Properties

Label 543.4.a.c.1.15
Level $543$
Weight $4$
Character 543.1
Self dual yes
Analytic conductor $32.038$
Analytic rank $0$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [543,4,Mod(1,543)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("543.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(543, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 543 = 3 \cdot 181 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 543.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.0380371331\)
Analytic rank: \(0\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 543.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.91929 q^{2} -3.00000 q^{3} -4.31632 q^{4} -17.8997 q^{5} -5.75788 q^{6} -9.33325 q^{7} -23.6386 q^{8} +9.00000 q^{9} -34.3548 q^{10} -56.1277 q^{11} +12.9490 q^{12} -52.8683 q^{13} -17.9132 q^{14} +53.6991 q^{15} -10.8389 q^{16} -45.4222 q^{17} +17.2736 q^{18} -26.3643 q^{19} +77.2608 q^{20} +27.9998 q^{21} -107.725 q^{22} +173.853 q^{23} +70.9158 q^{24} +195.399 q^{25} -101.470 q^{26} -27.0000 q^{27} +40.2853 q^{28} -133.466 q^{29} +103.064 q^{30} -187.129 q^{31} +168.306 q^{32} +168.383 q^{33} -87.1784 q^{34} +167.062 q^{35} -38.8469 q^{36} -114.278 q^{37} -50.6008 q^{38} +158.605 q^{39} +423.124 q^{40} -49.4326 q^{41} +53.7397 q^{42} -379.975 q^{43} +242.265 q^{44} -161.097 q^{45} +333.674 q^{46} +366.733 q^{47} +32.5166 q^{48} -255.890 q^{49} +375.028 q^{50} +136.266 q^{51} +228.196 q^{52} -313.361 q^{53} -51.8209 q^{54} +1004.67 q^{55} +220.625 q^{56} +79.0930 q^{57} -256.160 q^{58} +185.879 q^{59} -231.782 q^{60} +314.519 q^{61} -359.154 q^{62} -83.9993 q^{63} +409.739 q^{64} +946.326 q^{65} +323.176 q^{66} -830.782 q^{67} +196.056 q^{68} -521.558 q^{69} +320.642 q^{70} +657.110 q^{71} -212.748 q^{72} +552.051 q^{73} -219.333 q^{74} -586.198 q^{75} +113.797 q^{76} +523.853 q^{77} +304.409 q^{78} -124.685 q^{79} +194.013 q^{80} +81.0000 q^{81} -94.8756 q^{82} -973.588 q^{83} -120.856 q^{84} +813.043 q^{85} -729.284 q^{86} +400.398 q^{87} +1326.78 q^{88} +291.060 q^{89} -309.193 q^{90} +493.433 q^{91} -750.403 q^{92} +561.386 q^{93} +703.868 q^{94} +471.913 q^{95} -504.918 q^{96} -862.897 q^{97} -491.129 q^{98} -505.149 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 7 q^{2} - 69 q^{3} + 79 q^{4} + 29 q^{5} - 21 q^{6} - 6 q^{7} + 84 q^{8} + 207 q^{9} + 41 q^{10} + 45 q^{11} - 237 q^{12} + 166 q^{13} - 23 q^{14} - 87 q^{15} + 195 q^{16} + 369 q^{17} + 63 q^{18}+ \cdots + 405 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91929 0.678572 0.339286 0.940683i \(-0.389815\pi\)
0.339286 + 0.940683i \(0.389815\pi\)
\(3\) −3.00000 −0.577350
\(4\) −4.31632 −0.539540
\(5\) −17.8997 −1.60100 −0.800499 0.599334i \(-0.795432\pi\)
−0.800499 + 0.599334i \(0.795432\pi\)
\(6\) −5.75788 −0.391774
\(7\) −9.33325 −0.503948 −0.251974 0.967734i \(-0.581080\pi\)
−0.251974 + 0.967734i \(0.581080\pi\)
\(8\) −23.6386 −1.04469
\(9\) 9.00000 0.333333
\(10\) −34.3548 −1.08639
\(11\) −56.1277 −1.53847 −0.769233 0.638968i \(-0.779361\pi\)
−0.769233 + 0.638968i \(0.779361\pi\)
\(12\) 12.9490 0.311503
\(13\) −52.8683 −1.12792 −0.563962 0.825800i \(-0.690724\pi\)
−0.563962 + 0.825800i \(0.690724\pi\)
\(14\) −17.9132 −0.341965
\(15\) 53.6991 0.924336
\(16\) −10.8389 −0.169357
\(17\) −45.4222 −0.648029 −0.324015 0.946052i \(-0.605033\pi\)
−0.324015 + 0.946052i \(0.605033\pi\)
\(18\) 17.2736 0.226191
\(19\) −26.3643 −0.318336 −0.159168 0.987251i \(-0.550881\pi\)
−0.159168 + 0.987251i \(0.550881\pi\)
\(20\) 77.2608 0.863802
\(21\) 27.9998 0.290955
\(22\) −107.725 −1.04396
\(23\) 173.853 1.57612 0.788060 0.615598i \(-0.211086\pi\)
0.788060 + 0.615598i \(0.211086\pi\)
\(24\) 70.9158 0.603151
\(25\) 195.399 1.56319
\(26\) −101.470 −0.765379
\(27\) −27.0000 −0.192450
\(28\) 40.2853 0.271900
\(29\) −133.466 −0.854621 −0.427311 0.904105i \(-0.640539\pi\)
−0.427311 + 0.904105i \(0.640539\pi\)
\(30\) 103.064 0.627229
\(31\) −187.129 −1.08417 −0.542085 0.840323i \(-0.682365\pi\)
−0.542085 + 0.840323i \(0.682365\pi\)
\(32\) 168.306 0.929768
\(33\) 168.383 0.888234
\(34\) −87.1784 −0.439735
\(35\) 167.062 0.806820
\(36\) −38.8469 −0.179847
\(37\) −114.278 −0.507761 −0.253881 0.967236i \(-0.581707\pi\)
−0.253881 + 0.967236i \(0.581707\pi\)
\(38\) −50.6008 −0.216014
\(39\) 158.605 0.651208
\(40\) 423.124 1.67254
\(41\) −49.4326 −0.188294 −0.0941472 0.995558i \(-0.530012\pi\)
−0.0941472 + 0.995558i \(0.530012\pi\)
\(42\) 53.7397 0.197434
\(43\) −379.975 −1.34757 −0.673787 0.738925i \(-0.735334\pi\)
−0.673787 + 0.738925i \(0.735334\pi\)
\(44\) 242.265 0.830063
\(45\) −161.097 −0.533666
\(46\) 333.674 1.06951
\(47\) 366.733 1.13816 0.569080 0.822282i \(-0.307299\pi\)
0.569080 + 0.822282i \(0.307299\pi\)
\(48\) 32.5166 0.0977785
\(49\) −255.890 −0.746036
\(50\) 375.028 1.06074
\(51\) 136.266 0.374140
\(52\) 228.196 0.608560
\(53\) −313.361 −0.812140 −0.406070 0.913842i \(-0.633101\pi\)
−0.406070 + 0.913842i \(0.633101\pi\)
\(54\) −51.8209 −0.130591
\(55\) 1004.67 2.46308
\(56\) 220.625 0.526469
\(57\) 79.0930 0.183792
\(58\) −256.160 −0.579922
\(59\) 185.879 0.410160 0.205080 0.978745i \(-0.434255\pi\)
0.205080 + 0.978745i \(0.434255\pi\)
\(60\) −231.782 −0.498716
\(61\) 314.519 0.660164 0.330082 0.943952i \(-0.392924\pi\)
0.330082 + 0.943952i \(0.392924\pi\)
\(62\) −359.154 −0.735688
\(63\) −83.9993 −0.167983
\(64\) 409.739 0.800272
\(65\) 946.326 1.80581
\(66\) 323.176 0.602731
\(67\) −830.782 −1.51487 −0.757435 0.652911i \(-0.773548\pi\)
−0.757435 + 0.652911i \(0.773548\pi\)
\(68\) 196.056 0.349637
\(69\) −521.558 −0.909974
\(70\) 320.642 0.547486
\(71\) 657.110 1.09837 0.549187 0.835699i \(-0.314937\pi\)
0.549187 + 0.835699i \(0.314937\pi\)
\(72\) −212.748 −0.348230
\(73\) 552.051 0.885105 0.442552 0.896743i \(-0.354073\pi\)
0.442552 + 0.896743i \(0.354073\pi\)
\(74\) −219.333 −0.344553
\(75\) −586.198 −0.902510
\(76\) 113.797 0.171755
\(77\) 523.853 0.775307
\(78\) 304.409 0.441892
\(79\) −124.685 −0.177571 −0.0887855 0.996051i \(-0.528299\pi\)
−0.0887855 + 0.996051i \(0.528299\pi\)
\(80\) 194.013 0.271141
\(81\) 81.0000 0.111111
\(82\) −94.8756 −0.127771
\(83\) −973.588 −1.28753 −0.643766 0.765223i \(-0.722629\pi\)
−0.643766 + 0.765223i \(0.722629\pi\)
\(84\) −120.856 −0.156982
\(85\) 813.043 1.03749
\(86\) −729.284 −0.914427
\(87\) 400.398 0.493416
\(88\) 1326.78 1.60722
\(89\) 291.060 0.346655 0.173327 0.984864i \(-0.444548\pi\)
0.173327 + 0.984864i \(0.444548\pi\)
\(90\) −309.193 −0.362131
\(91\) 493.433 0.568416
\(92\) −750.403 −0.850379
\(93\) 561.386 0.625946
\(94\) 703.868 0.772324
\(95\) 471.913 0.509656
\(96\) −504.918 −0.536802
\(97\) −862.897 −0.903236 −0.451618 0.892211i \(-0.649153\pi\)
−0.451618 + 0.892211i \(0.649153\pi\)
\(98\) −491.129 −0.506240
\(99\) −505.149 −0.512822
\(100\) −843.405 −0.843405
\(101\) −297.950 −0.293536 −0.146768 0.989171i \(-0.546887\pi\)
−0.146768 + 0.989171i \(0.546887\pi\)
\(102\) 261.535 0.253881
\(103\) 676.140 0.646816 0.323408 0.946260i \(-0.395171\pi\)
0.323408 + 0.946260i \(0.395171\pi\)
\(104\) 1249.73 1.17833
\(105\) −501.187 −0.465818
\(106\) −601.431 −0.551096
\(107\) −1704.19 −1.53972 −0.769861 0.638212i \(-0.779674\pi\)
−0.769861 + 0.638212i \(0.779674\pi\)
\(108\) 116.541 0.103834
\(109\) −1857.97 −1.63268 −0.816338 0.577575i \(-0.803999\pi\)
−0.816338 + 0.577575i \(0.803999\pi\)
\(110\) 1928.25 1.67138
\(111\) 342.834 0.293156
\(112\) 101.162 0.0853473
\(113\) −609.016 −0.507003 −0.253502 0.967335i \(-0.581582\pi\)
−0.253502 + 0.967335i \(0.581582\pi\)
\(114\) 151.803 0.124716
\(115\) −3111.91 −2.52337
\(116\) 576.082 0.461102
\(117\) −475.815 −0.375975
\(118\) 356.757 0.278323
\(119\) 423.936 0.326573
\(120\) −1269.37 −0.965644
\(121\) 1819.31 1.36688
\(122\) 603.653 0.447969
\(123\) 148.298 0.108712
\(124\) 807.706 0.584953
\(125\) −1260.12 −0.901671
\(126\) −161.219 −0.113988
\(127\) −475.597 −0.332302 −0.166151 0.986100i \(-0.553134\pi\)
−0.166151 + 0.986100i \(0.553134\pi\)
\(128\) −560.038 −0.386725
\(129\) 1139.93 0.778022
\(130\) 1816.28 1.22537
\(131\) 2459.31 1.64023 0.820117 0.572195i \(-0.193908\pi\)
0.820117 + 0.572195i \(0.193908\pi\)
\(132\) −726.794 −0.479237
\(133\) 246.065 0.160425
\(134\) −1594.51 −1.02795
\(135\) 483.292 0.308112
\(136\) 1073.72 0.676989
\(137\) −1367.08 −0.852539 −0.426269 0.904596i \(-0.640172\pi\)
−0.426269 + 0.904596i \(0.640172\pi\)
\(138\) −1001.02 −0.617483
\(139\) −922.129 −0.562690 −0.281345 0.959607i \(-0.590781\pi\)
−0.281345 + 0.959607i \(0.590781\pi\)
\(140\) −721.094 −0.435311
\(141\) −1100.20 −0.657117
\(142\) 1261.19 0.745326
\(143\) 2967.37 1.73527
\(144\) −97.5498 −0.0564525
\(145\) 2389.00 1.36825
\(146\) 1059.55 0.600607
\(147\) 767.671 0.430724
\(148\) 493.260 0.273957
\(149\) −1403.31 −0.771565 −0.385783 0.922590i \(-0.626069\pi\)
−0.385783 + 0.922590i \(0.626069\pi\)
\(150\) −1125.08 −0.612418
\(151\) −2957.18 −1.59372 −0.796860 0.604164i \(-0.793507\pi\)
−0.796860 + 0.604164i \(0.793507\pi\)
\(152\) 623.216 0.332562
\(153\) −408.799 −0.216010
\(154\) 1005.43 0.526102
\(155\) 3349.55 1.73575
\(156\) −684.589 −0.351352
\(157\) 736.658 0.374469 0.187235 0.982315i \(-0.440048\pi\)
0.187235 + 0.982315i \(0.440048\pi\)
\(158\) −239.306 −0.120495
\(159\) 940.082 0.468889
\(160\) −3012.63 −1.48856
\(161\) −1622.61 −0.794283
\(162\) 155.463 0.0753969
\(163\) 2207.52 1.06077 0.530387 0.847755i \(-0.322046\pi\)
0.530387 + 0.847755i \(0.322046\pi\)
\(164\) 213.367 0.101592
\(165\) −3014.00 −1.42206
\(166\) −1868.60 −0.873683
\(167\) −2640.85 −1.22368 −0.611841 0.790981i \(-0.709571\pi\)
−0.611841 + 0.790981i \(0.709571\pi\)
\(168\) −661.875 −0.303957
\(169\) 598.055 0.272214
\(170\) 1560.47 0.704014
\(171\) −237.279 −0.106112
\(172\) 1640.09 0.727070
\(173\) −2061.26 −0.905865 −0.452933 0.891545i \(-0.649622\pi\)
−0.452933 + 0.891545i \(0.649622\pi\)
\(174\) 768.481 0.334818
\(175\) −1823.71 −0.787769
\(176\) 608.360 0.260551
\(177\) −557.638 −0.236806
\(178\) 558.629 0.235230
\(179\) −466.392 −0.194747 −0.0973737 0.995248i \(-0.531044\pi\)
−0.0973737 + 0.995248i \(0.531044\pi\)
\(180\) 695.347 0.287934
\(181\) −181.000 −0.0743294
\(182\) 947.042 0.385711
\(183\) −943.556 −0.381146
\(184\) −4109.63 −1.64656
\(185\) 2045.54 0.812925
\(186\) 1077.46 0.424750
\(187\) 2549.44 0.996970
\(188\) −1582.94 −0.614083
\(189\) 251.998 0.0969849
\(190\) 905.740 0.345838
\(191\) −1137.33 −0.430860 −0.215430 0.976519i \(-0.569115\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(192\) −1229.22 −0.462037
\(193\) −330.564 −0.123288 −0.0616438 0.998098i \(-0.519634\pi\)
−0.0616438 + 0.998098i \(0.519634\pi\)
\(194\) −1656.15 −0.612911
\(195\) −2838.98 −1.04258
\(196\) 1104.50 0.402516
\(197\) 3983.77 1.44077 0.720385 0.693575i \(-0.243965\pi\)
0.720385 + 0.693575i \(0.243965\pi\)
\(198\) −969.528 −0.347987
\(199\) 126.519 0.0450688 0.0225344 0.999746i \(-0.492826\pi\)
0.0225344 + 0.999746i \(0.492826\pi\)
\(200\) −4618.97 −1.63305
\(201\) 2492.35 0.874610
\(202\) −571.853 −0.199185
\(203\) 1245.67 0.430685
\(204\) −588.169 −0.201863
\(205\) 884.828 0.301459
\(206\) 1297.71 0.438911
\(207\) 1564.67 0.525373
\(208\) 573.033 0.191022
\(209\) 1479.77 0.489750
\(210\) −961.925 −0.316091
\(211\) −1067.29 −0.348223 −0.174112 0.984726i \(-0.555705\pi\)
−0.174112 + 0.984726i \(0.555705\pi\)
\(212\) 1352.56 0.438182
\(213\) −1971.33 −0.634147
\(214\) −3270.84 −1.04481
\(215\) 6801.44 2.15746
\(216\) 638.243 0.201050
\(217\) 1746.52 0.546366
\(218\) −3566.00 −1.10789
\(219\) −1656.15 −0.511015
\(220\) −4336.47 −1.32893
\(221\) 2401.39 0.730928
\(222\) 657.998 0.198928
\(223\) −725.792 −0.217949 −0.108975 0.994045i \(-0.534757\pi\)
−0.108975 + 0.994045i \(0.534757\pi\)
\(224\) −1570.84 −0.468555
\(225\) 1758.59 0.521065
\(226\) −1168.88 −0.344038
\(227\) 2043.12 0.597385 0.298693 0.954349i \(-0.403449\pi\)
0.298693 + 0.954349i \(0.403449\pi\)
\(228\) −341.390 −0.0991628
\(229\) −1829.51 −0.527935 −0.263968 0.964532i \(-0.585031\pi\)
−0.263968 + 0.964532i \(0.585031\pi\)
\(230\) −5972.66 −1.71229
\(231\) −1571.56 −0.447624
\(232\) 3154.95 0.892813
\(233\) 2548.04 0.716428 0.358214 0.933639i \(-0.383386\pi\)
0.358214 + 0.933639i \(0.383386\pi\)
\(234\) −913.227 −0.255126
\(235\) −6564.41 −1.82219
\(236\) −802.315 −0.221298
\(237\) 374.054 0.102521
\(238\) 813.658 0.221603
\(239\) 1554.00 0.420585 0.210293 0.977638i \(-0.432558\pi\)
0.210293 + 0.977638i \(0.432558\pi\)
\(240\) −582.038 −0.156543
\(241\) −4707.35 −1.25820 −0.629102 0.777323i \(-0.716577\pi\)
−0.629102 + 0.777323i \(0.716577\pi\)
\(242\) 3491.79 0.927525
\(243\) −243.000 −0.0641500
\(244\) −1357.56 −0.356184
\(245\) 4580.36 1.19440
\(246\) 284.627 0.0737689
\(247\) 1393.84 0.359059
\(248\) 4423.46 1.13262
\(249\) 2920.76 0.743357
\(250\) −2418.55 −0.611849
\(251\) 3157.56 0.794038 0.397019 0.917810i \(-0.370045\pi\)
0.397019 + 0.917810i \(0.370045\pi\)
\(252\) 362.567 0.0906333
\(253\) −9757.94 −2.42481
\(254\) −912.809 −0.225491
\(255\) −2439.13 −0.598997
\(256\) −4352.79 −1.06269
\(257\) 7952.97 1.93032 0.965160 0.261659i \(-0.0842697\pi\)
0.965160 + 0.261659i \(0.0842697\pi\)
\(258\) 2187.85 0.527944
\(259\) 1066.58 0.255885
\(260\) −4084.64 −0.974303
\(261\) −1201.19 −0.284874
\(262\) 4720.13 1.11302
\(263\) −3955.26 −0.927344 −0.463672 0.886007i \(-0.653468\pi\)
−0.463672 + 0.886007i \(0.653468\pi\)
\(264\) −3980.34 −0.927928
\(265\) 5609.06 1.30023
\(266\) 472.270 0.108860
\(267\) −873.179 −0.200141
\(268\) 3585.92 0.817332
\(269\) 3982.59 0.902686 0.451343 0.892351i \(-0.350945\pi\)
0.451343 + 0.892351i \(0.350945\pi\)
\(270\) 927.578 0.209076
\(271\) −2930.71 −0.656931 −0.328465 0.944516i \(-0.606531\pi\)
−0.328465 + 0.944516i \(0.606531\pi\)
\(272\) 492.325 0.109748
\(273\) −1480.30 −0.328175
\(274\) −2623.83 −0.578509
\(275\) −10967.3 −2.40492
\(276\) 2251.21 0.490967
\(277\) 6179.33 1.34036 0.670180 0.742199i \(-0.266217\pi\)
0.670180 + 0.742199i \(0.266217\pi\)
\(278\) −1769.83 −0.381826
\(279\) −1684.16 −0.361390
\(280\) −3949.12 −0.842876
\(281\) 4110.88 0.872720 0.436360 0.899772i \(-0.356267\pi\)
0.436360 + 0.899772i \(0.356267\pi\)
\(282\) −2111.60 −0.445902
\(283\) −1097.57 −0.230543 −0.115271 0.993334i \(-0.536774\pi\)
−0.115271 + 0.993334i \(0.536774\pi\)
\(284\) −2836.29 −0.592616
\(285\) −1415.74 −0.294250
\(286\) 5695.26 1.17751
\(287\) 461.367 0.0948907
\(288\) 1514.75 0.309923
\(289\) −2849.83 −0.580058
\(290\) 4585.19 0.928454
\(291\) 2588.69 0.521484
\(292\) −2382.83 −0.477549
\(293\) 2388.52 0.476241 0.238121 0.971236i \(-0.423469\pi\)
0.238121 + 0.971236i \(0.423469\pi\)
\(294\) 1473.39 0.292278
\(295\) −3327.19 −0.656665
\(296\) 2701.37 0.530453
\(297\) 1515.45 0.296078
\(298\) −2693.35 −0.523563
\(299\) −9191.29 −1.77775
\(300\) 2530.21 0.486940
\(301\) 3546.41 0.679108
\(302\) −5675.69 −1.08145
\(303\) 893.849 0.169473
\(304\) 285.759 0.0539126
\(305\) −5629.79 −1.05692
\(306\) −784.606 −0.146578
\(307\) 2096.37 0.389728 0.194864 0.980830i \(-0.437574\pi\)
0.194864 + 0.980830i \(0.437574\pi\)
\(308\) −2261.12 −0.418309
\(309\) −2028.42 −0.373439
\(310\) 6428.76 1.17784
\(311\) 6079.47 1.10847 0.554237 0.832359i \(-0.313010\pi\)
0.554237 + 0.832359i \(0.313010\pi\)
\(312\) −3749.20 −0.680309
\(313\) −10614.5 −1.91683 −0.958416 0.285374i \(-0.907882\pi\)
−0.958416 + 0.285374i \(0.907882\pi\)
\(314\) 1413.86 0.254105
\(315\) 1503.56 0.268940
\(316\) 538.178 0.0958066
\(317\) −8429.82 −1.49358 −0.746791 0.665058i \(-0.768407\pi\)
−0.746791 + 0.665058i \(0.768407\pi\)
\(318\) 1804.29 0.318175
\(319\) 7491.13 1.31481
\(320\) −7334.21 −1.28123
\(321\) 5112.57 0.888959
\(322\) −3114.26 −0.538978
\(323\) 1197.52 0.206291
\(324\) −349.622 −0.0599488
\(325\) −10330.4 −1.76316
\(326\) 4236.88 0.719812
\(327\) 5573.92 0.942626
\(328\) 1168.52 0.196709
\(329\) −3422.81 −0.573574
\(330\) −5784.75 −0.964971
\(331\) 10309.5 1.71197 0.855985 0.517000i \(-0.172951\pi\)
0.855985 + 0.517000i \(0.172951\pi\)
\(332\) 4202.31 0.694674
\(333\) −1028.50 −0.169254
\(334\) −5068.56 −0.830357
\(335\) 14870.8 2.42530
\(336\) −303.486 −0.0492753
\(337\) −3675.84 −0.594172 −0.297086 0.954851i \(-0.596015\pi\)
−0.297086 + 0.954851i \(0.596015\pi\)
\(338\) 1147.84 0.184717
\(339\) 1827.05 0.292718
\(340\) −3509.35 −0.559769
\(341\) 10503.1 1.66796
\(342\) −455.408 −0.0720047
\(343\) 5589.59 0.879912
\(344\) 8982.09 1.40780
\(345\) 9335.73 1.45687
\(346\) −3956.16 −0.614695
\(347\) 4456.24 0.689405 0.344703 0.938712i \(-0.387980\pi\)
0.344703 + 0.938712i \(0.387980\pi\)
\(348\) −1728.25 −0.266217
\(349\) 1369.42 0.210038 0.105019 0.994470i \(-0.466510\pi\)
0.105019 + 0.994470i \(0.466510\pi\)
\(350\) −3500.23 −0.534558
\(351\) 1427.44 0.217069
\(352\) −9446.62 −1.43042
\(353\) 3692.28 0.556715 0.278357 0.960478i \(-0.410210\pi\)
0.278357 + 0.960478i \(0.410210\pi\)
\(354\) −1070.27 −0.160690
\(355\) −11762.1 −1.75849
\(356\) −1256.31 −0.187034
\(357\) −1271.81 −0.188547
\(358\) −895.143 −0.132150
\(359\) 9194.46 1.35171 0.675856 0.737033i \(-0.263774\pi\)
0.675856 + 0.737033i \(0.263774\pi\)
\(360\) 3808.12 0.557515
\(361\) −6163.92 −0.898662
\(362\) −347.392 −0.0504379
\(363\) −5457.94 −0.789167
\(364\) −2129.81 −0.306683
\(365\) −9881.54 −1.41705
\(366\) −1810.96 −0.258635
\(367\) 448.057 0.0637286 0.0318643 0.999492i \(-0.489856\pi\)
0.0318643 + 0.999492i \(0.489856\pi\)
\(368\) −1884.37 −0.266928
\(369\) −444.893 −0.0627648
\(370\) 3925.99 0.551628
\(371\) 2924.68 0.409276
\(372\) −2423.12 −0.337723
\(373\) 8424.64 1.16947 0.584734 0.811225i \(-0.301199\pi\)
0.584734 + 0.811225i \(0.301199\pi\)
\(374\) 4893.12 0.676517
\(375\) 3780.37 0.520580
\(376\) −8669.06 −1.18902
\(377\) 7056.12 0.963949
\(378\) 483.657 0.0658113
\(379\) −12814.9 −1.73683 −0.868413 0.495842i \(-0.834859\pi\)
−0.868413 + 0.495842i \(0.834859\pi\)
\(380\) −2036.93 −0.274979
\(381\) 1426.79 0.191855
\(382\) −2182.87 −0.292369
\(383\) −13873.8 −1.85096 −0.925480 0.378797i \(-0.876338\pi\)
−0.925480 + 0.378797i \(0.876338\pi\)
\(384\) 1680.11 0.223276
\(385\) −9376.82 −1.24126
\(386\) −634.449 −0.0836596
\(387\) −3419.78 −0.449191
\(388\) 3724.54 0.487332
\(389\) 7520.78 0.980253 0.490127 0.871651i \(-0.336951\pi\)
0.490127 + 0.871651i \(0.336951\pi\)
\(390\) −5448.83 −0.707467
\(391\) −7896.76 −1.02137
\(392\) 6048.89 0.779376
\(393\) −7377.92 −0.946990
\(394\) 7646.01 0.977666
\(395\) 2231.82 0.284291
\(396\) 2180.38 0.276688
\(397\) −6446.95 −0.815020 −0.407510 0.913201i \(-0.633603\pi\)
−0.407510 + 0.913201i \(0.633603\pi\)
\(398\) 242.827 0.0305824
\(399\) −738.194 −0.0926214
\(400\) −2117.91 −0.264738
\(401\) −13100.6 −1.63145 −0.815727 0.578437i \(-0.803663\pi\)
−0.815727 + 0.578437i \(0.803663\pi\)
\(402\) 4783.54 0.593486
\(403\) 9893.17 1.22286
\(404\) 1286.05 0.158374
\(405\) −1449.88 −0.177889
\(406\) 2390.81 0.292251
\(407\) 6414.15 0.781173
\(408\) −3221.15 −0.390860
\(409\) 13140.5 1.58864 0.794321 0.607499i \(-0.207827\pi\)
0.794321 + 0.607499i \(0.207827\pi\)
\(410\) 1698.24 0.204562
\(411\) 4101.25 0.492214
\(412\) −2918.43 −0.348983
\(413\) −1734.86 −0.206699
\(414\) 3003.07 0.356504
\(415\) 17426.9 2.06134
\(416\) −8898.05 −1.04871
\(417\) 2766.39 0.324869
\(418\) 2840.11 0.332330
\(419\) −4021.66 −0.468904 −0.234452 0.972128i \(-0.575330\pi\)
−0.234452 + 0.972128i \(0.575330\pi\)
\(420\) 2163.28 0.251327
\(421\) −2939.00 −0.340233 −0.170117 0.985424i \(-0.554414\pi\)
−0.170117 + 0.985424i \(0.554414\pi\)
\(422\) −2048.44 −0.236295
\(423\) 3300.60 0.379387
\(424\) 7407.41 0.848434
\(425\) −8875.45 −1.01299
\(426\) −3783.56 −0.430314
\(427\) −2935.48 −0.332688
\(428\) 7355.82 0.830741
\(429\) −8902.12 −1.00186
\(430\) 13054.0 1.46399
\(431\) −9679.41 −1.08177 −0.540883 0.841098i \(-0.681910\pi\)
−0.540883 + 0.841098i \(0.681910\pi\)
\(432\) 292.650 0.0325928
\(433\) −75.8532 −0.00841864 −0.00420932 0.999991i \(-0.501340\pi\)
−0.00420932 + 0.999991i \(0.501340\pi\)
\(434\) 3352.08 0.370749
\(435\) −7167.00 −0.789958
\(436\) 8019.60 0.880893
\(437\) −4583.50 −0.501736
\(438\) −3178.64 −0.346761
\(439\) −8154.32 −0.886525 −0.443263 0.896392i \(-0.646179\pi\)
−0.443263 + 0.896392i \(0.646179\pi\)
\(440\) −23749.0 −2.57315
\(441\) −2303.01 −0.248679
\(442\) 4608.97 0.495988
\(443\) 3120.41 0.334662 0.167331 0.985901i \(-0.446485\pi\)
0.167331 + 0.985901i \(0.446485\pi\)
\(444\) −1479.78 −0.158169
\(445\) −5209.88 −0.554994
\(446\) −1393.01 −0.147894
\(447\) 4209.92 0.445463
\(448\) −3824.20 −0.403296
\(449\) 17954.3 1.88712 0.943561 0.331200i \(-0.107453\pi\)
0.943561 + 0.331200i \(0.107453\pi\)
\(450\) 3375.25 0.353580
\(451\) 2774.53 0.289685
\(452\) 2628.70 0.273548
\(453\) 8871.53 0.920135
\(454\) 3921.34 0.405369
\(455\) −8832.30 −0.910032
\(456\) −1869.65 −0.192005
\(457\) 4171.14 0.426953 0.213477 0.976948i \(-0.431521\pi\)
0.213477 + 0.976948i \(0.431521\pi\)
\(458\) −3511.36 −0.358242
\(459\) 1226.40 0.124713
\(460\) 13432.0 1.36146
\(461\) −4166.77 −0.420967 −0.210483 0.977597i \(-0.567504\pi\)
−0.210483 + 0.977597i \(0.567504\pi\)
\(462\) −3016.28 −0.303745
\(463\) −14769.2 −1.48247 −0.741233 0.671248i \(-0.765758\pi\)
−0.741233 + 0.671248i \(0.765758\pi\)
\(464\) 1446.62 0.144736
\(465\) −10048.6 −1.00214
\(466\) 4890.44 0.486148
\(467\) 9126.12 0.904296 0.452148 0.891943i \(-0.350658\pi\)
0.452148 + 0.891943i \(0.350658\pi\)
\(468\) 2053.77 0.202853
\(469\) 7753.90 0.763416
\(470\) −12599.0 −1.23649
\(471\) −2209.97 −0.216200
\(472\) −4393.93 −0.428490
\(473\) 21327.1 2.07320
\(474\) 717.919 0.0695677
\(475\) −5151.57 −0.497621
\(476\) −1829.84 −0.176199
\(477\) −2820.25 −0.270713
\(478\) 2982.58 0.285398
\(479\) −1469.89 −0.140211 −0.0701054 0.997540i \(-0.522334\pi\)
−0.0701054 + 0.997540i \(0.522334\pi\)
\(480\) 9037.88 0.859418
\(481\) 6041.67 0.572717
\(482\) −9034.78 −0.853782
\(483\) 4867.83 0.458580
\(484\) −7852.73 −0.737484
\(485\) 15445.6 1.44608
\(486\) −466.388 −0.0435304
\(487\) 12909.7 1.20123 0.600613 0.799540i \(-0.294923\pi\)
0.600613 + 0.799540i \(0.294923\pi\)
\(488\) −7434.78 −0.689666
\(489\) −6622.56 −0.612439
\(490\) 8791.05 0.810488
\(491\) 18447.9 1.69560 0.847801 0.530314i \(-0.177926\pi\)
0.847801 + 0.530314i \(0.177926\pi\)
\(492\) −640.100 −0.0586544
\(493\) 6062.32 0.553819
\(494\) 2675.18 0.243648
\(495\) 9042.01 0.821027
\(496\) 2028.26 0.183612
\(497\) −6132.97 −0.553524
\(498\) 5605.80 0.504421
\(499\) −10980.3 −0.985058 −0.492529 0.870296i \(-0.663928\pi\)
−0.492529 + 0.870296i \(0.663928\pi\)
\(500\) 5439.10 0.486487
\(501\) 7922.54 0.706493
\(502\) 6060.29 0.538812
\(503\) −4028.20 −0.357075 −0.178537 0.983933i \(-0.557137\pi\)
−0.178537 + 0.983933i \(0.557137\pi\)
\(504\) 1985.63 0.175490
\(505\) 5333.21 0.469950
\(506\) −18728.3 −1.64541
\(507\) −1794.17 −0.157163
\(508\) 2052.83 0.179290
\(509\) −2731.61 −0.237871 −0.118936 0.992902i \(-0.537948\pi\)
−0.118936 + 0.992902i \(0.537948\pi\)
\(510\) −4681.40 −0.406463
\(511\) −5152.43 −0.446047
\(512\) −3873.97 −0.334389
\(513\) 711.837 0.0612639
\(514\) 15264.1 1.30986
\(515\) −12102.7 −1.03555
\(516\) −4920.28 −0.419774
\(517\) −20583.9 −1.75102
\(518\) 2047.09 0.173637
\(519\) 6183.78 0.523001
\(520\) −22369.8 −1.88650
\(521\) 16986.4 1.42838 0.714192 0.699950i \(-0.246795\pi\)
0.714192 + 0.699950i \(0.246795\pi\)
\(522\) −2305.44 −0.193307
\(523\) 21093.9 1.76362 0.881810 0.471605i \(-0.156325\pi\)
0.881810 + 0.471605i \(0.156325\pi\)
\(524\) −10615.2 −0.884972
\(525\) 5471.13 0.454818
\(526\) −7591.29 −0.629270
\(527\) 8499.79 0.702574
\(528\) −1825.08 −0.150429
\(529\) 18057.7 1.48416
\(530\) 10765.4 0.882303
\(531\) 1672.91 0.136720
\(532\) −1062.09 −0.0865557
\(533\) 2613.42 0.212382
\(534\) −1675.89 −0.135810
\(535\) 30504.5 2.46509
\(536\) 19638.5 1.58257
\(537\) 1399.18 0.112437
\(538\) 7643.75 0.612538
\(539\) 14362.5 1.14775
\(540\) −2086.04 −0.166239
\(541\) −10959.2 −0.870928 −0.435464 0.900206i \(-0.643416\pi\)
−0.435464 + 0.900206i \(0.643416\pi\)
\(542\) −5624.90 −0.445775
\(543\) 543.000 0.0429141
\(544\) −7644.82 −0.602516
\(545\) 33257.2 2.61391
\(546\) −2841.13 −0.222690
\(547\) 23945.6 1.87174 0.935870 0.352346i \(-0.114616\pi\)
0.935870 + 0.352346i \(0.114616\pi\)
\(548\) 5900.77 0.459979
\(549\) 2830.67 0.220055
\(550\) −21049.5 −1.63191
\(551\) 3518.74 0.272057
\(552\) 12328.9 0.950639
\(553\) 1163.71 0.0894866
\(554\) 11859.9 0.909531
\(555\) −6136.62 −0.469342
\(556\) 3980.20 0.303594
\(557\) 11376.7 0.865437 0.432718 0.901529i \(-0.357554\pi\)
0.432718 + 0.901529i \(0.357554\pi\)
\(558\) −3232.39 −0.245229
\(559\) 20088.6 1.51996
\(560\) −1810.77 −0.136641
\(561\) −7648.32 −0.575601
\(562\) 7889.97 0.592204
\(563\) −19299.8 −1.44474 −0.722370 0.691507i \(-0.756947\pi\)
−0.722370 + 0.691507i \(0.756947\pi\)
\(564\) 4748.81 0.354541
\(565\) 10901.2 0.811711
\(566\) −2106.55 −0.156440
\(567\) −755.993 −0.0559942
\(568\) −15533.2 −1.14746
\(569\) 10855.8 0.799820 0.399910 0.916554i \(-0.369041\pi\)
0.399910 + 0.916554i \(0.369041\pi\)
\(570\) −2717.22 −0.199670
\(571\) −12876.9 −0.943748 −0.471874 0.881666i \(-0.656422\pi\)
−0.471874 + 0.881666i \(0.656422\pi\)
\(572\) −12808.1 −0.936249
\(573\) 3411.98 0.248757
\(574\) 885.498 0.0643902
\(575\) 33970.7 2.46378
\(576\) 3687.65 0.266757
\(577\) 16662.5 1.20220 0.601100 0.799174i \(-0.294729\pi\)
0.601100 + 0.799174i \(0.294729\pi\)
\(578\) −5469.65 −0.393612
\(579\) 991.692 0.0711801
\(580\) −10311.7 −0.738223
\(581\) 9086.74 0.648849
\(582\) 4968.46 0.353864
\(583\) 17588.2 1.24945
\(584\) −13049.7 −0.924659
\(585\) 8516.94 0.601935
\(586\) 4584.27 0.323164
\(587\) −9224.90 −0.648641 −0.324320 0.945947i \(-0.605136\pi\)
−0.324320 + 0.945947i \(0.605136\pi\)
\(588\) −3313.51 −0.232393
\(589\) 4933.52 0.345131
\(590\) −6385.84 −0.445595
\(591\) −11951.3 −0.831829
\(592\) 1238.64 0.0859931
\(593\) −4407.67 −0.305230 −0.152615 0.988286i \(-0.548769\pi\)
−0.152615 + 0.988286i \(0.548769\pi\)
\(594\) 2908.59 0.200910
\(595\) −7588.34 −0.522843
\(596\) 6057.11 0.416290
\(597\) −379.557 −0.0260205
\(598\) −17640.8 −1.20633
\(599\) −25472.0 −1.73749 −0.868745 0.495259i \(-0.835073\pi\)
−0.868745 + 0.495259i \(0.835073\pi\)
\(600\) 13856.9 0.942842
\(601\) 4524.23 0.307067 0.153533 0.988143i \(-0.450935\pi\)
0.153533 + 0.988143i \(0.450935\pi\)
\(602\) 6806.59 0.460824
\(603\) −7477.04 −0.504956
\(604\) 12764.1 0.859875
\(605\) −32565.2 −2.18837
\(606\) 1715.56 0.115000
\(607\) −7020.38 −0.469437 −0.234719 0.972063i \(-0.575417\pi\)
−0.234719 + 0.972063i \(0.575417\pi\)
\(608\) −4437.27 −0.295979
\(609\) −3737.02 −0.248656
\(610\) −10805.2 −0.717197
\(611\) −19388.6 −1.28376
\(612\) 1764.51 0.116546
\(613\) −2803.90 −0.184745 −0.0923723 0.995725i \(-0.529445\pi\)
−0.0923723 + 0.995725i \(0.529445\pi\)
\(614\) 4023.55 0.264458
\(615\) −2654.49 −0.174047
\(616\) −12383.2 −0.809955
\(617\) −8131.95 −0.530599 −0.265300 0.964166i \(-0.585471\pi\)
−0.265300 + 0.964166i \(0.585471\pi\)
\(618\) −3893.13 −0.253405
\(619\) −21886.2 −1.42113 −0.710567 0.703630i \(-0.751561\pi\)
−0.710567 + 0.703630i \(0.751561\pi\)
\(620\) −14457.7 −0.936508
\(621\) −4694.02 −0.303325
\(622\) 11668.3 0.752179
\(623\) −2716.53 −0.174696
\(624\) −1719.10 −0.110287
\(625\) −1869.06 −0.119620
\(626\) −20372.4 −1.30071
\(627\) −4439.30 −0.282757
\(628\) −3179.65 −0.202041
\(629\) 5190.75 0.329044
\(630\) 2885.77 0.182495
\(631\) 4452.70 0.280918 0.140459 0.990087i \(-0.455142\pi\)
0.140459 + 0.990087i \(0.455142\pi\)
\(632\) 2947.37 0.185507
\(633\) 3201.86 0.201047
\(634\) −16179.3 −1.01350
\(635\) 8513.04 0.532015
\(636\) −4057.69 −0.252984
\(637\) 13528.5 0.841473
\(638\) 14377.7 0.892191
\(639\) 5913.99 0.366125
\(640\) 10024.5 0.619146
\(641\) −15513.1 −0.955899 −0.477949 0.878387i \(-0.658620\pi\)
−0.477949 + 0.878387i \(0.658620\pi\)
\(642\) 9812.51 0.603223
\(643\) −10772.9 −0.660717 −0.330358 0.943856i \(-0.607170\pi\)
−0.330358 + 0.943856i \(0.607170\pi\)
\(644\) 7003.70 0.428547
\(645\) −20404.3 −1.24561
\(646\) 2298.40 0.139983
\(647\) 2770.41 0.168340 0.0841701 0.996451i \(-0.473176\pi\)
0.0841701 + 0.996451i \(0.473176\pi\)
\(648\) −1914.73 −0.116077
\(649\) −10433.0 −0.631017
\(650\) −19827.1 −1.19643
\(651\) −5239.55 −0.315444
\(652\) −9528.35 −0.572330
\(653\) −31205.7 −1.87010 −0.935049 0.354518i \(-0.884645\pi\)
−0.935049 + 0.354518i \(0.884645\pi\)
\(654\) 10698.0 0.639640
\(655\) −44020.9 −2.62601
\(656\) 535.793 0.0318891
\(657\) 4968.46 0.295035
\(658\) −6569.38 −0.389211
\(659\) −6071.71 −0.358908 −0.179454 0.983766i \(-0.557433\pi\)
−0.179454 + 0.983766i \(0.557433\pi\)
\(660\) 13009.4 0.767258
\(661\) 20654.8 1.21540 0.607700 0.794167i \(-0.292092\pi\)
0.607700 + 0.794167i \(0.292092\pi\)
\(662\) 19787.0 1.16170
\(663\) −7204.18 −0.422001
\(664\) 23014.3 1.34507
\(665\) −4404.49 −0.256840
\(666\) −1973.99 −0.114851
\(667\) −23203.4 −1.34699
\(668\) 11398.7 0.660225
\(669\) 2177.38 0.125833
\(670\) 28541.3 1.64574
\(671\) −17653.2 −1.01564
\(672\) 4712.52 0.270520
\(673\) −10494.7 −0.601101 −0.300551 0.953766i \(-0.597170\pi\)
−0.300551 + 0.953766i \(0.597170\pi\)
\(674\) −7055.01 −0.403188
\(675\) −5275.78 −0.300837
\(676\) −2581.40 −0.146870
\(677\) 12244.8 0.695133 0.347567 0.937655i \(-0.387008\pi\)
0.347567 + 0.937655i \(0.387008\pi\)
\(678\) 3506.64 0.198631
\(679\) 8053.64 0.455184
\(680\) −19219.2 −1.08386
\(681\) −6129.35 −0.344901
\(682\) 20158.5 1.13183
\(683\) 14313.6 0.801897 0.400949 0.916101i \(-0.368681\pi\)
0.400949 + 0.916101i \(0.368681\pi\)
\(684\) 1024.17 0.0572517
\(685\) 24470.4 1.36491
\(686\) 10728.1 0.597084
\(687\) 5488.52 0.304804
\(688\) 4118.50 0.228222
\(689\) 16566.8 0.916033
\(690\) 17918.0 0.988589
\(691\) −15583.7 −0.857936 −0.428968 0.903320i \(-0.641123\pi\)
−0.428968 + 0.903320i \(0.641123\pi\)
\(692\) 8897.05 0.488750
\(693\) 4714.68 0.258436
\(694\) 8552.83 0.467811
\(695\) 16505.8 0.900866
\(696\) −9464.86 −0.515466
\(697\) 2245.34 0.122020
\(698\) 2628.31 0.142526
\(699\) −7644.12 −0.413630
\(700\) 7871.71 0.425032
\(701\) −28768.4 −1.55003 −0.775014 0.631944i \(-0.782257\pi\)
−0.775014 + 0.631944i \(0.782257\pi\)
\(702\) 2739.68 0.147297
\(703\) 3012.86 0.161639
\(704\) −22997.7 −1.23119
\(705\) 19693.2 1.05204
\(706\) 7086.57 0.377771
\(707\) 2780.84 0.147927
\(708\) 2406.94 0.127766
\(709\) 9566.70 0.506749 0.253374 0.967368i \(-0.418460\pi\)
0.253374 + 0.967368i \(0.418460\pi\)
\(710\) −22574.8 −1.19327
\(711\) −1122.16 −0.0591904
\(712\) −6880.25 −0.362146
\(713\) −32532.8 −1.70878
\(714\) −2440.97 −0.127943
\(715\) −53115.1 −2.77817
\(716\) 2013.10 0.105074
\(717\) −4662.00 −0.242825
\(718\) 17646.8 0.917235
\(719\) −19674.1 −1.02047 −0.510237 0.860034i \(-0.670442\pi\)
−0.510237 + 0.860034i \(0.670442\pi\)
\(720\) 1746.11 0.0903803
\(721\) −6310.58 −0.325962
\(722\) −11830.4 −0.609807
\(723\) 14122.0 0.726424
\(724\) 781.253 0.0401037
\(725\) −26079.2 −1.33594
\(726\) −10475.4 −0.535507
\(727\) −34245.6 −1.74704 −0.873520 0.486789i \(-0.838168\pi\)
−0.873520 + 0.486789i \(0.838168\pi\)
\(728\) −11664.1 −0.593818
\(729\) 729.000 0.0370370
\(730\) −18965.6 −0.961571
\(731\) 17259.3 0.873267
\(732\) 4072.69 0.205643
\(733\) 30906.4 1.55737 0.778685 0.627415i \(-0.215887\pi\)
0.778685 + 0.627415i \(0.215887\pi\)
\(734\) 859.953 0.0432445
\(735\) −13741.1 −0.689588
\(736\) 29260.4 1.46543
\(737\) 46629.9 2.33057
\(738\) −853.880 −0.0425905
\(739\) −25421.1 −1.26540 −0.632699 0.774398i \(-0.718053\pi\)
−0.632699 + 0.774398i \(0.718053\pi\)
\(740\) −8829.20 −0.438605
\(741\) −4181.51 −0.207303
\(742\) 5613.31 0.277724
\(743\) −33013.8 −1.63009 −0.815046 0.579396i \(-0.803288\pi\)
−0.815046 + 0.579396i \(0.803288\pi\)
\(744\) −13270.4 −0.653919
\(745\) 25118.7 1.23527
\(746\) 16169.4 0.793569
\(747\) −8762.29 −0.429177
\(748\) −11004.2 −0.537905
\(749\) 15905.6 0.775940
\(750\) 7255.64 0.353251
\(751\) −9966.57 −0.484268 −0.242134 0.970243i \(-0.577847\pi\)
−0.242134 + 0.970243i \(0.577847\pi\)
\(752\) −3974.97 −0.192756
\(753\) −9472.69 −0.458438
\(754\) 13542.8 0.654109
\(755\) 52932.6 2.55154
\(756\) −1087.70 −0.0523272
\(757\) 23753.5 1.14047 0.570236 0.821481i \(-0.306852\pi\)
0.570236 + 0.821481i \(0.306852\pi\)
\(758\) −24595.5 −1.17856
\(759\) 29273.8 1.39996
\(760\) −11155.4 −0.532432
\(761\) 10526.6 0.501431 0.250716 0.968061i \(-0.419334\pi\)
0.250716 + 0.968061i \(0.419334\pi\)
\(762\) 2738.43 0.130187
\(763\) 17340.9 0.822784
\(764\) 4909.07 0.232466
\(765\) 7317.39 0.345831
\(766\) −26627.9 −1.25601
\(767\) −9827.13 −0.462630
\(768\) 13058.4 0.613546
\(769\) 2950.58 0.138362 0.0691811 0.997604i \(-0.477961\pi\)
0.0691811 + 0.997604i \(0.477961\pi\)
\(770\) −17996.9 −0.842288
\(771\) −23858.9 −1.11447
\(772\) 1426.82 0.0665186
\(773\) −10231.2 −0.476056 −0.238028 0.971258i \(-0.576501\pi\)
−0.238028 + 0.971258i \(0.576501\pi\)
\(774\) −6563.55 −0.304809
\(775\) −36564.8 −1.69477
\(776\) 20397.7 0.943601
\(777\) −3199.75 −0.147735
\(778\) 14434.6 0.665173
\(779\) 1303.26 0.0599410
\(780\) 12253.9 0.562514
\(781\) −36882.0 −1.68981
\(782\) −15156.2 −0.693075
\(783\) 3603.58 0.164472
\(784\) 2773.56 0.126347
\(785\) −13186.0 −0.599525
\(786\) −14160.4 −0.642601
\(787\) −27741.6 −1.25652 −0.628261 0.778003i \(-0.716233\pi\)
−0.628261 + 0.778003i \(0.716233\pi\)
\(788\) −17195.2 −0.777352
\(789\) 11865.8 0.535402
\(790\) 4283.51 0.192912
\(791\) 5684.10 0.255503
\(792\) 11941.0 0.535739
\(793\) −16628.1 −0.744615
\(794\) −12373.6 −0.553050
\(795\) −16827.2 −0.750691
\(796\) −546.096 −0.0243164
\(797\) −34080.0 −1.51465 −0.757326 0.653037i \(-0.773494\pi\)
−0.757326 + 0.653037i \(0.773494\pi\)
\(798\) −1416.81 −0.0628503
\(799\) −16657.8 −0.737561
\(800\) 32886.8 1.45341
\(801\) 2619.54 0.115552
\(802\) −25143.9 −1.10706
\(803\) −30985.3 −1.36170
\(804\) −10757.8 −0.471887
\(805\) 29044.2 1.27165
\(806\) 18987.9 0.829801
\(807\) −11947.8 −0.521166
\(808\) 7043.12 0.306653
\(809\) −26201.8 −1.13870 −0.569348 0.822096i \(-0.692804\pi\)
−0.569348 + 0.822096i \(0.692804\pi\)
\(810\) −2782.73 −0.120710
\(811\) 13358.8 0.578412 0.289206 0.957267i \(-0.406609\pi\)
0.289206 + 0.957267i \(0.406609\pi\)
\(812\) −5376.72 −0.232372
\(813\) 8792.14 0.379279
\(814\) 12310.6 0.530083
\(815\) −39513.9 −1.69830
\(816\) −1476.98 −0.0633633
\(817\) 10017.8 0.428982
\(818\) 25220.4 1.07801
\(819\) 4440.90 0.189472
\(820\) −3819.20 −0.162649
\(821\) −35994.5 −1.53010 −0.765052 0.643968i \(-0.777287\pi\)
−0.765052 + 0.643968i \(0.777287\pi\)
\(822\) 7871.50 0.334002
\(823\) −38743.7 −1.64097 −0.820486 0.571667i \(-0.806297\pi\)
−0.820486 + 0.571667i \(0.806297\pi\)
\(824\) −15983.0 −0.675721
\(825\) 32901.9 1.38848
\(826\) −3329.70 −0.140260
\(827\) 34159.4 1.43632 0.718162 0.695876i \(-0.244984\pi\)
0.718162 + 0.695876i \(0.244984\pi\)
\(828\) −6753.63 −0.283460
\(829\) 35296.0 1.47875 0.739374 0.673295i \(-0.235122\pi\)
0.739374 + 0.673295i \(0.235122\pi\)
\(830\) 33447.4 1.39876
\(831\) −18538.0 −0.773857
\(832\) −21662.2 −0.902647
\(833\) 11623.1 0.483453
\(834\) 5309.50 0.220447
\(835\) 47270.4 1.95911
\(836\) −6387.15 −0.264239
\(837\) 5052.47 0.208649
\(838\) −7718.74 −0.318185
\(839\) −39727.0 −1.63472 −0.817358 0.576129i \(-0.804562\pi\)
−0.817358 + 0.576129i \(0.804562\pi\)
\(840\) 11847.4 0.486635
\(841\) −6575.82 −0.269622
\(842\) −5640.80 −0.230873
\(843\) −12332.6 −0.503865
\(844\) 4606.75 0.187880
\(845\) −10705.0 −0.435815
\(846\) 6334.81 0.257441
\(847\) −16980.1 −0.688835
\(848\) 3396.48 0.137542
\(849\) 3292.70 0.133104
\(850\) −17034.6 −0.687390
\(851\) −19867.5 −0.800293
\(852\) 8508.88 0.342147
\(853\) −7068.86 −0.283743 −0.141872 0.989885i \(-0.545312\pi\)
−0.141872 + 0.989885i \(0.545312\pi\)
\(854\) −5634.05 −0.225753
\(855\) 4247.22 0.169885
\(856\) 40284.7 1.60853
\(857\) −7467.01 −0.297629 −0.148815 0.988865i \(-0.547546\pi\)
−0.148815 + 0.988865i \(0.547546\pi\)
\(858\) −17085.8 −0.679835
\(859\) −38191.8 −1.51698 −0.758490 0.651685i \(-0.774063\pi\)
−0.758490 + 0.651685i \(0.774063\pi\)
\(860\) −29357.2 −1.16404
\(861\) −1384.10 −0.0547851
\(862\) −18577.6 −0.734056
\(863\) −41733.3 −1.64614 −0.823069 0.567941i \(-0.807740\pi\)
−0.823069 + 0.567941i \(0.807740\pi\)
\(864\) −4544.26 −0.178934
\(865\) 36895.9 1.45029
\(866\) −145.584 −0.00571266
\(867\) 8549.48 0.334897
\(868\) −7538.53 −0.294786
\(869\) 6998.26 0.273187
\(870\) −13755.6 −0.536043
\(871\) 43922.0 1.70866
\(872\) 43919.9 1.70564
\(873\) −7766.07 −0.301079
\(874\) −8797.09 −0.340464
\(875\) 11761.1 0.454396
\(876\) 7148.48 0.275713
\(877\) 16676.0 0.642087 0.321043 0.947065i \(-0.395966\pi\)
0.321043 + 0.947065i \(0.395966\pi\)
\(878\) −15650.5 −0.601571
\(879\) −7165.56 −0.274958
\(880\) −10889.5 −0.417141
\(881\) −19171.1 −0.733135 −0.366567 0.930391i \(-0.619467\pi\)
−0.366567 + 0.930391i \(0.619467\pi\)
\(882\) −4420.16 −0.168747
\(883\) 7041.22 0.268353 0.134177 0.990957i \(-0.457161\pi\)
0.134177 + 0.990957i \(0.457161\pi\)
\(884\) −10365.2 −0.394365
\(885\) 9981.56 0.379126
\(886\) 5988.99 0.227093
\(887\) 41940.1 1.58761 0.793805 0.608173i \(-0.208097\pi\)
0.793805 + 0.608173i \(0.208097\pi\)
\(888\) −8104.11 −0.306257
\(889\) 4438.86 0.167463
\(890\) −9999.29 −0.376603
\(891\) −4546.34 −0.170941
\(892\) 3132.75 0.117592
\(893\) −9668.67 −0.362318
\(894\) 8080.06 0.302279
\(895\) 8348.28 0.311790
\(896\) 5226.98 0.194890
\(897\) 27573.9 1.02638
\(898\) 34459.6 1.28055
\(899\) 24975.3 0.926555
\(900\) −7590.64 −0.281135
\(901\) 14233.5 0.526290
\(902\) 5325.14 0.196572
\(903\) −10639.2 −0.392083
\(904\) 14396.3 0.529661
\(905\) 3239.85 0.119001
\(906\) 17027.1 0.624378
\(907\) −45038.2 −1.64881 −0.824404 0.566001i \(-0.808490\pi\)
−0.824404 + 0.566001i \(0.808490\pi\)
\(908\) −8818.74 −0.322313
\(909\) −2681.55 −0.0978452
\(910\) −16951.8 −0.617523
\(911\) −48746.1 −1.77281 −0.886405 0.462910i \(-0.846805\pi\)
−0.886405 + 0.462910i \(0.846805\pi\)
\(912\) −857.278 −0.0311265
\(913\) 54645.2 1.98082
\(914\) 8005.63 0.289719
\(915\) 16889.4 0.610213
\(916\) 7896.73 0.284842
\(917\) −22953.3 −0.826593
\(918\) 2353.82 0.0846270
\(919\) −37028.2 −1.32910 −0.664552 0.747242i \(-0.731378\pi\)
−0.664552 + 0.747242i \(0.731378\pi\)
\(920\) 73561.2 2.63613
\(921\) −6289.12 −0.225009
\(922\) −7997.24 −0.285656
\(923\) −34740.3 −1.23888
\(924\) 6783.35 0.241511
\(925\) −22329.8 −0.793729
\(926\) −28346.3 −1.00596
\(927\) 6085.26 0.215605
\(928\) −22463.1 −0.794599
\(929\) 38766.8 1.36910 0.684552 0.728964i \(-0.259998\pi\)
0.684552 + 0.728964i \(0.259998\pi\)
\(930\) −19286.3 −0.680023
\(931\) 6746.38 0.237490
\(932\) −10998.2 −0.386541
\(933\) −18238.4 −0.639977
\(934\) 17515.7 0.613631
\(935\) −45634.2 −1.59615
\(936\) 11247.6 0.392777
\(937\) 46941.3 1.63661 0.818306 0.574782i \(-0.194913\pi\)
0.818306 + 0.574782i \(0.194913\pi\)
\(938\) 14882.0 0.518033
\(939\) 31843.6 1.10668
\(940\) 28334.1 0.983145
\(941\) 39286.7 1.36101 0.680505 0.732743i \(-0.261760\pi\)
0.680505 + 0.732743i \(0.261760\pi\)
\(942\) −4241.58 −0.146707
\(943\) −8593.98 −0.296775
\(944\) −2014.72 −0.0694636
\(945\) −4510.68 −0.155273
\(946\) 40933.0 1.40681
\(947\) 10859.1 0.372622 0.186311 0.982491i \(-0.440347\pi\)
0.186311 + 0.982491i \(0.440347\pi\)
\(948\) −1614.54 −0.0553140
\(949\) −29186.0 −0.998331
\(950\) −9887.36 −0.337672
\(951\) 25289.5 0.862320
\(952\) −10021.3 −0.341167
\(953\) 37223.0 1.26524 0.632618 0.774464i \(-0.281980\pi\)
0.632618 + 0.774464i \(0.281980\pi\)
\(954\) −5412.88 −0.183699
\(955\) 20357.8 0.689805
\(956\) −6707.56 −0.226922
\(957\) −22473.4 −0.759103
\(958\) −2821.15 −0.0951432
\(959\) 12759.3 0.429635
\(960\) 22002.6 0.739721
\(961\) 5226.11 0.175426
\(962\) 11595.7 0.388630
\(963\) −15337.7 −0.513241
\(964\) 20318.4 0.678851
\(965\) 5916.99 0.197383
\(966\) 9342.79 0.311179
\(967\) −8408.61 −0.279630 −0.139815 0.990178i \(-0.544651\pi\)
−0.139815 + 0.990178i \(0.544651\pi\)
\(968\) −43006.0 −1.42796
\(969\) −3592.57 −0.119102
\(970\) 29644.6 0.981269
\(971\) −20660.0 −0.682813 −0.341406 0.939916i \(-0.610903\pi\)
−0.341406 + 0.939916i \(0.610903\pi\)
\(972\) 1048.87 0.0346115
\(973\) 8606.46 0.283567
\(974\) 24777.6 0.815118
\(975\) 30991.3 1.01796
\(976\) −3409.03 −0.111804
\(977\) 50316.1 1.64765 0.823825 0.566844i \(-0.191836\pi\)
0.823825 + 0.566844i \(0.191836\pi\)
\(978\) −12710.6 −0.415584
\(979\) −16336.5 −0.533317
\(980\) −19770.3 −0.644427
\(981\) −16721.8 −0.544225
\(982\) 35406.8 1.15059
\(983\) 1034.36 0.0335614 0.0167807 0.999859i \(-0.494658\pi\)
0.0167807 + 0.999859i \(0.494658\pi\)
\(984\) −3505.55 −0.113570
\(985\) −71308.2 −2.30667
\(986\) 11635.4 0.375807
\(987\) 10268.4 0.331153
\(988\) −6016.24 −0.193727
\(989\) −66059.7 −2.12394
\(990\) 17354.3 0.557126
\(991\) 34133.6 1.09414 0.547068 0.837088i \(-0.315744\pi\)
0.547068 + 0.837088i \(0.315744\pi\)
\(992\) −31494.9 −1.00803
\(993\) −30928.6 −0.988407
\(994\) −11771.0 −0.375606
\(995\) −2264.65 −0.0721551
\(996\) −12606.9 −0.401070
\(997\) 12536.8 0.398241 0.199120 0.979975i \(-0.436192\pi\)
0.199120 + 0.979975i \(0.436192\pi\)
\(998\) −21074.3 −0.668433
\(999\) 3085.50 0.0977187
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 543.4.a.c.1.15 23
3.2 odd 2 1629.4.a.e.1.9 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.4.a.c.1.15 23 1.1 even 1 trivial
1629.4.a.e.1.9 23 3.2 odd 2