)
0.906853 0.421448i \(-0.138478\pi\)
\(174\) 0 0
\(175\) 9.37011i 0.708314i
\(176\) 0 0
\(177\) 4.32957i 0.325430i
\(178\) 0 0
\(179\) 24.9706 1.86639 0.933194 0.359374i \(-0.117010\pi\)
0.933194 + 0.359374i \(0.117010\pi\)
\(180\) 0 0
\(181\) 15.4161i 1.14587i −0.819600 0.572936i \(-0.805804\pi\)
0.819600 0.572936i \(-0.194196\pi\)
\(182\) 0 0
\(183\) −20.9706 −1.55019
\(184\) 0 0
\(185\) 13.6569 1.00407
\(186\) 0 0
\(187\) −4.00000 + 10.0042i −0.292509 + 0.731577i
\(188\) 0 0
\(189\) −2.34315 −0.170439
\(190\) 0 0
\(191\) 12.9706 0.938517 0.469258 0.883061i \(-0.344521\pi\)
0.469258 + 0.883061i \(0.344521\pi\)
\(192\) 0 0
\(193\) 23.9665i 1.72514i −0.505934 0.862572i \(-0.668852\pi\)
0.505934 0.862572i \(-0.331148\pi\)
\(194\) 0 0
\(195\) −46.6274 −3.33906
\(196\) 0 0
\(197\) 0.634051i 0.0451742i −0.999745 0.0225871i \(-0.992810\pi\)
0.999745 0.0225871i \(-0.00719032\pi\)
\(198\) 0 0
\(199\) 5.04054i 0.357315i 0.983911 + 0.178657i \(0.0571753\pi\)
−0.983911 + 0.178657i \(0.942825\pi\)
\(200\) 0 0
\(201\) 35.6871i 2.51717i
\(202\) 0 0
\(203\) −7.31371 −0.513322
\(204\) 0 0
\(205\) −11.3137 −0.790184
\(206\) 0 0
\(207\) 4.14386i 0.288018i
\(208\) 0 0
\(209\) 14.7821i 1.02250i
\(210\) 0 0
\(211\) 15.2304i 1.04850i −0.851563 0.524252i \(-0.824345\pi\)
0.851563 0.524252i \(-0.175655\pi\)
\(212\) 0 0
\(213\) −27.7990 −1.90476
\(214\) 0 0
\(215\) 35.6871i 2.43384i
\(216\) 0 0
\(217\) −9.17157 −0.622607
\(218\) 0 0
\(219\) −27.3137 −1.84569
\(220\) 0 0
\(221\) 18.4853 + 7.39104i 1.24345 + 0.497175i
\(222\) 0 0
\(223\) −4.97056 −0.332854 −0.166427 0.986054i \(-0.553223\pi\)
−0.166427 + 0.986054i \(0.553223\pi\)
\(224\) 0 0
\(225\) 33.1421 2.20948
\(226\) 0 0
\(227\) 10.0042i 0.664000i 0.943279 + 0.332000i \(0.107723\pi\)
−0.943279 + 0.332000i \(0.892277\pi\)
\(228\) 0 0
\(229\) −17.7990 −1.17619 −0.588095 0.808792i \(-0.700122\pi\)
−0.588095 + 0.808792i \(0.700122\pi\)
\(230\) 0 0
\(231\) 7.39104i 0.486294i
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 35.6871i 2.32797i
\(236\) 0 0
\(237\) −8.48528 −0.551178
\(238\) 0 0
\(239\) 14.3431 0.927781 0.463890 0.885893i \(-0.346453\pi\)
0.463890 + 0.885893i \(0.346453\pi\)
\(240\) 0 0
\(241\) 16.0502i 1.03388i 0.856021 + 0.516941i \(0.172929\pi\)
−0.856021 + 0.516941i \(0.827071\pi\)
\(242\) 0 0
\(243\) 21.7248i 1.39364i
\(244\) 0 0
\(245\) 21.5391i 1.37608i
\(246\) 0 0
\(247\) −27.3137 −1.73793
\(248\) 0 0
\(249\) 4.32957i 0.274375i
\(250\) 0 0
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 0 0
\(253\) 2.82843 0.177822
\(254\) 0 0
\(255\) −36.9706 14.7821i −2.31519 0.925689i
\(256\) 0 0
\(257\) 18.4853 1.15308 0.576540 0.817069i \(-0.304402\pi\)
0.576540 + 0.817069i \(0.304402\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 25.8686i 1.60123i
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 7.39104i 0.454028i
\(266\) 0 0
\(267\) 16.9469i 1.03713i
\(268\) 0 0
\(269\) 0.634051i 0.0386588i −0.999813 0.0193294i \(-0.993847\pi\)
0.999813 0.0193294i \(-0.00615311\pi\)
\(270\) 0 0
\(271\) 14.3431 0.871284 0.435642 0.900120i \(-0.356521\pi\)
0.435642 + 0.900120i \(0.356521\pi\)
\(272\) 0 0
\(273\) 13.6569 0.826550
\(274\) 0 0
\(275\) 22.6215i 1.36412i
\(276\) 0 0
\(277\) 9.29319i 0.558374i −0.960237 0.279187i \(-0.909935\pi\)
0.960237 0.279187i \(-0.0900649\pi\)
\(278\) 0 0
\(279\) 32.4399i 1.94213i
\(280\) 0 0
\(281\) −14.9706 −0.893069 −0.446534 0.894766i \(-0.647342\pi\)
−0.446534 + 0.894766i \(0.647342\pi\)
\(282\) 0 0
\(283\) 29.6411i 1.76198i 0.473136 + 0.880989i \(0.343122\pi\)
−0.473136 + 0.880989i \(0.656878\pi\)
\(284\) 0 0
\(285\) 54.6274 3.23585
\(286\) 0 0
\(287\) 3.31371 0.195602
\(288\) 0 0
\(289\) 12.3137 + 11.7206i 0.724336 + 0.689447i
\(290\) 0 0
\(291\) 35.3137 2.07013
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 6.12293i 0.356491i
\(296\) 0 0
\(297\) 5.65685 0.328244
\(298\) 0 0
\(299\) 5.22625i 0.302242i
\(300\) 0 0
\(301\) 10.4525i 0.602472i
\(302\) 0 0
\(303\) 33.5223i 1.92581i
\(304\) 0 0
\(305\) −29.6569 −1.69815
\(306\) 0 0
\(307\) −12.9706 −0.740269 −0.370135 0.928978i \(-0.620688\pi\)
−0.370135 + 0.928978i \(0.620688\pi\)
\(308\) 0 0
\(309\) 20.9050i 1.18924i
\(310\) 0 0
\(311\) 1.08239i 0.0613768i −0.999529 0.0306884i \(-0.990230\pi\)
0.999529 0.0306884i \(-0.00976996\pi\)
\(312\) 0 0
\(313\) 7.39104i 0.417766i −0.977941 0.208883i \(-0.933017\pi\)
0.977941 0.208883i \(-0.0669828\pi\)
\(314\) 0 0
\(315\) −15.3137 −0.862830
\(316\) 0 0
\(317\) 6.75699i 0.379510i −0.981831 0.189755i \(-0.939231\pi\)
0.981831 0.189755i \(-0.0607694\pi\)
\(318\) 0 0
\(319\) 17.6569 0.988594
\(320\) 0 0
\(321\) −10.1421 −0.566079
\(322\) 0 0
\(323\) −21.6569 8.65914i −1.20502 0.481807i
\(324\) 0 0
\(325\) −41.7990 −2.31859
\(326\) 0 0
\(327\) −17.6569 −0.976426
\(328\) 0 0
\(329\) 10.4525i 0.576265i
\(330\) 0 0
\(331\) 4.97056 0.273207 0.136603 0.990626i \(-0.456381\pi\)
0.136603 + 0.990626i \(0.456381\pi\)
\(332\) 0 0
\(333\) 14.1480i 0.775307i
\(334\) 0 0
\(335\) 50.4692i 2.75742i
\(336\) 0 0
\(337\) 31.3575i 1.70815i −0.520148 0.854076i \(-0.674123\pi\)
0.520148 0.854076i \(-0.325877\pi\)
\(338\) 0 0
\(339\) −11.3137 −0.614476
\(340\) 0 0
\(341\) 22.1421 1.19906
\(342\) 0 0
\(343\) 13.8854i 0.749741i
\(344\) 0 0
\(345\) 10.4525i 0.562744i
\(346\) 0 0
\(347\) 22.9929i 1.23432i 0.786837 + 0.617161i \(0.211717\pi\)
−0.786837 + 0.617161i \(0.788283\pi\)
\(348\) 0 0
\(349\) 1.31371 0.0703212 0.0351606 0.999382i \(-0.488806\pi\)
0.0351606 + 0.999382i \(0.488806\pi\)
\(350\) 0 0
\(351\) 10.4525i 0.557913i
\(352\) 0 0
\(353\) −0.343146 −0.0182638 −0.00913190 0.999958i \(-0.502907\pi\)
−0.00913190 + 0.999958i \(0.502907\pi\)
\(354\) 0 0
\(355\) −39.3137 −2.08655
\(356\) 0 0
\(357\) 10.8284 + 4.32957i 0.573101 + 0.229145i
\(358\) 0 0
\(359\) 25.6569 1.35412 0.677058 0.735929i \(-0.263254\pi\)
0.677058 + 0.735929i \(0.263254\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 10.9008i 0.572146i
\(364\) 0 0
\(365\) −38.6274 −2.02185
\(366\) 0 0
\(367\) 0.185709i 0.00969394i 0.999988 + 0.00484697i \(0.00154284\pi\)
−0.999988 + 0.00484697i \(0.998457\pi\)
\(368\) 0 0
\(369\) 11.7206i 0.610150i
\(370\) 0 0
\(371\) 2.16478i 0.112390i
\(372\) 0 0
\(373\) 9.51472 0.492653 0.246327 0.969187i \(-0.420776\pi\)
0.246327 + 0.969187i \(0.420776\pi\)
\(374\) 0 0
\(375\) 35.3137 1.82359
\(376\) 0 0
\(377\) 32.6256i 1.68030i
\(378\) 0 0
\(379\) 37.4035i 1.92129i −0.277779 0.960645i \(-0.589598\pi\)
0.277779 0.960645i \(-0.410402\pi\)
\(380\) 0 0
\(381\) 41.8100i 2.14199i
\(382\) 0 0
\(383\) −11.3137 −0.578103 −0.289052 0.957313i \(-0.593340\pi\)
−0.289052 + 0.957313i \(0.593340\pi\)
\(384\) 0 0
\(385\) 10.4525i 0.532709i
\(386\) 0 0
\(387\) 36.9706 1.87932
\(388\) 0 0
\(389\) 19.4558 0.986450 0.493225 0.869902i \(-0.335818\pi\)
0.493225 + 0.869902i \(0.335818\pi\)
\(390\) 0 0
\(391\) 1.65685 4.14386i 0.0837907 0.209564i
\(392\) 0 0
\(393\) 17.1716 0.866191
\(394\) 0 0
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) 4.96362i 0.249117i −0.992212 0.124558i \(-0.960249\pi\)
0.992212 0.124558i \(-0.0397514\pi\)
\(398\) 0 0
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) 1.26810i 0.0633260i −0.999499 0.0316630i \(-0.989920\pi\)
0.999499 0.0316630i \(-0.0100803\pi\)
\(402\) 0 0
\(403\) 40.9133i 2.03804i
\(404\) 0 0
\(405\) 21.5391i 1.07028i
\(406\) 0 0
\(407\) 9.65685 0.478672
\(408\) 0 0
\(409\) −0.343146 −0.0169675 −0.00848373 0.999964i \(-0.502700\pi\)
−0.00848373 + 0.999964i \(0.502700\pi\)
\(410\) 0 0
\(411\) 23.0698i 1.13795i
\(412\) 0 0
\(413\) 1.79337i 0.0882458i
\(414\) 0 0
\(415\) 6.12293i 0.300563i
\(416\) 0 0
\(417\) −6.82843 −0.334390
\(418\) 0 0
\(419\) 33.0740i 1.61577i −0.589341 0.807884i \(-0.700613\pi\)
0.589341 0.807884i \(-0.299387\pi\)
\(420\) 0 0
\(421\) −6.48528 −0.316073 −0.158037 0.987433i \(-0.550516\pi\)
−0.158037 + 0.987433i \(0.550516\pi\)
\(422\) 0 0
\(423\) −36.9706 −1.79757
\(424\) 0 0
\(425\) −33.1421 13.2513i −1.60763 0.642784i
\(426\) 0 0
\(427\) 8.68629 0.420359
\(428\) 0 0
\(429\) −32.9706 −1.59183
\(430\) 0 0
\(431\) 8.99869i 0.433452i −0.976232 0.216726i \(-0.930462\pi\)
0.976232 0.216726i \(-0.0695378\pi\)
\(432\) 0 0
\(433\) 0.142136 0.00683060 0.00341530 0.999994i \(-0.498913\pi\)
0.00341530 + 0.999994i \(0.498913\pi\)
\(434\) 0 0
\(435\) 65.2512i 3.12856i
\(436\) 0 0
\(437\) 6.12293i 0.292900i
\(438\) 0 0
\(439\) 1.60766i 0.0767293i −0.999264 0.0383646i \(-0.987785\pi\)
0.999264 0.0383646i \(-0.0122148\pi\)
\(440\) 0 0
\(441\) −22.3137 −1.06256
\(442\) 0 0
\(443\) 29.6569 1.40904 0.704520 0.709684i \(-0.251162\pi\)
0.704520 + 0.709684i \(0.251162\pi\)
\(444\) 0 0
\(445\) 23.9665i 1.13612i
\(446\) 0 0
\(447\) 34.7904i 1.64553i
\(448\) 0 0
\(449\) 32.6256i 1.53970i 0.638226 + 0.769849i \(0.279668\pi\)
−0.638226 + 0.769849i \(0.720332\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 8.65914i 0.406842i
\(454\) 0 0
\(455\) 19.3137 0.905441
\(456\) 0 0
\(457\) 12.8284 0.600089 0.300044 0.953925i \(-0.402999\pi\)
0.300044 + 0.953925i \(0.402999\pi\)
\(458\) 0 0
\(459\) 3.31371 8.28772i 0.154671 0.386838i
\(460\) 0 0
\(461\) 1.31371 0.0611855 0.0305928 0.999532i \(-0.490261\pi\)
0.0305928 + 0.999532i \(0.490261\pi\)
\(462\) 0 0
\(463\) −11.3137 −0.525793 −0.262896 0.964824i \(-0.584678\pi\)
−0.262896 + 0.964824i \(0.584678\pi\)
\(464\) 0 0
\(465\) 81.8267i 3.79462i
\(466\) 0 0
\(467\) 20.2843 0.938644 0.469322 0.883027i \(-0.344498\pi\)
0.469322 + 0.883027i \(0.344498\pi\)
\(468\) 0 0
\(469\) 14.7821i 0.682573i
\(470\) 0 0
\(471\) 26.1313i 1.20406i
\(472\) 0 0
\(473\) 25.2346i 1.16029i
\(474\) 0 0
\(475\) 48.9706 2.24692
\(476\) 0 0
\(477\) 7.65685 0.350583
\(478\) 0 0
\(479\) 9.37011i 0.428131i 0.976819 + 0.214066i \(0.0686707\pi\)
−0.976819 + 0.214066i \(0.931329\pi\)
\(480\) 0 0
\(481\) 17.8435i 0.813595i
\(482\) 0 0
\(483\) 3.06147i 0.139302i
\(484\) 0 0
\(485\) 49.9411 2.26771
\(486\) 0 0
\(487\) 25.0489i 1.13507i −0.823348 0.567536i \(-0.807897\pi\)
0.823348 0.567536i \(-0.192103\pi\)
\(488\) 0 0
\(489\) −42.1421 −1.90573
\(490\) 0 0
\(491\) 8.97056 0.404836 0.202418 0.979299i \(-0.435120\pi\)
0.202418 + 0.979299i \(0.435120\pi\)
\(492\) 0 0
\(493\) 10.3431 25.8686i 0.465832 1.16506i
\(494\) 0 0
\(495\) 36.9706 1.66170
\(496\) 0 0
\(497\) 11.5147 0.516506
\(498\) 0 0
\(499\) 14.3337i 0.641666i 0.947136 + 0.320833i \(0.103963\pi\)
−0.947136 + 0.320833i \(0.896037\pi\)
\(500\) 0 0
\(501\) 57.4558 2.56694
\(502\) 0 0
\(503\) 6.68006i 0.297849i −0.988849 0.148925i \(-0.952419\pi\)
0.988849 0.148925i \(-0.0475812\pi\)
\(504\) 0 0
\(505\) 47.4077i 2.10961i
\(506\) 0 0
\(507\) 26.9510i 1.19694i
\(508\) 0 0
\(509\) 33.3137 1.47660 0.738302 0.674470i \(-0.235628\pi\)
0.738302 + 0.674470i \(0.235628\pi\)
\(510\) 0 0
\(511\) 11.3137 0.500489
\(512\) 0 0
\(513\) 12.2459i 0.540668i
\(514\) 0 0
\(515\) 29.5641i 1.30275i
\(516\) 0 0
\(517\) 25.2346i 1.10982i
\(518\) 0 0
\(519\) 28.9706 1.27167
\(520\) 0 0
\(521\) 5.59767i 0.245238i −0.992454 0.122619i \(-0.960871\pi\)
0.992454 0.122619i \(-0.0391294\pi\)
\(522\) 0 0
\(523\) −5.65685 −0.247357 −0.123678 0.992322i \(-0.539469\pi\)
−0.123678 + 0.992322i \(0.539469\pi\)
\(524\) 0 0
\(525\) −24.4853 −1.06863
\(526\) 0 0
\(527\) 12.9706 32.4399i 0.565007 1.41310i
\(528\) 0 0
\(529\) 21.8284 0.949062
\(530\) 0 0
\(531\) −6.34315 −0.275269
\(532\) 0 0
\(533\) 14.7821i 0.640283i
\(534\) 0 0
\(535\) −14.3431 −0.620108
\(536\) 0 0
\(537\) 65.2512i 2.81580i
\(538\) 0 0
\(539\) 15.2304i 0.656020i
\(540\) 0 0
\(541\) 3.17025i 0.136300i 0.997675 + 0.0681499i \(0.0217096\pi\)
−0.997675 + 0.0681499i \(0.978290\pi\)
\(542\) 0 0
\(543\) 40.2843 1.72876
\(544\) 0 0
\(545\) −24.9706 −1.06962
\(546\) 0 0
\(547\) 6.57128i 0.280967i −0.990083 0.140484i \(-0.955134\pi\)
0.990083 0.140484i \(-0.0448658\pi\)
\(548\) 0 0
\(549\) 30.7235i 1.31125i
\(550\) 0 0
\(551\) 38.2233i 1.62837i
\(552\) 0 0
\(553\) 3.51472 0.149461
\(554\) 0 0
\(555\) 35.6871i 1.51483i
\(556\) 0 0
\(557\) −9.79899 −0.415197 −0.207598 0.978214i \(-0.566565\pi\)
−0.207598 + 0.978214i \(0.566565\pi\)
\(558\) 0 0
\(559\) −46.6274 −1.97213
\(560\) 0 0
\(561\) −26.1421 10.4525i −1.10372 0.441305i
\(562\) 0 0
\(563\) −43.5980 −1.83744 −0.918718 0.394914i \(-0.870774\pi\)
−0.918718 + 0.394914i \(0.870774\pi\)
\(564\) 0 0
\(565\) −16.0000 −0.673125
\(566\) 0 0
\(567\) 6.30864i 0.264938i
\(568\) 0 0
\(569\) 29.3137 1.22889 0.614447 0.788958i \(-0.289379\pi\)
0.614447 + 0.788958i \(0.289379\pi\)
\(570\) 0 0
\(571\) 20.0852i 0.840541i −0.907399 0.420271i \(-0.861935\pi\)
0.907399 0.420271i \(-0.138065\pi\)
\(572\) 0 0
\(573\) 33.8937i 1.41593i
\(574\) 0 0
\(575\) 9.37011i 0.390761i
\(576\) 0 0
\(577\) −13.5147 −0.562625 −0.281313 0.959616i \(-0.590770\pi\)
−0.281313 + 0.959616i \(0.590770\pi\)
\(578\) 0 0
\(579\) 62.6274 2.60271
\(580\) 0 0
\(581\) 1.79337i 0.0744014i
\(582\) 0 0
\(583\) 5.22625i 0.216449i
\(584\) 0 0
\(585\) 68.3127i 2.82438i
\(586\) 0 0
\(587\) 5.65685 0.233483 0.116742 0.993162i \(-0.462755\pi\)
0.116742 + 0.993162i \(0.462755\pi\)
\(588\) 0 0
\(589\) 47.9329i 1.97504i
\(590\) 0 0
\(591\) 1.65685 0.0681539
\(592\) 0 0
\(593\) −23.9411 −0.983144 −0.491572 0.870837i \(-0.663578\pi\)
−0.491572 + 0.870837i \(0.663578\pi\)
\(594\) 0 0
\(595\) 15.3137 + 6.12293i 0.627801 + 0.251016i
\(596\) 0 0
\(597\) −13.1716 −0.539077
\(598\) 0 0
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 17.3183i 0.706427i −0.935543 0.353214i \(-0.885089\pi\)
0.935543 0.353214i \(-0.114911\pi\)
\(602\) 0 0
\(603\) −52.2843 −2.12918
\(604\) 0 0
\(605\) 15.4161i 0.626755i
\(606\) 0 0
\(607\) 0.185709i 0.00753770i 0.999993 + 0.00376885i \(0.00119967\pi\)
−0.999993 + 0.00376885i \(0.998800\pi\)
\(608\) 0 0
\(609\) 19.1116i 0.774443i
\(610\) 0 0
\(611\) 46.6274 1.88634
\(612\) 0 0
\(613\) −29.3137 −1.18397 −0.591985 0.805949i \(-0.701655\pi\)
−0.591985 + 0.805949i \(0.701655\pi\)
\(614\) 0 0
\(615\) 29.5641i 1.19214i
\(616\) 0 0
\(617\) 2.53620i 0.102104i 0.998696 + 0.0510518i \(0.0162574\pi\)
−0.998696 + 0.0510518i \(0.983743\pi\)
\(618\) 0 0
\(619\) 15.2304i 0.612162i −0.952005 0.306081i \(-0.900982\pi\)
0.952005 0.306081i \(-0.0990178\pi\)
\(620\) 0 0
\(621\) −2.34315 −0.0940272
\(622\) 0 0
\(623\) 7.01962i 0.281235i
\(624\) 0 0
\(625\) 6.65685 0.266274
\(626\) 0 0
\(627\) 38.6274 1.54263
\(628\) 0 0
\(629\) 5.65685 14.1480i 0.225554 0.564119i
\(630\) 0 0
\(631\) 14.3431 0.570992 0.285496 0.958380i \(-0.407842\pi\)
0.285496 + 0.958380i \(0.407842\pi\)
\(632\) 0 0
\(633\) 39.7990 1.58187
\(634\) 0 0
\(635\) 59.1283i 2.34643i
\(636\) 0 0
\(637\) 28.1421 1.11503
\(638\) 0 0
\(639\) 40.7276i 1.61116i
\(640\) 0 0
\(641\) 25.7598i 1.01745i 0.860928 + 0.508726i \(0.169883\pi\)
−0.860928 + 0.508726i \(0.830117\pi\)
\(642\) 0 0
\(643\) 20.8281i 0.821379i −0.911775 0.410690i \(-0.865288\pi\)
0.911775 0.410690i \(-0.134712\pi\)
\(644\) 0 0
\(645\) 93.2548 3.67191
\(646\) 0 0
\(647\) −4.97056 −0.195413 −0.0977065 0.995215i \(-0.531151\pi\)
−0.0977065 + 0.995215i \(0.531151\pi\)
\(648\) 0 0
\(649\) 4.32957i 0.169950i
\(650\) 0 0
\(651\) 23.9665i 0.939320i
\(652\) 0 0
\(653\) 27.1367i 1.06194i −0.847390 0.530971i \(-0.821827\pi\)
0.847390 0.530971i \(-0.178173\pi\)
\(654\) 0 0
\(655\) 24.2843 0.948865
\(656\) 0 0
\(657\) 40.0166i 1.56120i
\(658\) 0 0
\(659\) −28.9706 −1.12853 −0.564266 0.825593i \(-0.690841\pi\)
−0.564266 + 0.825593i \(0.690841\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) −19.3137 + 48.3044i −0.750082 + 1.87599i
\(664\) 0 0
\(665\) −22.6274 −0.877454
\(666\) 0 0
\(667\) −7.31371 −0.283188
\(668\) 0 0
\(669\) 12.9887i 0.502172i
\(670\) 0 0
\(671\) −20.9706 −0.809560
\(672\) 0 0
\(673\) 9.18440i 0.354033i −0.984208 0.177016i \(-0.943355\pi\)
0.984208 0.177016i \(-0.0566445\pi\)
\(674\) 0 0
\(675\) 18.7402i 0.721312i
\(676\) 0 0
\(677\) 36.8464i 1.41612i −0.706151 0.708061i \(-0.749570\pi\)
0.706151 0.708061i \(-0.250430\pi\)
\(678\) 0 0
\(679\) −14.6274 −0.561349
\(680\) 0 0
\(681\) −26.1421 −1.00177
\(682\) 0 0
\(683\) 42.6298i 1.63118i 0.578628 + 0.815591i \(0.303588\pi\)
−0.578628 + 0.815591i \(0.696412\pi\)
\(684\) 0 0
\(685\) 32.6256i 1.24656i
\(686\) 0 0
\(687\) 46.5110i 1.77451i
\(688\) 0 0
\(689\) −9.65685 −0.367897
\(690\) 0 0
\(691\) 5.30318i 0.201742i −0.994899 0.100871i \(-0.967837\pi\)
0.994899 0.100871i \(-0.0321630\pi\)
\(692\) 0 0
\(693\) −10.8284 −0.411338
\(694\) 0 0
\(695\) −9.65685 −0.366305
\(696\) 0 0
\(697\) −4.68629 + 11.7206i −0.177506 + 0.443950i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.8579 −0.598943 −0.299472 0.954105i \(-0.596810\pi\)
−0.299472 + 0.954105i \(0.596810\pi\)
\(702\) 0 0
\(703\) 20.9050i 0.788447i
\(704\) 0 0
\(705\) −93.2548 −3.51218
\(706\) 0 0
\(707\) 13.8854i 0.522214i
\(708\) 0 0
\(709\) 39.3826i 1.47904i 0.673132 + 0.739522i \(0.264949\pi\)
−0.673132 + 0.739522i \(0.735051\pi\)
\(710\) 0 0
\(711\) 12.4316i 0.466221i
\(712\) 0 0
\(713\) −9.17157 −0.343478
\(714\) 0 0
\(715\) −46.6274 −1.74377
\(716\) 0 0
\(717\) 37.4804i 1.39973i
\(718\) 0 0
\(719\) 27.2137i 1.01490i 0.861682 + 0.507449i \(0.169411\pi\)
−0.861682 + 0.507449i \(0.830589\pi\)
\(720\) 0 0
\(721\) 8.65914i 0.322483i
\(722\) 0 0
\(723\) −41.9411 −1.55981
\(724\) 0 0
\(725\) 58.4942i 2.17242i
\(726\) 0 0
\(727\) 36.9706 1.37116 0.685581 0.727996i \(-0.259548\pi\)
0.685581 + 0.727996i \(0.259548\pi\)
\(728\) 0 0
\(729\) 39.2843 1.45497
\(730\) 0 0
\(731\) −36.9706 14.7821i −1.36741 0.546735i
\(732\) 0 0
\(733\) 23.9411 0.884286 0.442143 0.896945i \(-0.354218\pi\)
0.442143 + 0.896945i \(0.354218\pi\)
\(734\) 0 0
\(735\) −56.2843 −2.07608
\(736\) 0 0
\(737\) 35.6871i 1.31455i
\(738\) 0 0
\(739\) −29.6569 −1.09095 −0.545473 0.838129i \(-0.683650\pi\)
−0.545473 + 0.838129i \(0.683650\pi\)
\(740\) 0 0
\(741\) 71.3742i 2.62200i
\(742\) 0 0
\(743\) 22.8841i 0.839536i 0.907632 + 0.419768i \(0.137888\pi\)
−0.907632 + 0.419768i \(0.862112\pi\)
\(744\) 0 0
\(745\) 49.2011i 1.80259i
\(746\) 0 0
\(747\) −6.34315 −0.232084
\(748\) 0 0
\(749\) 4.20101 0.153502
\(750\) 0 0
\(751\) 6.30864i 0.230206i 0.993354 + 0.115103i \(0.0367198\pi\)
−0.993354 + 0.115103i \(0.963280\pi\)
\(752\) 0 0
\(753\) 14.7821i 0.538689i
\(754\) 0 0
\(755\) 12.2459i 0.445673i
\(756\) 0 0
\(757\) −48.4264 −1.76009 −0.880044 0.474892i \(-0.842487\pi\)
−0.880044 + 0.474892i \(0.842487\pi\)
\(758\) 0 0
\(759\) 7.39104i 0.268278i
\(760\) 0 0
\(761\) −2.20101 −0.0797866 −0.0398933 0.999204i \(-0.512702\pi\)
−0.0398933 + 0.999204i \(0.512702\pi\)
\(762\) 0 0
\(763\) 7.31371 0.264774
\(764\) 0 0
\(765\) 21.6569 54.1647i 0.783005 1.95833i
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) 3.85786 0.139118 0.0695591 0.997578i \(-0.477841\pi\)
0.0695591 + 0.997578i \(0.477841\pi\)
\(770\) 0 0
\(771\) 48.3044i 1.73964i
\(772\) 0 0
\(773\) 20.8284 0.749146 0.374573 0.927197i \(-0.377789\pi\)
0.374573 + 0.927197i \(0.377789\pi\)
\(774\) 0 0
\(775\) 73.3532i 2.63493i
\(776\) 0 0
\(777\) 10.4525i 0.374981i
\(778\) 0 0
\(779\) 17.3183i 0.620492i
\(780\) 0 0
\(781\) −27.7990 −0.994726
\(782\) 0 0
\(783\) −14.6274 −0.522741
\(784\) 0 0
\(785\) 36.9552i 1.31899i
\(786\) 0 0
\(787\) 19.1886i 0.683998i 0.939700 + 0.341999i \(0.111104\pi\)
−0.939700 + 0.341999i \(0.888896\pi\)
\(788\) 0 0
\(789\) 41.8100i 1.48848i
\(790\) 0 0
\(791\) 4.68629 0.166625
\(792\) 0 0
\(793\) 38.7485i 1.37600i
\(794\) 0 0
\(795\) 19.3137 0.684987
\(796\) 0 0
\(797\) −21.3137 −0.754970 −0.377485 0.926016i \(-0.623211\pi\)
−0.377485 + 0.926016i \(0.623211\pi\)
\(798\) 0 0
\(799\) 36.9706 + 14.7821i 1.30792 + 0.522952i
\(800\) 0 0
\(801\) 24.8284 0.877269
\(802\) 0 0
\(803\) −27.3137 −0.963880
\(804\) 0 0
\(805\) 4.32957i 0.152597i
\(806\) 0 0
\(807\) 1.65685 0.0583240
\(808\) 0 0
\(809\) 45.6143i 1.60371i 0.597516 + 0.801857i \(0.296154\pi\)
−0.597516 + 0.801857i \(0.703846\pi\)
\(810\) 0 0
\(811\) 2.98454i 0.104802i −0.998626 0.0524008i \(-0.983313\pi\)
0.998626 0.0524008i \(-0.0166873\pi\)
\(812\) 0 0
\(813\) 37.4804i 1.31450i
\(814\) 0 0
\(815\) −59.5980 −2.08763
\(816\) 0 0
\(817\) 54.6274 1.91117
\(818\) 0 0
\(819\) 20.0083i 0.699147i
\(820\) 0 0
\(821\) 30.7235i 1.07226i −0.844137 0.536128i \(-0.819886\pi\)
0.844137 0.536128i \(-0.180114\pi\)
\(822\) 0 0
\(823\) 45.4286i 1.58354i −0.610818 0.791771i \(-0.709159\pi\)
0.610818 0.791771i \(-0.290841\pi\)
\(824\) 0 0
\(825\) 59.1127 2.05804
\(826\) 0 0
\(827\) 28.2191i 0.981275i −0.871364 0.490637i \(-0.836764\pi\)
0.871364 0.490637i \(-0.163236\pi\)
\(828\) 0 0
\(829\) 26.6863 0.926853 0.463427 0.886135i \(-0.346620\pi\)
0.463427 + 0.886135i \(0.346620\pi\)
\(830\) 0 0
\(831\) 24.2843 0.842412
\(832\) 0 0
\(833\) 22.3137 + 8.92177i 0.773124 + 0.309121i
\(834\) 0 0
\(835\) 81.2548 2.81194
\(836\) 0 0
\(837\) −18.3431 −0.634032
\(838\) 0 0
\(839\) 25.9456i 0.895740i 0.894099 + 0.447870i \(0.147817\pi\)
−0.894099 + 0.447870i \(0.852183\pi\)
\(840\) 0 0
\(841\) −16.6569 −0.574374
\(842\) 0 0
\(843\) 39.1200i 1.34736i
\(844\) 0 0
\(845\) 38.1145i 1.31118i
\(846\) 0 0
\(847\) 4.51528i 0.155147i
\(848\) 0 0
\(849\) −77.4558 −2.65828
\(850\) 0 0
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) 3.69552i 0.126532i 0.997997 + 0.0632661i \(0.0201517\pi\)
−0.997997 + 0.0632661i \(0.979848\pi\)
\(854\) 0 0
\(855\) 80.0333i 2.73708i
\(856\) 0 0
\(857\) 36.9552i 1.26236i 0.775634 + 0.631182i \(0.217430\pi\)
−0.775634 + 0.631182i \(0.782570\pi\)
\(858\) 0 0
\(859\) 24.2843 0.828569 0.414284 0.910148i \(-0.364032\pi\)
0.414284 + 0.910148i \(0.364032\pi\)
\(860\) 0 0
\(861\) 8.65914i 0.295103i
\(862\) 0 0
\(863\) −53.2548 −1.81282 −0.906408 0.422404i \(-0.861186\pi\)
−0.906408 + 0.422404i \(0.861186\pi\)
\(864\) 0 0
\(865\) 40.9706 1.39304
\(866\) 0 0
\(867\) −30.6274 + 32.1773i −1.04016 + 1.09280i
\(868\) 0 0
\(869\) −8.48528 −0.287843
\(870\) 0 0
\(871\) 65.9411 2.23433
\(872\) 0 0
\(873\) 51.7373i 1.75104i
\(874\) 0 0
\(875\) −14.6274 −0.494497
\(876\) 0 0
\(877\) 48.5670i 1.63999i 0.572370 + 0.819996i \(0.306024\pi\)
−0.572370 + 0.819996i \(0.693976\pi\)
\(878\) 0 0
\(879\) 47.0363i 1.58649i
\(880\) 0 0
\(881\) 10.4525i 0.352154i −0.984376 0.176077i \(-0.943659\pi\)
0.984376 0.176077i \(-0.0563407\pi\)
\(882\) 0 0
\(883\) −28.2843 −0.951842 −0.475921 0.879488i \(-0.657885\pi\)
−0.475921 + 0.879488i \(0.657885\pi\)
\(884\) 0 0
\(885\) −16.0000 −0.537834
\(886\) 0 0
\(887\) 7.57675i 0.254402i 0.991877 + 0.127201i \(0.0405994\pi\)
−0.991877 + 0.127201i \(0.959401\pi\)
\(888\) 0 0
\(889\) 17.3183i 0.580836i
\(890\) 0 0
\(891\) 15.2304i 0.510238i
\(892\) 0 0
\(893\) −54.6274 −1.82804
\(894\) 0 0
\(895\) 92.2792i 3.08455i
\(896\) 0 0
\(897\) 13.6569 0.455989
\(898\) 0 0
\(899\) −57.2548 −1.90956
\(900\) 0 0
\(901\) −7.65685 3.06147i −0.255087 0.101992i
\(902\) 0 0
\(903\) −27.3137 −0.908943
\(904\) 0 0
\(905\) 56.9706 1.89377
\(906\) 0 0
\(907\) 45.3198i 1.50482i −0.658695 0.752410i \(-0.728891\pi\)
0.658695 0.752410i \(-0.271109\pi\)
\(908\) 0 0
\(909\) −49.1127 −1.62897
\(910\) 0 0
\(911\) 43.6352i 1.44570i −0.691005 0.722850i \(-0.742832\pi\)
0.691005 0.722850i \(-0.257168\pi\)
\(912\) 0 0
\(913\) 4.32957i 0.143288i
\(914\) 0 0
\(915\) 77.4971i 2.56197i
\(916\) 0 0
\(917\) −7.11270 −0.234882
\(918\) 0 0
\(919\) −33.6569 −1.11024 −0.555119 0.831771i \(-0.687327\pi\)
−0.555119 + 0.831771i \(0.687327\pi\)
\(920\) 0 0
\(921\) 33.8937i 1.11684i
\(922\) 0 0
\(923\) 51.3658i 1.69073i
\(924\) 0 0
\(925\) 31.9916i 1.05188i
\(926\) 0 0
\(927\) −30.6274 −1.00594
\(928\) 0 0
\(929\) 34.4190i 1.12925i 0.825348 + 0.564625i \(0.190979\pi\)
−0.825348 + 0.564625i \(0.809021\pi\)
\(930\) 0 0
\(931\) −32.9706 −1.08057
\(932\) 0 0
\(933\) 2.82843 0.0925985
\(934\) 0 0
\(935\) −36.9706 14.7821i −1.20907 0.483425i
\(936\) 0 0
\(937\) 42.9706 1.40379 0.701894 0.712282i \(-0.252338\pi\)
0.701894 + 0.712282i \(0.252338\pi\)
\(938\) 0 0
\(939\) 19.3137 0.630279
\(940\) 0 0
\(941\) 34.5278i 1.12557i −0.826602 0.562786i \(-0.809729\pi\)
0.826602 0.562786i \(-0.190271\pi\)
\(942\) 0 0
\(943\) 3.31371 0.107909
\(944\) 0 0
\(945\) 8.65914i 0.281682i
\(946\) 0 0
\(947\) 36.5068i 1.18631i 0.805087 + 0.593156i \(0.202118\pi\)
−0.805087 + 0.593156i \(0.797882\pi\)
\(948\) 0 0
\(949\) 50.4692i 1.63830i
\(950\) 0 0
\(951\) 17.6569 0.572563
\(952\) 0 0
\(953\) 42.0833 1.36321 0.681605 0.731720i \(-0.261282\pi\)
0.681605 + 0.731720i \(0.261282\pi\)
\(954\) 0 0
\(955\) 47.9329i 1.55107i
\(956\) 0 0
\(957\) 46.1396i 1.49148i
\(958\) 0 0
\(959\) 9.55582i 0.308574i
\(960\) 0 0
\(961\) −40.7990 −1.31610
\(962\) 0 0
\(963\) 14.8590i 0.478824i
\(964\) 0 0
\(965\) 88.5685 2.85112
\(966\) 0 0
\(967\) 28.9706 0.931630 0.465815 0.884882i \(-0.345761\pi\)
0.465815 + 0.884882i \(0.345761\pi\)
\(968\) 0 0
\(969\) 22.6274 56.5921i 0.726897 1.81800i
\(970\) 0 0
\(971\) −14.3431 −0.460293 −0.230147 0.973156i \(-0.573921\pi\)
−0.230147 + 0.973156i \(0.573921\pi\)
\(972\) 0 0
\(973\) 2.82843 0.0906752
\(974\) 0 0
\(975\) 109.226i 3.49803i
\(976\) 0 0
\(977\) 5.31371 0.170001 0.0850003 0.996381i \(-0.472911\pi\)
0.0850003 + 0.996381i \(0.472911\pi\)
\(978\) 0 0
\(979\) 16.9469i 0.541624i
\(980\) 0 0
\(981\) 25.8686i 0.825922i
\(982\) 0 0
\(983\) 42.3671i 1.35130i −0.737222 0.675651i \(-0.763863\pi\)
0.737222 0.675651i \(-0.236137\pi\)
\(984\) 0 0
\(985\) 2.34315 0.0746588
\(986\) 0 0
\(987\) 27.3137 0.869405
\(988\) 0 0
\(989\) 10.4525i 0.332370i
\(990\) 0 0
\(991\) 47.7472i 1.51674i −0.651824 0.758371i \(-0.725996\pi\)
0.651824 0.758371i \(-0.274004\pi\)
\(992\) 0 0
\(993\) 12.9887i 0.412184i
\(994\) 0 0
\(995\) −18.6274 −0.590529
\(996\) 0 0
\(997\) 15.4161i 0.488234i −0.969746 0.244117i \(-0.921502\pi\)
0.969746 0.244117i \(-0.0784980\pi\)
\(998\) 0 0
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.b.d.33.4 yes 4
3.2 odd 2 4896.2.c.l.577.1 4
4.3 odd 2 544.2.b.e.33.1 yes 4
8.3 odd 2 1088.2.b.m.577.4 4
8.5 even 2 1088.2.b.l.577.1 4
12.11 even 2 4896.2.c.m.577.1 4
17.4 even 4 9248.2.a.be.1.4 4
17.13 even 4 9248.2.a.be.1.1 4
17.16 even 2 inner 544.2.b.d.33.1 4
51.50 odd 2 4896.2.c.l.577.4 4
68.47 odd 4 9248.2.a.bd.1.4 4
68.55 odd 4 9248.2.a.bd.1.1 4
68.67 odd 2 544.2.b.e.33.4 yes 4
136.67 odd 2 1088.2.b.m.577.1 4
136.101 even 2 1088.2.b.l.577.4 4
204.203 even 2 4896.2.c.m.577.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.b.d.33.1 4 17.16 even 2 inner
544.2.b.d.33.4 yes 4 1.1 even 1 trivial
544.2.b.e.33.1 yes 4 4.3 odd 2
544.2.b.e.33.4 yes 4 68.67 odd 2
1088.2.b.l.577.1 4 8.5 even 2
1088.2.b.l.577.4 4 136.101 even 2
1088.2.b.m.577.1 4 136.67 odd 2
1088.2.b.m.577.4 4 8.3 odd 2
4896.2.c.l.577.1 4 3.2 odd 2
4896.2.c.l.577.4 4 51.50 odd 2
4896.2.c.m.577.1 4 12.11 even 2
4896.2.c.m.577.4 4 204.203 even 2
9248.2.a.bd.1.1 4 68.55 odd 4
9248.2.a.bd.1.4 4 68.47 odd 4
9248.2.a.be.1.1 4 17.13 even 4
9248.2.a.be.1.4 4 17.4 even 4