Properties

Label 1629.4.a.e.1.9
Level $1629$
Weight $4$
Character 1629.1
Self dual yes
Analytic conductor $96.114$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1629,4,Mod(1,1629)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1629.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1629, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.1141113994\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 1629.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.91929 q^{2} -4.31632 q^{4} +17.8997 q^{5} -9.33325 q^{7} +23.6386 q^{8} -34.3548 q^{10} +56.1277 q^{11} -52.8683 q^{13} +17.9132 q^{14} -10.8389 q^{16} +45.4222 q^{17} -26.3643 q^{19} -77.2608 q^{20} -107.725 q^{22} -173.853 q^{23} +195.399 q^{25} +101.470 q^{26} +40.2853 q^{28} +133.466 q^{29} -187.129 q^{31} -168.306 q^{32} -87.1784 q^{34} -167.062 q^{35} -114.278 q^{37} +50.6008 q^{38} +423.124 q^{40} +49.4326 q^{41} -379.975 q^{43} -242.265 q^{44} +333.674 q^{46} -366.733 q^{47} -255.890 q^{49} -375.028 q^{50} +228.196 q^{52} +313.361 q^{53} +1004.67 q^{55} -220.625 q^{56} -256.160 q^{58} -185.879 q^{59} +314.519 q^{61} +359.154 q^{62} +409.739 q^{64} -946.326 q^{65} -830.782 q^{67} -196.056 q^{68} +320.642 q^{70} -657.110 q^{71} +552.051 q^{73} +219.333 q^{74} +113.797 q^{76} -523.853 q^{77} -124.685 q^{79} -194.013 q^{80} -94.8756 q^{82} +973.588 q^{83} +813.043 q^{85} +729.284 q^{86} +1326.78 q^{88} -291.060 q^{89} +493.433 q^{91} +750.403 q^{92} +703.868 q^{94} -471.913 q^{95} -862.897 q^{97} +491.129 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q - 7 q^{2} + 79 q^{4} - 29 q^{5} - 6 q^{7} - 84 q^{8} + 41 q^{10} - 45 q^{11} + 166 q^{13} + 23 q^{14} + 195 q^{16} - 369 q^{17} - 115 q^{19} - 162 q^{20} - 130 q^{22} - 221 q^{23} + 712 q^{25} - 227 q^{26}+ \cdots - 10181 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91929 −0.678572 −0.339286 0.940683i \(-0.610185\pi\)
−0.339286 + 0.940683i \(0.610185\pi\)
\(3\) 0 0
\(4\) −4.31632 −0.539540
\(5\) 17.8997 1.60100 0.800499 0.599334i \(-0.204568\pi\)
0.800499 + 0.599334i \(0.204568\pi\)
\(6\) 0 0
\(7\) −9.33325 −0.503948 −0.251974 0.967734i \(-0.581080\pi\)
−0.251974 + 0.967734i \(0.581080\pi\)
\(8\) 23.6386 1.04469
\(9\) 0 0
\(10\) −34.3548 −1.08639
\(11\) 56.1277 1.53847 0.769233 0.638968i \(-0.220639\pi\)
0.769233 + 0.638968i \(0.220639\pi\)
\(12\) 0 0
\(13\) −52.8683 −1.12792 −0.563962 0.825800i \(-0.690724\pi\)
−0.563962 + 0.825800i \(0.690724\pi\)
\(14\) 17.9132 0.341965
\(15\) 0 0
\(16\) −10.8389 −0.169357
\(17\) 45.4222 0.648029 0.324015 0.946052i \(-0.394967\pi\)
0.324015 + 0.946052i \(0.394967\pi\)
\(18\) 0 0
\(19\) −26.3643 −0.318336 −0.159168 0.987251i \(-0.550881\pi\)
−0.159168 + 0.987251i \(0.550881\pi\)
\(20\) −77.2608 −0.863802
\(21\) 0 0
\(22\) −107.725 −1.04396
\(23\) −173.853 −1.57612 −0.788060 0.615598i \(-0.788914\pi\)
−0.788060 + 0.615598i \(0.788914\pi\)
\(24\) 0 0
\(25\) 195.399 1.56319
\(26\) 101.470 0.765379
\(27\) 0 0
\(28\) 40.2853 0.271900
\(29\) 133.466 0.854621 0.427311 0.904105i \(-0.359461\pi\)
0.427311 + 0.904105i \(0.359461\pi\)
\(30\) 0 0
\(31\) −187.129 −1.08417 −0.542085 0.840323i \(-0.682365\pi\)
−0.542085 + 0.840323i \(0.682365\pi\)
\(32\) −168.306 −0.929768
\(33\) 0 0
\(34\) −87.1784 −0.439735
\(35\) −167.062 −0.806820
\(36\) 0 0
\(37\) −114.278 −0.507761 −0.253881 0.967236i \(-0.581707\pi\)
−0.253881 + 0.967236i \(0.581707\pi\)
\(38\) 50.6008 0.216014
\(39\) 0 0
\(40\) 423.124 1.67254
\(41\) 49.4326 0.188294 0.0941472 0.995558i \(-0.469988\pi\)
0.0941472 + 0.995558i \(0.469988\pi\)
\(42\) 0 0
\(43\) −379.975 −1.34757 −0.673787 0.738925i \(-0.735334\pi\)
−0.673787 + 0.738925i \(0.735334\pi\)
\(44\) −242.265 −0.830063
\(45\) 0 0
\(46\) 333.674 1.06951
\(47\) −366.733 −1.13816 −0.569080 0.822282i \(-0.692701\pi\)
−0.569080 + 0.822282i \(0.692701\pi\)
\(48\) 0 0
\(49\) −255.890 −0.746036
\(50\) −375.028 −1.06074
\(51\) 0 0
\(52\) 228.196 0.608560
\(53\) 313.361 0.812140 0.406070 0.913842i \(-0.366899\pi\)
0.406070 + 0.913842i \(0.366899\pi\)
\(54\) 0 0
\(55\) 1004.67 2.46308
\(56\) −220.625 −0.526469
\(57\) 0 0
\(58\) −256.160 −0.579922
\(59\) −185.879 −0.410160 −0.205080 0.978745i \(-0.565745\pi\)
−0.205080 + 0.978745i \(0.565745\pi\)
\(60\) 0 0
\(61\) 314.519 0.660164 0.330082 0.943952i \(-0.392924\pi\)
0.330082 + 0.943952i \(0.392924\pi\)
\(62\) 359.154 0.735688
\(63\) 0 0
\(64\) 409.739 0.800272
\(65\) −946.326 −1.80581
\(66\) 0 0
\(67\) −830.782 −1.51487 −0.757435 0.652911i \(-0.773548\pi\)
−0.757435 + 0.652911i \(0.773548\pi\)
\(68\) −196.056 −0.349637
\(69\) 0 0
\(70\) 320.642 0.547486
\(71\) −657.110 −1.09837 −0.549187 0.835699i \(-0.685063\pi\)
−0.549187 + 0.835699i \(0.685063\pi\)
\(72\) 0 0
\(73\) 552.051 0.885105 0.442552 0.896743i \(-0.354073\pi\)
0.442552 + 0.896743i \(0.354073\pi\)
\(74\) 219.333 0.344553
\(75\) 0 0
\(76\) 113.797 0.171755
\(77\) −523.853 −0.775307
\(78\) 0 0
\(79\) −124.685 −0.177571 −0.0887855 0.996051i \(-0.528299\pi\)
−0.0887855 + 0.996051i \(0.528299\pi\)
\(80\) −194.013 −0.271141
\(81\) 0 0
\(82\) −94.8756 −0.127771
\(83\) 973.588 1.28753 0.643766 0.765223i \(-0.277371\pi\)
0.643766 + 0.765223i \(0.277371\pi\)
\(84\) 0 0
\(85\) 813.043 1.03749
\(86\) 729.284 0.914427
\(87\) 0 0
\(88\) 1326.78 1.60722
\(89\) −291.060 −0.346655 −0.173327 0.984864i \(-0.555452\pi\)
−0.173327 + 0.984864i \(0.555452\pi\)
\(90\) 0 0
\(91\) 493.433 0.568416
\(92\) 750.403 0.850379
\(93\) 0 0
\(94\) 703.868 0.772324
\(95\) −471.913 −0.509656
\(96\) 0 0
\(97\) −862.897 −0.903236 −0.451618 0.892211i \(-0.649153\pi\)
−0.451618 + 0.892211i \(0.649153\pi\)
\(98\) 491.129 0.506240
\(99\) 0 0
\(100\) −843.405 −0.843405
\(101\) 297.950 0.293536 0.146768 0.989171i \(-0.453113\pi\)
0.146768 + 0.989171i \(0.453113\pi\)
\(102\) 0 0
\(103\) 676.140 0.646816 0.323408 0.946260i \(-0.395171\pi\)
0.323408 + 0.946260i \(0.395171\pi\)
\(104\) −1249.73 −1.17833
\(105\) 0 0
\(106\) −601.431 −0.551096
\(107\) 1704.19 1.53972 0.769861 0.638212i \(-0.220326\pi\)
0.769861 + 0.638212i \(0.220326\pi\)
\(108\) 0 0
\(109\) −1857.97 −1.63268 −0.816338 0.577575i \(-0.803999\pi\)
−0.816338 + 0.577575i \(0.803999\pi\)
\(110\) −1928.25 −1.67138
\(111\) 0 0
\(112\) 101.162 0.0853473
\(113\) 609.016 0.507003 0.253502 0.967335i \(-0.418418\pi\)
0.253502 + 0.967335i \(0.418418\pi\)
\(114\) 0 0
\(115\) −3111.91 −2.52337
\(116\) −576.082 −0.461102
\(117\) 0 0
\(118\) 356.757 0.278323
\(119\) −423.936 −0.326573
\(120\) 0 0
\(121\) 1819.31 1.36688
\(122\) −603.653 −0.447969
\(123\) 0 0
\(124\) 807.706 0.584953
\(125\) 1260.12 0.901671
\(126\) 0 0
\(127\) −475.597 −0.332302 −0.166151 0.986100i \(-0.553134\pi\)
−0.166151 + 0.986100i \(0.553134\pi\)
\(128\) 560.038 0.386725
\(129\) 0 0
\(130\) 1816.28 1.22537
\(131\) −2459.31 −1.64023 −0.820117 0.572195i \(-0.806092\pi\)
−0.820117 + 0.572195i \(0.806092\pi\)
\(132\) 0 0
\(133\) 246.065 0.160425
\(134\) 1594.51 1.02795
\(135\) 0 0
\(136\) 1073.72 0.676989
\(137\) 1367.08 0.852539 0.426269 0.904596i \(-0.359828\pi\)
0.426269 + 0.904596i \(0.359828\pi\)
\(138\) 0 0
\(139\) −922.129 −0.562690 −0.281345 0.959607i \(-0.590781\pi\)
−0.281345 + 0.959607i \(0.590781\pi\)
\(140\) 721.094 0.435311
\(141\) 0 0
\(142\) 1261.19 0.745326
\(143\) −2967.37 −1.73527
\(144\) 0 0
\(145\) 2389.00 1.36825
\(146\) −1059.55 −0.600607
\(147\) 0 0
\(148\) 493.260 0.273957
\(149\) 1403.31 0.771565 0.385783 0.922590i \(-0.373931\pi\)
0.385783 + 0.922590i \(0.373931\pi\)
\(150\) 0 0
\(151\) −2957.18 −1.59372 −0.796860 0.604164i \(-0.793507\pi\)
−0.796860 + 0.604164i \(0.793507\pi\)
\(152\) −623.216 −0.332562
\(153\) 0 0
\(154\) 1005.43 0.526102
\(155\) −3349.55 −1.73575
\(156\) 0 0
\(157\) 736.658 0.374469 0.187235 0.982315i \(-0.440048\pi\)
0.187235 + 0.982315i \(0.440048\pi\)
\(158\) 239.306 0.120495
\(159\) 0 0
\(160\) −3012.63 −1.48856
\(161\) 1622.61 0.794283
\(162\) 0 0
\(163\) 2207.52 1.06077 0.530387 0.847755i \(-0.322046\pi\)
0.530387 + 0.847755i \(0.322046\pi\)
\(164\) −213.367 −0.101592
\(165\) 0 0
\(166\) −1868.60 −0.873683
\(167\) 2640.85 1.22368 0.611841 0.790981i \(-0.290429\pi\)
0.611841 + 0.790981i \(0.290429\pi\)
\(168\) 0 0
\(169\) 598.055 0.272214
\(170\) −1560.47 −0.704014
\(171\) 0 0
\(172\) 1640.09 0.727070
\(173\) 2061.26 0.905865 0.452933 0.891545i \(-0.350378\pi\)
0.452933 + 0.891545i \(0.350378\pi\)
\(174\) 0 0
\(175\) −1823.71 −0.787769
\(176\) −608.360 −0.260551
\(177\) 0 0
\(178\) 558.629 0.235230
\(179\) 466.392 0.194747 0.0973737 0.995248i \(-0.468956\pi\)
0.0973737 + 0.995248i \(0.468956\pi\)
\(180\) 0 0
\(181\) −181.000 −0.0743294
\(182\) −947.042 −0.385711
\(183\) 0 0
\(184\) −4109.63 −1.64656
\(185\) −2045.54 −0.812925
\(186\) 0 0
\(187\) 2549.44 0.996970
\(188\) 1582.94 0.614083
\(189\) 0 0
\(190\) 905.740 0.345838
\(191\) 1137.33 0.430860 0.215430 0.976519i \(-0.430885\pi\)
0.215430 + 0.976519i \(0.430885\pi\)
\(192\) 0 0
\(193\) −330.564 −0.123288 −0.0616438 0.998098i \(-0.519634\pi\)
−0.0616438 + 0.998098i \(0.519634\pi\)
\(194\) 1656.15 0.612911
\(195\) 0 0
\(196\) 1104.50 0.402516
\(197\) −3983.77 −1.44077 −0.720385 0.693575i \(-0.756035\pi\)
−0.720385 + 0.693575i \(0.756035\pi\)
\(198\) 0 0
\(199\) 126.519 0.0450688 0.0225344 0.999746i \(-0.492826\pi\)
0.0225344 + 0.999746i \(0.492826\pi\)
\(200\) 4618.97 1.63305
\(201\) 0 0
\(202\) −571.853 −0.199185
\(203\) −1245.67 −0.430685
\(204\) 0 0
\(205\) 884.828 0.301459
\(206\) −1297.71 −0.438911
\(207\) 0 0
\(208\) 573.033 0.191022
\(209\) −1479.77 −0.489750
\(210\) 0 0
\(211\) −1067.29 −0.348223 −0.174112 0.984726i \(-0.555705\pi\)
−0.174112 + 0.984726i \(0.555705\pi\)
\(212\) −1352.56 −0.438182
\(213\) 0 0
\(214\) −3270.84 −1.04481
\(215\) −6801.44 −2.15746
\(216\) 0 0
\(217\) 1746.52 0.546366
\(218\) 3566.00 1.10789
\(219\) 0 0
\(220\) −4336.47 −1.32893
\(221\) −2401.39 −0.730928
\(222\) 0 0
\(223\) −725.792 −0.217949 −0.108975 0.994045i \(-0.534757\pi\)
−0.108975 + 0.994045i \(0.534757\pi\)
\(224\) 1570.84 0.468555
\(225\) 0 0
\(226\) −1168.88 −0.344038
\(227\) −2043.12 −0.597385 −0.298693 0.954349i \(-0.596551\pi\)
−0.298693 + 0.954349i \(0.596551\pi\)
\(228\) 0 0
\(229\) −1829.51 −0.527935 −0.263968 0.964532i \(-0.585031\pi\)
−0.263968 + 0.964532i \(0.585031\pi\)
\(230\) 5972.66 1.71229
\(231\) 0 0
\(232\) 3154.95 0.892813
\(233\) −2548.04 −0.716428 −0.358214 0.933639i \(-0.616614\pi\)
−0.358214 + 0.933639i \(0.616614\pi\)
\(234\) 0 0
\(235\) −6564.41 −1.82219
\(236\) 802.315 0.221298
\(237\) 0 0
\(238\) 813.658 0.221603
\(239\) −1554.00 −0.420585 −0.210293 0.977638i \(-0.567442\pi\)
−0.210293 + 0.977638i \(0.567442\pi\)
\(240\) 0 0
\(241\) −4707.35 −1.25820 −0.629102 0.777323i \(-0.716577\pi\)
−0.629102 + 0.777323i \(0.716577\pi\)
\(242\) −3491.79 −0.927525
\(243\) 0 0
\(244\) −1357.56 −0.356184
\(245\) −4580.36 −1.19440
\(246\) 0 0
\(247\) 1393.84 0.359059
\(248\) −4423.46 −1.13262
\(249\) 0 0
\(250\) −2418.55 −0.611849
\(251\) −3157.56 −0.794038 −0.397019 0.917810i \(-0.629955\pi\)
−0.397019 + 0.917810i \(0.629955\pi\)
\(252\) 0 0
\(253\) −9757.94 −2.42481
\(254\) 912.809 0.225491
\(255\) 0 0
\(256\) −4352.79 −1.06269
\(257\) −7952.97 −1.93032 −0.965160 0.261659i \(-0.915730\pi\)
−0.965160 + 0.261659i \(0.915730\pi\)
\(258\) 0 0
\(259\) 1066.58 0.255885
\(260\) 4084.64 0.974303
\(261\) 0 0
\(262\) 4720.13 1.11302
\(263\) 3955.26 0.927344 0.463672 0.886007i \(-0.346532\pi\)
0.463672 + 0.886007i \(0.346532\pi\)
\(264\) 0 0
\(265\) 5609.06 1.30023
\(266\) −472.270 −0.108860
\(267\) 0 0
\(268\) 3585.92 0.817332
\(269\) −3982.59 −0.902686 −0.451343 0.892351i \(-0.649055\pi\)
−0.451343 + 0.892351i \(0.649055\pi\)
\(270\) 0 0
\(271\) −2930.71 −0.656931 −0.328465 0.944516i \(-0.606531\pi\)
−0.328465 + 0.944516i \(0.606531\pi\)
\(272\) −492.325 −0.109748
\(273\) 0 0
\(274\) −2623.83 −0.578509
\(275\) 10967.3 2.40492
\(276\) 0 0
\(277\) 6179.33 1.34036 0.670180 0.742199i \(-0.266217\pi\)
0.670180 + 0.742199i \(0.266217\pi\)
\(278\) 1769.83 0.381826
\(279\) 0 0
\(280\) −3949.12 −0.842876
\(281\) −4110.88 −0.872720 −0.436360 0.899772i \(-0.643733\pi\)
−0.436360 + 0.899772i \(0.643733\pi\)
\(282\) 0 0
\(283\) −1097.57 −0.230543 −0.115271 0.993334i \(-0.536774\pi\)
−0.115271 + 0.993334i \(0.536774\pi\)
\(284\) 2836.29 0.592616
\(285\) 0 0
\(286\) 5695.26 1.17751
\(287\) −461.367 −0.0948907
\(288\) 0 0
\(289\) −2849.83 −0.580058
\(290\) −4585.19 −0.928454
\(291\) 0 0
\(292\) −2382.83 −0.477549
\(293\) −2388.52 −0.476241 −0.238121 0.971236i \(-0.576531\pi\)
−0.238121 + 0.971236i \(0.576531\pi\)
\(294\) 0 0
\(295\) −3327.19 −0.656665
\(296\) −2701.37 −0.530453
\(297\) 0 0
\(298\) −2693.35 −0.523563
\(299\) 9191.29 1.77775
\(300\) 0 0
\(301\) 3546.41 0.679108
\(302\) 5675.69 1.08145
\(303\) 0 0
\(304\) 285.759 0.0539126
\(305\) 5629.79 1.05692
\(306\) 0 0
\(307\) 2096.37 0.389728 0.194864 0.980830i \(-0.437574\pi\)
0.194864 + 0.980830i \(0.437574\pi\)
\(308\) 2261.12 0.418309
\(309\) 0 0
\(310\) 6428.76 1.17784
\(311\) −6079.47 −1.10847 −0.554237 0.832359i \(-0.686990\pi\)
−0.554237 + 0.832359i \(0.686990\pi\)
\(312\) 0 0
\(313\) −10614.5 −1.91683 −0.958416 0.285374i \(-0.907882\pi\)
−0.958416 + 0.285374i \(0.907882\pi\)
\(314\) −1413.86 −0.254105
\(315\) 0 0
\(316\) 538.178 0.0958066
\(317\) 8429.82 1.49358 0.746791 0.665058i \(-0.231593\pi\)
0.746791 + 0.665058i \(0.231593\pi\)
\(318\) 0 0
\(319\) 7491.13 1.31481
\(320\) 7334.21 1.28123
\(321\) 0 0
\(322\) −3114.26 −0.538978
\(323\) −1197.52 −0.206291
\(324\) 0 0
\(325\) −10330.4 −1.76316
\(326\) −4236.88 −0.719812
\(327\) 0 0
\(328\) 1168.52 0.196709
\(329\) 3422.81 0.573574
\(330\) 0 0
\(331\) 10309.5 1.71197 0.855985 0.517000i \(-0.172951\pi\)
0.855985 + 0.517000i \(0.172951\pi\)
\(332\) −4202.31 −0.694674
\(333\) 0 0
\(334\) −5068.56 −0.830357
\(335\) −14870.8 −2.42530
\(336\) 0 0
\(337\) −3675.84 −0.594172 −0.297086 0.954851i \(-0.596015\pi\)
−0.297086 + 0.954851i \(0.596015\pi\)
\(338\) −1147.84 −0.184717
\(339\) 0 0
\(340\) −3509.35 −0.559769
\(341\) −10503.1 −1.66796
\(342\) 0 0
\(343\) 5589.59 0.879912
\(344\) −8982.09 −1.40780
\(345\) 0 0
\(346\) −3956.16 −0.614695
\(347\) −4456.24 −0.689405 −0.344703 0.938712i \(-0.612020\pi\)
−0.344703 + 0.938712i \(0.612020\pi\)
\(348\) 0 0
\(349\) 1369.42 0.210038 0.105019 0.994470i \(-0.466510\pi\)
0.105019 + 0.994470i \(0.466510\pi\)
\(350\) 3500.23 0.534558
\(351\) 0 0
\(352\) −9446.62 −1.43042
\(353\) −3692.28 −0.556715 −0.278357 0.960478i \(-0.589790\pi\)
−0.278357 + 0.960478i \(0.589790\pi\)
\(354\) 0 0
\(355\) −11762.1 −1.75849
\(356\) 1256.31 0.187034
\(357\) 0 0
\(358\) −895.143 −0.132150
\(359\) −9194.46 −1.35171 −0.675856 0.737033i \(-0.736226\pi\)
−0.675856 + 0.737033i \(0.736226\pi\)
\(360\) 0 0
\(361\) −6163.92 −0.898662
\(362\) 347.392 0.0504379
\(363\) 0 0
\(364\) −2129.81 −0.306683
\(365\) 9881.54 1.41705
\(366\) 0 0
\(367\) 448.057 0.0637286 0.0318643 0.999492i \(-0.489856\pi\)
0.0318643 + 0.999492i \(0.489856\pi\)
\(368\) 1884.37 0.266928
\(369\) 0 0
\(370\) 3925.99 0.551628
\(371\) −2924.68 −0.409276
\(372\) 0 0
\(373\) 8424.64 1.16947 0.584734 0.811225i \(-0.301199\pi\)
0.584734 + 0.811225i \(0.301199\pi\)
\(374\) −4893.12 −0.676517
\(375\) 0 0
\(376\) −8669.06 −1.18902
\(377\) −7056.12 −0.963949
\(378\) 0 0
\(379\) −12814.9 −1.73683 −0.868413 0.495842i \(-0.834859\pi\)
−0.868413 + 0.495842i \(0.834859\pi\)
\(380\) 2036.93 0.274979
\(381\) 0 0
\(382\) −2182.87 −0.292369
\(383\) 13873.8 1.85096 0.925480 0.378797i \(-0.123662\pi\)
0.925480 + 0.378797i \(0.123662\pi\)
\(384\) 0 0
\(385\) −9376.82 −1.24126
\(386\) 634.449 0.0836596
\(387\) 0 0
\(388\) 3724.54 0.487332
\(389\) −7520.78 −0.980253 −0.490127 0.871651i \(-0.663049\pi\)
−0.490127 + 0.871651i \(0.663049\pi\)
\(390\) 0 0
\(391\) −7896.76 −1.02137
\(392\) −6048.89 −0.779376
\(393\) 0 0
\(394\) 7646.01 0.977666
\(395\) −2231.82 −0.284291
\(396\) 0 0
\(397\) −6446.95 −0.815020 −0.407510 0.913201i \(-0.633603\pi\)
−0.407510 + 0.913201i \(0.633603\pi\)
\(398\) −242.827 −0.0305824
\(399\) 0 0
\(400\) −2117.91 −0.264738
\(401\) 13100.6 1.63145 0.815727 0.578437i \(-0.196337\pi\)
0.815727 + 0.578437i \(0.196337\pi\)
\(402\) 0 0
\(403\) 9893.17 1.22286
\(404\) −1286.05 −0.158374
\(405\) 0 0
\(406\) 2390.81 0.292251
\(407\) −6414.15 −0.781173
\(408\) 0 0
\(409\) 13140.5 1.58864 0.794321 0.607499i \(-0.207827\pi\)
0.794321 + 0.607499i \(0.207827\pi\)
\(410\) −1698.24 −0.204562
\(411\) 0 0
\(412\) −2918.43 −0.348983
\(413\) 1734.86 0.206699
\(414\) 0 0
\(415\) 17426.9 2.06134
\(416\) 8898.05 1.04871
\(417\) 0 0
\(418\) 2840.11 0.332330
\(419\) 4021.66 0.468904 0.234452 0.972128i \(-0.424670\pi\)
0.234452 + 0.972128i \(0.424670\pi\)
\(420\) 0 0
\(421\) −2939.00 −0.340233 −0.170117 0.985424i \(-0.554414\pi\)
−0.170117 + 0.985424i \(0.554414\pi\)
\(422\) 2048.44 0.236295
\(423\) 0 0
\(424\) 7407.41 0.848434
\(425\) 8875.45 1.01299
\(426\) 0 0
\(427\) −2935.48 −0.332688
\(428\) −7355.82 −0.830741
\(429\) 0 0
\(430\) 13054.0 1.46399
\(431\) 9679.41 1.08177 0.540883 0.841098i \(-0.318090\pi\)
0.540883 + 0.841098i \(0.318090\pi\)
\(432\) 0 0
\(433\) −75.8532 −0.00841864 −0.00420932 0.999991i \(-0.501340\pi\)
−0.00420932 + 0.999991i \(0.501340\pi\)
\(434\) −3352.08 −0.370749
\(435\) 0 0
\(436\) 8019.60 0.880893
\(437\) 4583.50 0.501736
\(438\) 0 0
\(439\) −8154.32 −0.886525 −0.443263 0.896392i \(-0.646179\pi\)
−0.443263 + 0.896392i \(0.646179\pi\)
\(440\) 23749.0 2.57315
\(441\) 0 0
\(442\) 4608.97 0.495988
\(443\) −3120.41 −0.334662 −0.167331 0.985901i \(-0.553515\pi\)
−0.167331 + 0.985901i \(0.553515\pi\)
\(444\) 0 0
\(445\) −5209.88 −0.554994
\(446\) 1393.01 0.147894
\(447\) 0 0
\(448\) −3824.20 −0.403296
\(449\) −17954.3 −1.88712 −0.943561 0.331200i \(-0.892547\pi\)
−0.943561 + 0.331200i \(0.892547\pi\)
\(450\) 0 0
\(451\) 2774.53 0.289685
\(452\) −2628.70 −0.273548
\(453\) 0 0
\(454\) 3921.34 0.405369
\(455\) 8832.30 0.910032
\(456\) 0 0
\(457\) 4171.14 0.426953 0.213477 0.976948i \(-0.431521\pi\)
0.213477 + 0.976948i \(0.431521\pi\)
\(458\) 3511.36 0.358242
\(459\) 0 0
\(460\) 13432.0 1.36146
\(461\) 4166.77 0.420967 0.210483 0.977597i \(-0.432496\pi\)
0.210483 + 0.977597i \(0.432496\pi\)
\(462\) 0 0
\(463\) −14769.2 −1.48247 −0.741233 0.671248i \(-0.765758\pi\)
−0.741233 + 0.671248i \(0.765758\pi\)
\(464\) −1446.62 −0.144736
\(465\) 0 0
\(466\) 4890.44 0.486148
\(467\) −9126.12 −0.904296 −0.452148 0.891943i \(-0.649342\pi\)
−0.452148 + 0.891943i \(0.649342\pi\)
\(468\) 0 0
\(469\) 7753.90 0.763416
\(470\) 12599.0 1.23649
\(471\) 0 0
\(472\) −4393.93 −0.428490
\(473\) −21327.1 −2.07320
\(474\) 0 0
\(475\) −5151.57 −0.497621
\(476\) 1829.84 0.176199
\(477\) 0 0
\(478\) 2982.58 0.285398
\(479\) 1469.89 0.140211 0.0701054 0.997540i \(-0.477666\pi\)
0.0701054 + 0.997540i \(0.477666\pi\)
\(480\) 0 0
\(481\) 6041.67 0.572717
\(482\) 9034.78 0.853782
\(483\) 0 0
\(484\) −7852.73 −0.737484
\(485\) −15445.6 −1.44608
\(486\) 0 0
\(487\) 12909.7 1.20123 0.600613 0.799540i \(-0.294923\pi\)
0.600613 + 0.799540i \(0.294923\pi\)
\(488\) 7434.78 0.689666
\(489\) 0 0
\(490\) 8791.05 0.810488
\(491\) −18447.9 −1.69560 −0.847801 0.530314i \(-0.822074\pi\)
−0.847801 + 0.530314i \(0.822074\pi\)
\(492\) 0 0
\(493\) 6062.32 0.553819
\(494\) −2675.18 −0.243648
\(495\) 0 0
\(496\) 2028.26 0.183612
\(497\) 6132.97 0.553524
\(498\) 0 0
\(499\) −10980.3 −0.985058 −0.492529 0.870296i \(-0.663928\pi\)
−0.492529 + 0.870296i \(0.663928\pi\)
\(500\) −5439.10 −0.486487
\(501\) 0 0
\(502\) 6060.29 0.538812
\(503\) 4028.20 0.357075 0.178537 0.983933i \(-0.442863\pi\)
0.178537 + 0.983933i \(0.442863\pi\)
\(504\) 0 0
\(505\) 5333.21 0.469950
\(506\) 18728.3 1.64541
\(507\) 0 0
\(508\) 2052.83 0.179290
\(509\) 2731.61 0.237871 0.118936 0.992902i \(-0.462052\pi\)
0.118936 + 0.992902i \(0.462052\pi\)
\(510\) 0 0
\(511\) −5152.43 −0.446047
\(512\) 3873.97 0.334389
\(513\) 0 0
\(514\) 15264.1 1.30986
\(515\) 12102.7 1.03555
\(516\) 0 0
\(517\) −20583.9 −1.75102
\(518\) −2047.09 −0.173637
\(519\) 0 0
\(520\) −22369.8 −1.88650
\(521\) −16986.4 −1.42838 −0.714192 0.699950i \(-0.753205\pi\)
−0.714192 + 0.699950i \(0.753205\pi\)
\(522\) 0 0
\(523\) 21093.9 1.76362 0.881810 0.471605i \(-0.156325\pi\)
0.881810 + 0.471605i \(0.156325\pi\)
\(524\) 10615.2 0.884972
\(525\) 0 0
\(526\) −7591.29 −0.629270
\(527\) −8499.79 −0.702574
\(528\) 0 0
\(529\) 18057.7 1.48416
\(530\) −10765.4 −0.882303
\(531\) 0 0
\(532\) −1062.09 −0.0865557
\(533\) −2613.42 −0.212382
\(534\) 0 0
\(535\) 30504.5 2.46509
\(536\) −19638.5 −1.58257
\(537\) 0 0
\(538\) 7643.75 0.612538
\(539\) −14362.5 −1.14775
\(540\) 0 0
\(541\) −10959.2 −0.870928 −0.435464 0.900206i \(-0.643416\pi\)
−0.435464 + 0.900206i \(0.643416\pi\)
\(542\) 5624.90 0.445775
\(543\) 0 0
\(544\) −7644.82 −0.602516
\(545\) −33257.2 −2.61391
\(546\) 0 0
\(547\) 23945.6 1.87174 0.935870 0.352346i \(-0.114616\pi\)
0.935870 + 0.352346i \(0.114616\pi\)
\(548\) −5900.77 −0.459979
\(549\) 0 0
\(550\) −21049.5 −1.63191
\(551\) −3518.74 −0.272057
\(552\) 0 0
\(553\) 1163.71 0.0894866
\(554\) −11859.9 −0.909531
\(555\) 0 0
\(556\) 3980.20 0.303594
\(557\) −11376.7 −0.865437 −0.432718 0.901529i \(-0.642446\pi\)
−0.432718 + 0.901529i \(0.642446\pi\)
\(558\) 0 0
\(559\) 20088.6 1.51996
\(560\) 1810.77 0.136641
\(561\) 0 0
\(562\) 7889.97 0.592204
\(563\) 19299.8 1.44474 0.722370 0.691507i \(-0.243053\pi\)
0.722370 + 0.691507i \(0.243053\pi\)
\(564\) 0 0
\(565\) 10901.2 0.811711
\(566\) 2106.55 0.156440
\(567\) 0 0
\(568\) −15533.2 −1.14746
\(569\) −10855.8 −0.799820 −0.399910 0.916554i \(-0.630959\pi\)
−0.399910 + 0.916554i \(0.630959\pi\)
\(570\) 0 0
\(571\) −12876.9 −0.943748 −0.471874 0.881666i \(-0.656422\pi\)
−0.471874 + 0.881666i \(0.656422\pi\)
\(572\) 12808.1 0.936249
\(573\) 0 0
\(574\) 885.498 0.0643902
\(575\) −33970.7 −2.46378
\(576\) 0 0
\(577\) 16662.5 1.20220 0.601100 0.799174i \(-0.294729\pi\)
0.601100 + 0.799174i \(0.294729\pi\)
\(578\) 5469.65 0.393612
\(579\) 0 0
\(580\) −10311.7 −0.738223
\(581\) −9086.74 −0.648849
\(582\) 0 0
\(583\) 17588.2 1.24945
\(584\) 13049.7 0.924659
\(585\) 0 0
\(586\) 4584.27 0.323164
\(587\) 9224.90 0.648641 0.324320 0.945947i \(-0.394864\pi\)
0.324320 + 0.945947i \(0.394864\pi\)
\(588\) 0 0
\(589\) 4933.52 0.345131
\(590\) 6385.84 0.445595
\(591\) 0 0
\(592\) 1238.64 0.0859931
\(593\) 4407.67 0.305230 0.152615 0.988286i \(-0.451231\pi\)
0.152615 + 0.988286i \(0.451231\pi\)
\(594\) 0 0
\(595\) −7588.34 −0.522843
\(596\) −6057.11 −0.416290
\(597\) 0 0
\(598\) −17640.8 −1.20633
\(599\) 25472.0 1.73749 0.868745 0.495259i \(-0.164927\pi\)
0.868745 + 0.495259i \(0.164927\pi\)
\(600\) 0 0
\(601\) 4524.23 0.307067 0.153533 0.988143i \(-0.450935\pi\)
0.153533 + 0.988143i \(0.450935\pi\)
\(602\) −6806.59 −0.460824
\(603\) 0 0
\(604\) 12764.1 0.859875
\(605\) 32565.2 2.18837
\(606\) 0 0
\(607\) −7020.38 −0.469437 −0.234719 0.972063i \(-0.575417\pi\)
−0.234719 + 0.972063i \(0.575417\pi\)
\(608\) 4437.27 0.295979
\(609\) 0 0
\(610\) −10805.2 −0.717197
\(611\) 19388.6 1.28376
\(612\) 0 0
\(613\) −2803.90 −0.184745 −0.0923723 0.995725i \(-0.529445\pi\)
−0.0923723 + 0.995725i \(0.529445\pi\)
\(614\) −4023.55 −0.264458
\(615\) 0 0
\(616\) −12383.2 −0.809955
\(617\) 8131.95 0.530599 0.265300 0.964166i \(-0.414529\pi\)
0.265300 + 0.964166i \(0.414529\pi\)
\(618\) 0 0
\(619\) −21886.2 −1.42113 −0.710567 0.703630i \(-0.751561\pi\)
−0.710567 + 0.703630i \(0.751561\pi\)
\(620\) 14457.7 0.936508
\(621\) 0 0
\(622\) 11668.3 0.752179
\(623\) 2716.53 0.174696
\(624\) 0 0
\(625\) −1869.06 −0.119620
\(626\) 20372.4 1.30071
\(627\) 0 0
\(628\) −3179.65 −0.202041
\(629\) −5190.75 −0.329044
\(630\) 0 0
\(631\) 4452.70 0.280918 0.140459 0.990087i \(-0.455142\pi\)
0.140459 + 0.990087i \(0.455142\pi\)
\(632\) −2947.37 −0.185507
\(633\) 0 0
\(634\) −16179.3 −1.01350
\(635\) −8513.04 −0.532015
\(636\) 0 0
\(637\) 13528.5 0.841473
\(638\) −14377.7 −0.892191
\(639\) 0 0
\(640\) 10024.5 0.619146
\(641\) 15513.1 0.955899 0.477949 0.878387i \(-0.341380\pi\)
0.477949 + 0.878387i \(0.341380\pi\)
\(642\) 0 0
\(643\) −10772.9 −0.660717 −0.330358 0.943856i \(-0.607170\pi\)
−0.330358 + 0.943856i \(0.607170\pi\)
\(644\) −7003.70 −0.428547
\(645\) 0 0
\(646\) 2298.40 0.139983
\(647\) −2770.41 −0.168340 −0.0841701 0.996451i \(-0.526824\pi\)
−0.0841701 + 0.996451i \(0.526824\pi\)
\(648\) 0 0
\(649\) −10433.0 −0.631017
\(650\) 19827.1 1.19643
\(651\) 0 0
\(652\) −9528.35 −0.572330
\(653\) 31205.7 1.87010 0.935049 0.354518i \(-0.115355\pi\)
0.935049 + 0.354518i \(0.115355\pi\)
\(654\) 0 0
\(655\) −44020.9 −2.62601
\(656\) −535.793 −0.0318891
\(657\) 0 0
\(658\) −6569.38 −0.389211
\(659\) 6071.71 0.358908 0.179454 0.983766i \(-0.442567\pi\)
0.179454 + 0.983766i \(0.442567\pi\)
\(660\) 0 0
\(661\) 20654.8 1.21540 0.607700 0.794167i \(-0.292092\pi\)
0.607700 + 0.794167i \(0.292092\pi\)
\(662\) −19787.0 −1.16170
\(663\) 0 0
\(664\) 23014.3 1.34507
\(665\) 4404.49 0.256840
\(666\) 0 0
\(667\) −23203.4 −1.34699
\(668\) −11398.7 −0.660225
\(669\) 0 0
\(670\) 28541.3 1.64574
\(671\) 17653.2 1.01564
\(672\) 0 0
\(673\) −10494.7 −0.601101 −0.300551 0.953766i \(-0.597170\pi\)
−0.300551 + 0.953766i \(0.597170\pi\)
\(674\) 7055.01 0.403188
\(675\) 0 0
\(676\) −2581.40 −0.146870
\(677\) −12244.8 −0.695133 −0.347567 0.937655i \(-0.612992\pi\)
−0.347567 + 0.937655i \(0.612992\pi\)
\(678\) 0 0
\(679\) 8053.64 0.455184
\(680\) 19219.2 1.08386
\(681\) 0 0
\(682\) 20158.5 1.13183
\(683\) −14313.6 −0.801897 −0.400949 0.916101i \(-0.631319\pi\)
−0.400949 + 0.916101i \(0.631319\pi\)
\(684\) 0 0
\(685\) 24470.4 1.36491
\(686\) −10728.1 −0.597084
\(687\) 0 0
\(688\) 4118.50 0.228222
\(689\) −16566.8 −0.916033
\(690\) 0 0
\(691\) −15583.7 −0.857936 −0.428968 0.903320i \(-0.641123\pi\)
−0.428968 + 0.903320i \(0.641123\pi\)
\(692\) −8897.05 −0.488750
\(693\) 0 0
\(694\) 8552.83 0.467811
\(695\) −16505.8 −0.900866
\(696\) 0 0
\(697\) 2245.34 0.122020
\(698\) −2628.31 −0.142526
\(699\) 0 0
\(700\) 7871.71 0.425032
\(701\) 28768.4 1.55003 0.775014 0.631944i \(-0.217743\pi\)
0.775014 + 0.631944i \(0.217743\pi\)
\(702\) 0 0
\(703\) 3012.86 0.161639
\(704\) 22997.7 1.23119
\(705\) 0 0
\(706\) 7086.57 0.377771
\(707\) −2780.84 −0.147927
\(708\) 0 0
\(709\) 9566.70 0.506749 0.253374 0.967368i \(-0.418460\pi\)
0.253374 + 0.967368i \(0.418460\pi\)
\(710\) 22574.8 1.19327
\(711\) 0 0
\(712\) −6880.25 −0.362146
\(713\) 32532.8 1.70878
\(714\) 0 0
\(715\) −53115.1 −2.77817
\(716\) −2013.10 −0.105074
\(717\) 0 0
\(718\) 17646.8 0.917235
\(719\) 19674.1 1.02047 0.510237 0.860034i \(-0.329558\pi\)
0.510237 + 0.860034i \(0.329558\pi\)
\(720\) 0 0
\(721\) −6310.58 −0.325962
\(722\) 11830.4 0.609807
\(723\) 0 0
\(724\) 781.253 0.0401037
\(725\) 26079.2 1.33594
\(726\) 0 0
\(727\) −34245.6 −1.74704 −0.873520 0.486789i \(-0.838168\pi\)
−0.873520 + 0.486789i \(0.838168\pi\)
\(728\) 11664.1 0.593818
\(729\) 0 0
\(730\) −18965.6 −0.961571
\(731\) −17259.3 −0.873267
\(732\) 0 0
\(733\) 30906.4 1.55737 0.778685 0.627415i \(-0.215887\pi\)
0.778685 + 0.627415i \(0.215887\pi\)
\(734\) −859.953 −0.0432445
\(735\) 0 0
\(736\) 29260.4 1.46543
\(737\) −46629.9 −2.33057
\(738\) 0 0
\(739\) −25421.1 −1.26540 −0.632699 0.774398i \(-0.718053\pi\)
−0.632699 + 0.774398i \(0.718053\pi\)
\(740\) 8829.20 0.438605
\(741\) 0 0
\(742\) 5613.31 0.277724
\(743\) 33013.8 1.63009 0.815046 0.579396i \(-0.196712\pi\)
0.815046 + 0.579396i \(0.196712\pi\)
\(744\) 0 0
\(745\) 25118.7 1.23527
\(746\) −16169.4 −0.793569
\(747\) 0 0
\(748\) −11004.2 −0.537905
\(749\) −15905.6 −0.775940
\(750\) 0 0
\(751\) −9966.57 −0.484268 −0.242134 0.970243i \(-0.577847\pi\)
−0.242134 + 0.970243i \(0.577847\pi\)
\(752\) 3974.97 0.192756
\(753\) 0 0
\(754\) 13542.8 0.654109
\(755\) −52932.6 −2.55154
\(756\) 0 0
\(757\) 23753.5 1.14047 0.570236 0.821481i \(-0.306852\pi\)
0.570236 + 0.821481i \(0.306852\pi\)
\(758\) 24595.5 1.17856
\(759\) 0 0
\(760\) −11155.4 −0.532432
\(761\) −10526.6 −0.501431 −0.250716 0.968061i \(-0.580666\pi\)
−0.250716 + 0.968061i \(0.580666\pi\)
\(762\) 0 0
\(763\) 17340.9 0.822784
\(764\) −4909.07 −0.232466
\(765\) 0 0
\(766\) −26627.9 −1.25601
\(767\) 9827.13 0.462630
\(768\) 0 0
\(769\) 2950.58 0.138362 0.0691811 0.997604i \(-0.477961\pi\)
0.0691811 + 0.997604i \(0.477961\pi\)
\(770\) 17996.9 0.842288
\(771\) 0 0
\(772\) 1426.82 0.0665186
\(773\) 10231.2 0.476056 0.238028 0.971258i \(-0.423499\pi\)
0.238028 + 0.971258i \(0.423499\pi\)
\(774\) 0 0
\(775\) −36564.8 −1.69477
\(776\) −20397.7 −0.943601
\(777\) 0 0
\(778\) 14434.6 0.665173
\(779\) −1303.26 −0.0599410
\(780\) 0 0
\(781\) −36882.0 −1.68981
\(782\) 15156.2 0.693075
\(783\) 0 0
\(784\) 2773.56 0.126347
\(785\) 13186.0 0.599525
\(786\) 0 0
\(787\) −27741.6 −1.25652 −0.628261 0.778003i \(-0.716233\pi\)
−0.628261 + 0.778003i \(0.716233\pi\)
\(788\) 17195.2 0.777352
\(789\) 0 0
\(790\) 4283.51 0.192912
\(791\) −5684.10 −0.255503
\(792\) 0 0
\(793\) −16628.1 −0.744615
\(794\) 12373.6 0.553050
\(795\) 0 0
\(796\) −546.096 −0.0243164
\(797\) 34080.0 1.51465 0.757326 0.653037i \(-0.226506\pi\)
0.757326 + 0.653037i \(0.226506\pi\)
\(798\) 0 0
\(799\) −16657.8 −0.737561
\(800\) −32886.8 −1.45341
\(801\) 0 0
\(802\) −25143.9 −1.10706
\(803\) 30985.3 1.36170
\(804\) 0 0
\(805\) 29044.2 1.27165
\(806\) −18987.9 −0.829801
\(807\) 0 0
\(808\) 7043.12 0.306653
\(809\) 26201.8 1.13870 0.569348 0.822096i \(-0.307196\pi\)
0.569348 + 0.822096i \(0.307196\pi\)
\(810\) 0 0
\(811\) 13358.8 0.578412 0.289206 0.957267i \(-0.406609\pi\)
0.289206 + 0.957267i \(0.406609\pi\)
\(812\) 5376.72 0.232372
\(813\) 0 0
\(814\) 12310.6 0.530083
\(815\) 39513.9 1.69830
\(816\) 0 0
\(817\) 10017.8 0.428982
\(818\) −25220.4 −1.07801
\(819\) 0 0
\(820\) −3819.20 −0.162649
\(821\) 35994.5 1.53010 0.765052 0.643968i \(-0.222713\pi\)
0.765052 + 0.643968i \(0.222713\pi\)
\(822\) 0 0
\(823\) −38743.7 −1.64097 −0.820486 0.571667i \(-0.806297\pi\)
−0.820486 + 0.571667i \(0.806297\pi\)
\(824\) 15983.0 0.675721
\(825\) 0 0
\(826\) −3329.70 −0.140260
\(827\) −34159.4 −1.43632 −0.718162 0.695876i \(-0.755016\pi\)
−0.718162 + 0.695876i \(0.755016\pi\)
\(828\) 0 0
\(829\) 35296.0 1.47875 0.739374 0.673295i \(-0.235122\pi\)
0.739374 + 0.673295i \(0.235122\pi\)
\(830\) −33447.4 −1.39876
\(831\) 0 0
\(832\) −21662.2 −0.902647
\(833\) −11623.1 −0.483453
\(834\) 0 0
\(835\) 47270.4 1.95911
\(836\) 6387.15 0.264239
\(837\) 0 0
\(838\) −7718.74 −0.318185
\(839\) 39727.0 1.63472 0.817358 0.576129i \(-0.195438\pi\)
0.817358 + 0.576129i \(0.195438\pi\)
\(840\) 0 0
\(841\) −6575.82 −0.269622
\(842\) 5640.80 0.230873
\(843\) 0 0
\(844\) 4606.75 0.187880
\(845\) 10705.0 0.435815
\(846\) 0 0
\(847\) −16980.1 −0.688835
\(848\) −3396.48 −0.137542
\(849\) 0 0
\(850\) −17034.6 −0.687390
\(851\) 19867.5 0.800293
\(852\) 0 0
\(853\) −7068.86 −0.283743 −0.141872 0.989885i \(-0.545312\pi\)
−0.141872 + 0.989885i \(0.545312\pi\)
\(854\) 5634.05 0.225753
\(855\) 0 0
\(856\) 40284.7 1.60853
\(857\) 7467.01 0.297629 0.148815 0.988865i \(-0.452454\pi\)
0.148815 + 0.988865i \(0.452454\pi\)
\(858\) 0 0
\(859\) −38191.8 −1.51698 −0.758490 0.651685i \(-0.774063\pi\)
−0.758490 + 0.651685i \(0.774063\pi\)
\(860\) 29357.2 1.16404
\(861\) 0 0
\(862\) −18577.6 −0.734056
\(863\) 41733.3 1.64614 0.823069 0.567941i \(-0.192260\pi\)
0.823069 + 0.567941i \(0.192260\pi\)
\(864\) 0 0
\(865\) 36895.9 1.45029
\(866\) 145.584 0.00571266
\(867\) 0 0
\(868\) −7538.53 −0.294786
\(869\) −6998.26 −0.273187
\(870\) 0 0
\(871\) 43922.0 1.70866
\(872\) −43919.9 −1.70564
\(873\) 0 0
\(874\) −8797.09 −0.340464
\(875\) −11761.1 −0.454396
\(876\) 0 0
\(877\) 16676.0 0.642087 0.321043 0.947065i \(-0.395966\pi\)
0.321043 + 0.947065i \(0.395966\pi\)
\(878\) 15650.5 0.601571
\(879\) 0 0
\(880\) −10889.5 −0.417141
\(881\) 19171.1 0.733135 0.366567 0.930391i \(-0.380533\pi\)
0.366567 + 0.930391i \(0.380533\pi\)
\(882\) 0 0
\(883\) 7041.22 0.268353 0.134177 0.990957i \(-0.457161\pi\)
0.134177 + 0.990957i \(0.457161\pi\)
\(884\) 10365.2 0.394365
\(885\) 0 0
\(886\) 5988.99 0.227093
\(887\) −41940.1 −1.58761 −0.793805 0.608173i \(-0.791903\pi\)
−0.793805 + 0.608173i \(0.791903\pi\)
\(888\) 0 0
\(889\) 4438.86 0.167463
\(890\) 9999.29 0.376603
\(891\) 0 0
\(892\) 3132.75 0.117592
\(893\) 9668.67 0.362318
\(894\) 0 0
\(895\) 8348.28 0.311790
\(896\) −5226.98 −0.194890
\(897\) 0 0
\(898\) 34459.6 1.28055
\(899\) −24975.3 −0.926555
\(900\) 0 0
\(901\) 14233.5 0.526290
\(902\) −5325.14 −0.196572
\(903\) 0 0
\(904\) 14396.3 0.529661
\(905\) −3239.85 −0.119001
\(906\) 0 0
\(907\) −45038.2 −1.64881 −0.824404 0.566001i \(-0.808490\pi\)
−0.824404 + 0.566001i \(0.808490\pi\)
\(908\) 8818.74 0.322313
\(909\) 0 0
\(910\) −16951.8 −0.617523
\(911\) 48746.1 1.77281 0.886405 0.462910i \(-0.153195\pi\)
0.886405 + 0.462910i \(0.153195\pi\)
\(912\) 0 0
\(913\) 54645.2 1.98082
\(914\) −8005.63 −0.289719
\(915\) 0 0
\(916\) 7896.73 0.284842
\(917\) 22953.3 0.826593
\(918\) 0 0
\(919\) −37028.2 −1.32910 −0.664552 0.747242i \(-0.731378\pi\)
−0.664552 + 0.747242i \(0.731378\pi\)
\(920\) −73561.2 −2.63613
\(921\) 0 0
\(922\) −7997.24 −0.285656
\(923\) 34740.3 1.23888
\(924\) 0 0
\(925\) −22329.8 −0.793729
\(926\) 28346.3 1.00596
\(927\) 0 0
\(928\) −22463.1 −0.794599
\(929\) −38766.8 −1.36910 −0.684552 0.728964i \(-0.740002\pi\)
−0.684552 + 0.728964i \(0.740002\pi\)
\(930\) 0 0
\(931\) 6746.38 0.237490
\(932\) 10998.2 0.386541
\(933\) 0 0
\(934\) 17515.7 0.613631
\(935\) 45634.2 1.59615
\(936\) 0 0
\(937\) 46941.3 1.63661 0.818306 0.574782i \(-0.194913\pi\)
0.818306 + 0.574782i \(0.194913\pi\)
\(938\) −14882.0 −0.518033
\(939\) 0 0
\(940\) 28334.1 0.983145
\(941\) −39286.7 −1.36101 −0.680505 0.732743i \(-0.738240\pi\)
−0.680505 + 0.732743i \(0.738240\pi\)
\(942\) 0 0
\(943\) −8593.98 −0.296775
\(944\) 2014.72 0.0694636
\(945\) 0 0
\(946\) 40933.0 1.40681
\(947\) −10859.1 −0.372622 −0.186311 0.982491i \(-0.559653\pi\)
−0.186311 + 0.982491i \(0.559653\pi\)
\(948\) 0 0
\(949\) −29186.0 −0.998331
\(950\) 9887.36 0.337672
\(951\) 0 0
\(952\) −10021.3 −0.341167
\(953\) −37223.0 −1.26524 −0.632618 0.774464i \(-0.718020\pi\)
−0.632618 + 0.774464i \(0.718020\pi\)
\(954\) 0 0
\(955\) 20357.8 0.689805
\(956\) 6707.56 0.226922
\(957\) 0 0
\(958\) −2821.15 −0.0951432
\(959\) −12759.3 −0.429635
\(960\) 0 0
\(961\) 5226.11 0.175426
\(962\) −11595.7 −0.388630
\(963\) 0 0
\(964\) 20318.4 0.678851
\(965\) −5916.99 −0.197383
\(966\) 0 0
\(967\) −8408.61 −0.279630 −0.139815 0.990178i \(-0.544651\pi\)
−0.139815 + 0.990178i \(0.544651\pi\)
\(968\) 43006.0 1.42796
\(969\) 0 0
\(970\) 29644.6 0.981269
\(971\) 20660.0 0.682813 0.341406 0.939916i \(-0.389097\pi\)
0.341406 + 0.939916i \(0.389097\pi\)
\(972\) 0 0
\(973\) 8606.46 0.283567
\(974\) −24777.6 −0.815118
\(975\) 0 0
\(976\) −3409.03 −0.111804
\(977\) −50316.1 −1.64765 −0.823825 0.566844i \(-0.808164\pi\)
−0.823825 + 0.566844i \(0.808164\pi\)
\(978\) 0 0
\(979\) −16336.5 −0.533317
\(980\) 19770.3 0.644427
\(981\) 0 0
\(982\) 35406.8 1.15059
\(983\) −1034.36 −0.0335614 −0.0167807 0.999859i \(-0.505342\pi\)
−0.0167807 + 0.999859i \(0.505342\pi\)
\(984\) 0 0
\(985\) −71308.2 −2.30667
\(986\) −11635.4 −0.375807
\(987\) 0 0
\(988\) −6016.24 −0.193727
\(989\) 66059.7 2.12394
\(990\) 0 0
\(991\) 34133.6 1.09414 0.547068 0.837088i \(-0.315744\pi\)
0.547068 + 0.837088i \(0.315744\pi\)
\(992\) 31494.9 1.00803
\(993\) 0 0
\(994\) −11771.0 −0.375606
\(995\) 2264.65 0.0721551
\(996\) 0 0
\(997\) 12536.8 0.398241 0.199120 0.979975i \(-0.436192\pi\)
0.199120 + 0.979975i \(0.436192\pi\)
\(998\) 21074.3 0.668433
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1629.4.a.e.1.9 23
3.2 odd 2 543.4.a.c.1.15 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.4.a.c.1.15 23 3.2 odd 2
1629.4.a.e.1.9 23 1.1 even 1 trivial