Properties

Label 544.2.b.a
Level $544$
Weight $2$
Character orbit 544.b
Analytic conductor $4.344$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(33,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.33"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,6,0,0,0,-12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + 3 q^{9} - 6 q^{13} + (\beta + 1) q^{17} - 11 q^{25} + \beta q^{29} + 3 \beta q^{37} - 2 \beta q^{41} + 3 \beta q^{45} + 7 q^{49} + 14 q^{53} - 3 \beta q^{61} - 6 \beta q^{65} + 4 \beta q^{73} + \cdots - 2 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{9} - 12 q^{13} + 2 q^{17} - 22 q^{25} + 14 q^{49} + 28 q^{53} + 18 q^{81} - 32 q^{85} - 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
33.1
1.00000i
1.00000i
0 0 0 4.00000i 0 0 0 3.00000 0
33.2 0 0 0 4.00000i 0 0 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
17.b even 2 1 inner
68.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 544.2.b.a 2
3.b odd 2 1 4896.2.c.a 2
4.b odd 2 1 CM 544.2.b.a 2
8.b even 2 1 1088.2.b.i 2
8.d odd 2 1 1088.2.b.i 2
12.b even 2 1 4896.2.c.a 2
17.b even 2 1 inner 544.2.b.a 2
17.c even 4 1 9248.2.a.c 1
17.c even 4 1 9248.2.a.g 1
51.c odd 2 1 4896.2.c.a 2
68.d odd 2 1 inner 544.2.b.a 2
68.f odd 4 1 9248.2.a.c 1
68.f odd 4 1 9248.2.a.g 1
136.e odd 2 1 1088.2.b.i 2
136.h even 2 1 1088.2.b.i 2
204.h even 2 1 4896.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
544.2.b.a 2 1.a even 1 1 trivial
544.2.b.a 2 4.b odd 2 1 CM
544.2.b.a 2 17.b even 2 1 inner
544.2.b.a 2 68.d odd 2 1 inner
1088.2.b.i 2 8.b even 2 1
1088.2.b.i 2 8.d odd 2 1
1088.2.b.i 2 136.e odd 2 1
1088.2.b.i 2 136.h even 2 1
4896.2.c.a 2 3.b odd 2 1
4896.2.c.a 2 12.b even 2 1
4896.2.c.a 2 51.c odd 2 1
4896.2.c.a 2 204.h even 2 1
9248.2.a.c 1 17.c even 4 1
9248.2.a.c 1 68.f odd 4 1
9248.2.a.g 1 17.c even 4 1
9248.2.a.g 1 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(544, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{43} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 16 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T + 6)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 17 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 16 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 144 \) Copy content Toggle raw display
$41$ \( T^{2} + 64 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T - 14)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 144 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 256 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 64 \) Copy content Toggle raw display
show more
show less