Properties

Label 5408.2.a.bq.1.5
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5408,2,Mod(1,5408)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5408.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5408, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-7,0,6,0,0,0,10,0,1,0,0,0,-18,0,-7,0,5,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 14x^{7} + 23x^{6} + 63x^{5} - 85x^{4} - 99x^{3} + 98x^{2} + 35x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.148538\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.851462 q^{3} +4.11908 q^{5} +4.22319 q^{7} -2.27501 q^{9} -4.95964 q^{11} -3.50724 q^{15} -4.42474 q^{17} -3.17673 q^{19} -3.59588 q^{21} -3.80838 q^{23} +11.9668 q^{25} +4.49147 q^{27} -1.10618 q^{29} -7.19114 q^{31} +4.22294 q^{33} +17.3956 q^{35} +0.218074 q^{37} -9.16464 q^{41} -11.1691 q^{43} -9.37095 q^{45} -4.49087 q^{47} +10.8353 q^{49} +3.76750 q^{51} +4.87022 q^{53} -20.4291 q^{55} +2.70486 q^{57} -0.982297 q^{59} -6.00168 q^{61} -9.60780 q^{63} -3.15809 q^{67} +3.24269 q^{69} -5.39071 q^{71} -5.36917 q^{73} -10.1893 q^{75} -20.9455 q^{77} -1.04391 q^{79} +3.00072 q^{81} +7.56101 q^{83} -18.2258 q^{85} +0.941874 q^{87} -6.65174 q^{89} +6.12298 q^{93} -13.0852 q^{95} +1.42288 q^{97} +11.2832 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 7 q^{3} + 6 q^{5} + 10 q^{9} + q^{11} - 18 q^{15} - 7 q^{17} + 5 q^{19} + 12 q^{21} - 12 q^{23} + 11 q^{25} - 34 q^{27} - 8 q^{29} - 20 q^{31} - 12 q^{33} - 6 q^{35} + 6 q^{37} - 31 q^{41} - 33 q^{43}+ \cdots + 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.851462 −0.491592 −0.245796 0.969322i \(-0.579049\pi\)
−0.245796 + 0.969322i \(0.579049\pi\)
\(4\) 0 0
\(5\) 4.11908 1.84211 0.921054 0.389436i \(-0.127330\pi\)
0.921054 + 0.389436i \(0.127330\pi\)
\(6\) 0 0
\(7\) 4.22319 1.59621 0.798107 0.602515i \(-0.205835\pi\)
0.798107 + 0.602515i \(0.205835\pi\)
\(8\) 0 0
\(9\) −2.27501 −0.758337
\(10\) 0 0
\(11\) −4.95964 −1.49539 −0.747693 0.664044i \(-0.768839\pi\)
−0.747693 + 0.664044i \(0.768839\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −3.50724 −0.905565
\(16\) 0 0
\(17\) −4.42474 −1.07316 −0.536578 0.843851i \(-0.680283\pi\)
−0.536578 + 0.843851i \(0.680283\pi\)
\(18\) 0 0
\(19\) −3.17673 −0.728791 −0.364396 0.931244i \(-0.618724\pi\)
−0.364396 + 0.931244i \(0.618724\pi\)
\(20\) 0 0
\(21\) −3.59588 −0.784686
\(22\) 0 0
\(23\) −3.80838 −0.794102 −0.397051 0.917797i \(-0.629966\pi\)
−0.397051 + 0.917797i \(0.629966\pi\)
\(24\) 0 0
\(25\) 11.9668 2.39336
\(26\) 0 0
\(27\) 4.49147 0.864384
\(28\) 0 0
\(29\) −1.10618 −0.205413 −0.102707 0.994712i \(-0.532750\pi\)
−0.102707 + 0.994712i \(0.532750\pi\)
\(30\) 0 0
\(31\) −7.19114 −1.29157 −0.645784 0.763521i \(-0.723469\pi\)
−0.645784 + 0.763521i \(0.723469\pi\)
\(32\) 0 0
\(33\) 4.22294 0.735120
\(34\) 0 0
\(35\) 17.3956 2.94040
\(36\) 0 0
\(37\) 0.218074 0.0358512 0.0179256 0.999839i \(-0.494294\pi\)
0.0179256 + 0.999839i \(0.494294\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.16464 −1.43128 −0.715638 0.698472i \(-0.753864\pi\)
−0.715638 + 0.698472i \(0.753864\pi\)
\(42\) 0 0
\(43\) −11.1691 −1.70327 −0.851636 0.524133i \(-0.824389\pi\)
−0.851636 + 0.524133i \(0.824389\pi\)
\(44\) 0 0
\(45\) −9.37095 −1.39694
\(46\) 0 0
\(47\) −4.49087 −0.655061 −0.327530 0.944841i \(-0.606216\pi\)
−0.327530 + 0.944841i \(0.606216\pi\)
\(48\) 0 0
\(49\) 10.8353 1.54790
\(50\) 0 0
\(51\) 3.76750 0.527555
\(52\) 0 0
\(53\) 4.87022 0.668977 0.334488 0.942400i \(-0.391437\pi\)
0.334488 + 0.942400i \(0.391437\pi\)
\(54\) 0 0
\(55\) −20.4291 −2.75466
\(56\) 0 0
\(57\) 2.70486 0.358268
\(58\) 0 0
\(59\) −0.982297 −0.127884 −0.0639421 0.997954i \(-0.520367\pi\)
−0.0639421 + 0.997954i \(0.520367\pi\)
\(60\) 0 0
\(61\) −6.00168 −0.768436 −0.384218 0.923242i \(-0.625529\pi\)
−0.384218 + 0.923242i \(0.625529\pi\)
\(62\) 0 0
\(63\) −9.60780 −1.21047
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.15809 −0.385822 −0.192911 0.981216i \(-0.561793\pi\)
−0.192911 + 0.981216i \(0.561793\pi\)
\(68\) 0 0
\(69\) 3.24269 0.390374
\(70\) 0 0
\(71\) −5.39071 −0.639760 −0.319880 0.947458i \(-0.603643\pi\)
−0.319880 + 0.947458i \(0.603643\pi\)
\(72\) 0 0
\(73\) −5.36917 −0.628414 −0.314207 0.949355i \(-0.601739\pi\)
−0.314207 + 0.949355i \(0.601739\pi\)
\(74\) 0 0
\(75\) −10.1893 −1.17656
\(76\) 0 0
\(77\) −20.9455 −2.38696
\(78\) 0 0
\(79\) −1.04391 −0.117449 −0.0587243 0.998274i \(-0.518703\pi\)
−0.0587243 + 0.998274i \(0.518703\pi\)
\(80\) 0 0
\(81\) 3.00072 0.333413
\(82\) 0 0
\(83\) 7.56101 0.829929 0.414964 0.909838i \(-0.363794\pi\)
0.414964 + 0.909838i \(0.363794\pi\)
\(84\) 0 0
\(85\) −18.2258 −1.97687
\(86\) 0 0
\(87\) 0.941874 0.100979
\(88\) 0 0
\(89\) −6.65174 −0.705083 −0.352542 0.935796i \(-0.614682\pi\)
−0.352542 + 0.935796i \(0.614682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.12298 0.634924
\(94\) 0 0
\(95\) −13.0852 −1.34251
\(96\) 0 0
\(97\) 1.42288 0.144472 0.0722360 0.997388i \(-0.476987\pi\)
0.0722360 + 0.997388i \(0.476987\pi\)
\(98\) 0 0
\(99\) 11.2832 1.13401
\(100\) 0 0
\(101\) −0.877856 −0.0873499 −0.0436750 0.999046i \(-0.513907\pi\)
−0.0436750 + 0.999046i \(0.513907\pi\)
\(102\) 0 0
\(103\) −16.4828 −1.62410 −0.812049 0.583589i \(-0.801648\pi\)
−0.812049 + 0.583589i \(0.801648\pi\)
\(104\) 0 0
\(105\) −14.8117 −1.44548
\(106\) 0 0
\(107\) 2.55444 0.246947 0.123474 0.992348i \(-0.460597\pi\)
0.123474 + 0.992348i \(0.460597\pi\)
\(108\) 0 0
\(109\) −1.99387 −0.190978 −0.0954890 0.995430i \(-0.530441\pi\)
−0.0954890 + 0.995430i \(0.530441\pi\)
\(110\) 0 0
\(111\) −0.185682 −0.0176241
\(112\) 0 0
\(113\) 17.5675 1.65261 0.826307 0.563220i \(-0.190438\pi\)
0.826307 + 0.563220i \(0.190438\pi\)
\(114\) 0 0
\(115\) −15.6870 −1.46282
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −18.6865 −1.71299
\(120\) 0 0
\(121\) 13.5980 1.23618
\(122\) 0 0
\(123\) 7.80334 0.703603
\(124\) 0 0
\(125\) 28.6967 2.56672
\(126\) 0 0
\(127\) −1.70725 −0.151494 −0.0757469 0.997127i \(-0.524134\pi\)
−0.0757469 + 0.997127i \(0.524134\pi\)
\(128\) 0 0
\(129\) 9.51007 0.837315
\(130\) 0 0
\(131\) −8.49064 −0.741830 −0.370915 0.928667i \(-0.620956\pi\)
−0.370915 + 0.928667i \(0.620956\pi\)
\(132\) 0 0
\(133\) −13.4159 −1.16331
\(134\) 0 0
\(135\) 18.5007 1.59229
\(136\) 0 0
\(137\) 10.8252 0.924863 0.462432 0.886655i \(-0.346977\pi\)
0.462432 + 0.886655i \(0.346977\pi\)
\(138\) 0 0
\(139\) −7.92594 −0.672270 −0.336135 0.941814i \(-0.609120\pi\)
−0.336135 + 0.941814i \(0.609120\pi\)
\(140\) 0 0
\(141\) 3.82381 0.322023
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.55646 −0.378393
\(146\) 0 0
\(147\) −9.22585 −0.760935
\(148\) 0 0
\(149\) 10.0480 0.823165 0.411582 0.911373i \(-0.364976\pi\)
0.411582 + 0.911373i \(0.364976\pi\)
\(150\) 0 0
\(151\) −2.75225 −0.223975 −0.111988 0.993710i \(-0.535722\pi\)
−0.111988 + 0.993710i \(0.535722\pi\)
\(152\) 0 0
\(153\) 10.0663 0.813815
\(154\) 0 0
\(155\) −29.6209 −2.37920
\(156\) 0 0
\(157\) 12.3195 0.983199 0.491600 0.870821i \(-0.336412\pi\)
0.491600 + 0.870821i \(0.336412\pi\)
\(158\) 0 0
\(159\) −4.14681 −0.328864
\(160\) 0 0
\(161\) −16.0835 −1.26756
\(162\) 0 0
\(163\) −1.05203 −0.0824015 −0.0412008 0.999151i \(-0.513118\pi\)
−0.0412008 + 0.999151i \(0.513118\pi\)
\(164\) 0 0
\(165\) 17.3946 1.35417
\(166\) 0 0
\(167\) 8.16346 0.631708 0.315854 0.948808i \(-0.397709\pi\)
0.315854 + 0.948808i \(0.397709\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 7.22709 0.552670
\(172\) 0 0
\(173\) 19.2395 1.46276 0.731378 0.681972i \(-0.238878\pi\)
0.731378 + 0.681972i \(0.238878\pi\)
\(174\) 0 0
\(175\) 50.5380 3.82031
\(176\) 0 0
\(177\) 0.836388 0.0628668
\(178\) 0 0
\(179\) 18.7305 1.39998 0.699992 0.714151i \(-0.253187\pi\)
0.699992 + 0.714151i \(0.253187\pi\)
\(180\) 0 0
\(181\) −14.0447 −1.04394 −0.521968 0.852965i \(-0.674802\pi\)
−0.521968 + 0.852965i \(0.674802\pi\)
\(182\) 0 0
\(183\) 5.11020 0.377757
\(184\) 0 0
\(185\) 0.898264 0.0660417
\(186\) 0 0
\(187\) 21.9451 1.60478
\(188\) 0 0
\(189\) 18.9683 1.37974
\(190\) 0 0
\(191\) 18.1132 1.31062 0.655312 0.755359i \(-0.272537\pi\)
0.655312 + 0.755359i \(0.272537\pi\)
\(192\) 0 0
\(193\) 2.63610 0.189751 0.0948753 0.995489i \(-0.469755\pi\)
0.0948753 + 0.995489i \(0.469755\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.2244 1.72592 0.862958 0.505276i \(-0.168609\pi\)
0.862958 + 0.505276i \(0.168609\pi\)
\(198\) 0 0
\(199\) −18.7696 −1.33054 −0.665271 0.746602i \(-0.731684\pi\)
−0.665271 + 0.746602i \(0.731684\pi\)
\(200\) 0 0
\(201\) 2.68899 0.189667
\(202\) 0 0
\(203\) −4.67162 −0.327884
\(204\) 0 0
\(205\) −37.7498 −2.63656
\(206\) 0 0
\(207\) 8.66411 0.602197
\(208\) 0 0
\(209\) 15.7554 1.08982
\(210\) 0 0
\(211\) 1.03381 0.0711702 0.0355851 0.999367i \(-0.488671\pi\)
0.0355851 + 0.999367i \(0.488671\pi\)
\(212\) 0 0
\(213\) 4.58999 0.314501
\(214\) 0 0
\(215\) −46.0064 −3.13761
\(216\) 0 0
\(217\) −30.3695 −2.06162
\(218\) 0 0
\(219\) 4.57164 0.308923
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.34722 0.358076 0.179038 0.983842i \(-0.442701\pi\)
0.179038 + 0.983842i \(0.442701\pi\)
\(224\) 0 0
\(225\) −27.2246 −1.81497
\(226\) 0 0
\(227\) 26.0767 1.73077 0.865386 0.501105i \(-0.167073\pi\)
0.865386 + 0.501105i \(0.167073\pi\)
\(228\) 0 0
\(229\) 4.01313 0.265195 0.132597 0.991170i \(-0.457668\pi\)
0.132597 + 0.991170i \(0.457668\pi\)
\(230\) 0 0
\(231\) 17.8343 1.17341
\(232\) 0 0
\(233\) −2.43031 −0.159215 −0.0796075 0.996826i \(-0.525367\pi\)
−0.0796075 + 0.996826i \(0.525367\pi\)
\(234\) 0 0
\(235\) −18.4982 −1.20669
\(236\) 0 0
\(237\) 0.888846 0.0577368
\(238\) 0 0
\(239\) 14.6547 0.947933 0.473966 0.880543i \(-0.342822\pi\)
0.473966 + 0.880543i \(0.342822\pi\)
\(240\) 0 0
\(241\) −24.3732 −1.57002 −0.785008 0.619486i \(-0.787341\pi\)
−0.785008 + 0.619486i \(0.787341\pi\)
\(242\) 0 0
\(243\) −16.0294 −1.02829
\(244\) 0 0
\(245\) 44.6314 2.85140
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −6.43791 −0.407986
\(250\) 0 0
\(251\) −16.4253 −1.03676 −0.518378 0.855152i \(-0.673464\pi\)
−0.518378 + 0.855152i \(0.673464\pi\)
\(252\) 0 0
\(253\) 18.8882 1.18749
\(254\) 0 0
\(255\) 15.5186 0.971813
\(256\) 0 0
\(257\) −1.26309 −0.0787893 −0.0393946 0.999224i \(-0.512543\pi\)
−0.0393946 + 0.999224i \(0.512543\pi\)
\(258\) 0 0
\(259\) 0.920968 0.0572261
\(260\) 0 0
\(261\) 2.51658 0.155773
\(262\) 0 0
\(263\) 18.6363 1.14916 0.574580 0.818448i \(-0.305165\pi\)
0.574580 + 0.818448i \(0.305165\pi\)
\(264\) 0 0
\(265\) 20.0608 1.23233
\(266\) 0 0
\(267\) 5.66370 0.346613
\(268\) 0 0
\(269\) 1.45156 0.0885034 0.0442517 0.999020i \(-0.485910\pi\)
0.0442517 + 0.999020i \(0.485910\pi\)
\(270\) 0 0
\(271\) −18.3946 −1.11739 −0.558695 0.829373i \(-0.688698\pi\)
−0.558695 + 0.829373i \(0.688698\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −59.3509 −3.57900
\(276\) 0 0
\(277\) −7.54671 −0.453438 −0.226719 0.973960i \(-0.572800\pi\)
−0.226719 + 0.973960i \(0.572800\pi\)
\(278\) 0 0
\(279\) 16.3599 0.979444
\(280\) 0 0
\(281\) −6.64428 −0.396364 −0.198182 0.980165i \(-0.563504\pi\)
−0.198182 + 0.980165i \(0.563504\pi\)
\(282\) 0 0
\(283\) −2.07919 −0.123595 −0.0617976 0.998089i \(-0.519683\pi\)
−0.0617976 + 0.998089i \(0.519683\pi\)
\(284\) 0 0
\(285\) 11.1415 0.659968
\(286\) 0 0
\(287\) −38.7040 −2.28462
\(288\) 0 0
\(289\) 2.57830 0.151664
\(290\) 0 0
\(291\) −1.21153 −0.0710212
\(292\) 0 0
\(293\) 12.1943 0.712396 0.356198 0.934411i \(-0.384073\pi\)
0.356198 + 0.934411i \(0.384073\pi\)
\(294\) 0 0
\(295\) −4.04616 −0.235576
\(296\) 0 0
\(297\) −22.2761 −1.29259
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −47.1692 −2.71879
\(302\) 0 0
\(303\) 0.747461 0.0429405
\(304\) 0 0
\(305\) −24.7214 −1.41554
\(306\) 0 0
\(307\) 19.9287 1.13739 0.568695 0.822549i \(-0.307449\pi\)
0.568695 + 0.822549i \(0.307449\pi\)
\(308\) 0 0
\(309\) 14.0345 0.798393
\(310\) 0 0
\(311\) −16.8046 −0.952901 −0.476450 0.879201i \(-0.658077\pi\)
−0.476450 + 0.879201i \(0.658077\pi\)
\(312\) 0 0
\(313\) −19.6091 −1.10837 −0.554186 0.832393i \(-0.686970\pi\)
−0.554186 + 0.832393i \(0.686970\pi\)
\(314\) 0 0
\(315\) −39.5753 −2.22981
\(316\) 0 0
\(317\) −24.4330 −1.37229 −0.686147 0.727463i \(-0.740699\pi\)
−0.686147 + 0.727463i \(0.740699\pi\)
\(318\) 0 0
\(319\) 5.48627 0.307172
\(320\) 0 0
\(321\) −2.17501 −0.121397
\(322\) 0 0
\(323\) 14.0562 0.782107
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.69770 0.0938833
\(328\) 0 0
\(329\) −18.9658 −1.04562
\(330\) 0 0
\(331\) 25.8773 1.42234 0.711171 0.703019i \(-0.248165\pi\)
0.711171 + 0.703019i \(0.248165\pi\)
\(332\) 0 0
\(333\) −0.496121 −0.0271873
\(334\) 0 0
\(335\) −13.0084 −0.710725
\(336\) 0 0
\(337\) 26.5515 1.44635 0.723176 0.690664i \(-0.242682\pi\)
0.723176 + 0.690664i \(0.242682\pi\)
\(338\) 0 0
\(339\) −14.9581 −0.812412
\(340\) 0 0
\(341\) 35.6654 1.93139
\(342\) 0 0
\(343\) 16.1972 0.874567
\(344\) 0 0
\(345\) 13.3569 0.719111
\(346\) 0 0
\(347\) 5.97049 0.320513 0.160256 0.987075i \(-0.448768\pi\)
0.160256 + 0.987075i \(0.448768\pi\)
\(348\) 0 0
\(349\) −29.8008 −1.59520 −0.797600 0.603187i \(-0.793897\pi\)
−0.797600 + 0.603187i \(0.793897\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.5864 1.52150 0.760749 0.649046i \(-0.224832\pi\)
0.760749 + 0.649046i \(0.224832\pi\)
\(354\) 0 0
\(355\) −22.2048 −1.17851
\(356\) 0 0
\(357\) 15.9108 0.842091
\(358\) 0 0
\(359\) 7.17562 0.378715 0.189357 0.981908i \(-0.439360\pi\)
0.189357 + 0.981908i \(0.439360\pi\)
\(360\) 0 0
\(361\) −8.90841 −0.468863
\(362\) 0 0
\(363\) −11.5782 −0.607696
\(364\) 0 0
\(365\) −22.1160 −1.15761
\(366\) 0 0
\(367\) 8.42026 0.439534 0.219767 0.975552i \(-0.429470\pi\)
0.219767 + 0.975552i \(0.429470\pi\)
\(368\) 0 0
\(369\) 20.8497 1.08539
\(370\) 0 0
\(371\) 20.5679 1.06783
\(372\) 0 0
\(373\) 29.6355 1.53447 0.767233 0.641368i \(-0.221633\pi\)
0.767233 + 0.641368i \(0.221633\pi\)
\(374\) 0 0
\(375\) −24.4342 −1.26178
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 30.0698 1.54458 0.772291 0.635269i \(-0.219111\pi\)
0.772291 + 0.635269i \(0.219111\pi\)
\(380\) 0 0
\(381\) 1.45366 0.0744731
\(382\) 0 0
\(383\) −20.9979 −1.07294 −0.536472 0.843918i \(-0.680243\pi\)
−0.536472 + 0.843918i \(0.680243\pi\)
\(384\) 0 0
\(385\) −86.2760 −4.39703
\(386\) 0 0
\(387\) 25.4099 1.29166
\(388\) 0 0
\(389\) 4.11555 0.208667 0.104333 0.994542i \(-0.466729\pi\)
0.104333 + 0.994542i \(0.466729\pi\)
\(390\) 0 0
\(391\) 16.8511 0.852196
\(392\) 0 0
\(393\) 7.22945 0.364678
\(394\) 0 0
\(395\) −4.29993 −0.216353
\(396\) 0 0
\(397\) −3.09264 −0.155215 −0.0776075 0.996984i \(-0.524728\pi\)
−0.0776075 + 0.996984i \(0.524728\pi\)
\(398\) 0 0
\(399\) 11.4231 0.571872
\(400\) 0 0
\(401\) −21.7842 −1.08785 −0.543925 0.839134i \(-0.683063\pi\)
−0.543925 + 0.839134i \(0.683063\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 12.3602 0.614182
\(406\) 0 0
\(407\) −1.08157 −0.0536113
\(408\) 0 0
\(409\) −31.9544 −1.58005 −0.790023 0.613077i \(-0.789931\pi\)
−0.790023 + 0.613077i \(0.789931\pi\)
\(410\) 0 0
\(411\) −9.21729 −0.454655
\(412\) 0 0
\(413\) −4.14842 −0.204130
\(414\) 0 0
\(415\) 31.1444 1.52882
\(416\) 0 0
\(417\) 6.74864 0.330482
\(418\) 0 0
\(419\) −3.25354 −0.158946 −0.0794730 0.996837i \(-0.525324\pi\)
−0.0794730 + 0.996837i \(0.525324\pi\)
\(420\) 0 0
\(421\) −28.8187 −1.40454 −0.702270 0.711911i \(-0.747830\pi\)
−0.702270 + 0.711911i \(0.747830\pi\)
\(422\) 0 0
\(423\) 10.2168 0.496757
\(424\) 0 0
\(425\) −52.9499 −2.56845
\(426\) 0 0
\(427\) −25.3462 −1.22659
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.3095 −1.60446 −0.802230 0.597015i \(-0.796353\pi\)
−0.802230 + 0.597015i \(0.796353\pi\)
\(432\) 0 0
\(433\) 3.61117 0.173542 0.0867709 0.996228i \(-0.472345\pi\)
0.0867709 + 0.996228i \(0.472345\pi\)
\(434\) 0 0
\(435\) 3.87965 0.186015
\(436\) 0 0
\(437\) 12.0982 0.578735
\(438\) 0 0
\(439\) −35.7325 −1.70542 −0.852710 0.522385i \(-0.825042\pi\)
−0.852710 + 0.522385i \(0.825042\pi\)
\(440\) 0 0
\(441\) −24.6504 −1.17383
\(442\) 0 0
\(443\) 30.8088 1.46377 0.731886 0.681427i \(-0.238640\pi\)
0.731886 + 0.681427i \(0.238640\pi\)
\(444\) 0 0
\(445\) −27.3990 −1.29884
\(446\) 0 0
\(447\) −8.55550 −0.404661
\(448\) 0 0
\(449\) −32.4518 −1.53150 −0.765748 0.643140i \(-0.777631\pi\)
−0.765748 + 0.643140i \(0.777631\pi\)
\(450\) 0 0
\(451\) 45.4533 2.14031
\(452\) 0 0
\(453\) 2.34344 0.110104
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 21.9772 1.02805 0.514026 0.857775i \(-0.328153\pi\)
0.514026 + 0.857775i \(0.328153\pi\)
\(458\) 0 0
\(459\) −19.8736 −0.927620
\(460\) 0 0
\(461\) −13.7521 −0.640497 −0.320248 0.947334i \(-0.603766\pi\)
−0.320248 + 0.947334i \(0.603766\pi\)
\(462\) 0 0
\(463\) −7.23652 −0.336310 −0.168155 0.985761i \(-0.553781\pi\)
−0.168155 + 0.985761i \(0.553781\pi\)
\(464\) 0 0
\(465\) 25.2210 1.16960
\(466\) 0 0
\(467\) −31.6809 −1.46602 −0.733008 0.680220i \(-0.761884\pi\)
−0.733008 + 0.680220i \(0.761884\pi\)
\(468\) 0 0
\(469\) −13.3372 −0.615854
\(470\) 0 0
\(471\) −10.4895 −0.483333
\(472\) 0 0
\(473\) 55.3947 2.54705
\(474\) 0 0
\(475\) −38.0152 −1.74426
\(476\) 0 0
\(477\) −11.0798 −0.507310
\(478\) 0 0
\(479\) −0.386072 −0.0176401 −0.00882005 0.999961i \(-0.502808\pi\)
−0.00882005 + 0.999961i \(0.502808\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 13.6945 0.623121
\(484\) 0 0
\(485\) 5.86097 0.266133
\(486\) 0 0
\(487\) −20.3910 −0.924005 −0.462002 0.886879i \(-0.652869\pi\)
−0.462002 + 0.886879i \(0.652869\pi\)
\(488\) 0 0
\(489\) 0.895766 0.0405079
\(490\) 0 0
\(491\) −5.35980 −0.241885 −0.120942 0.992660i \(-0.538592\pi\)
−0.120942 + 0.992660i \(0.538592\pi\)
\(492\) 0 0
\(493\) 4.89457 0.220440
\(494\) 0 0
\(495\) 46.4765 2.08896
\(496\) 0 0
\(497\) −22.7660 −1.02119
\(498\) 0 0
\(499\) −22.5641 −1.01011 −0.505054 0.863088i \(-0.668528\pi\)
−0.505054 + 0.863088i \(0.668528\pi\)
\(500\) 0 0
\(501\) −6.95088 −0.310542
\(502\) 0 0
\(503\) 27.0739 1.20717 0.603583 0.797301i \(-0.293739\pi\)
0.603583 + 0.797301i \(0.293739\pi\)
\(504\) 0 0
\(505\) −3.61596 −0.160908
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.9132 0.793991 0.396995 0.917821i \(-0.370053\pi\)
0.396995 + 0.917821i \(0.370053\pi\)
\(510\) 0 0
\(511\) −22.6750 −1.00308
\(512\) 0 0
\(513\) −14.2682 −0.629956
\(514\) 0 0
\(515\) −67.8939 −2.99176
\(516\) 0 0
\(517\) 22.2731 0.979569
\(518\) 0 0
\(519\) −16.3817 −0.719079
\(520\) 0 0
\(521\) −15.5850 −0.682792 −0.341396 0.939920i \(-0.610900\pi\)
−0.341396 + 0.939920i \(0.610900\pi\)
\(522\) 0 0
\(523\) −11.1629 −0.488118 −0.244059 0.969760i \(-0.578479\pi\)
−0.244059 + 0.969760i \(0.578479\pi\)
\(524\) 0 0
\(525\) −43.0312 −1.87803
\(526\) 0 0
\(527\) 31.8189 1.38605
\(528\) 0 0
\(529\) −8.49624 −0.369402
\(530\) 0 0
\(531\) 2.23474 0.0969793
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 10.5219 0.454903
\(536\) 0 0
\(537\) −15.9483 −0.688221
\(538\) 0 0
\(539\) −53.7392 −2.31471
\(540\) 0 0
\(541\) 26.6285 1.14485 0.572424 0.819958i \(-0.306003\pi\)
0.572424 + 0.819958i \(0.306003\pi\)
\(542\) 0 0
\(543\) 11.9585 0.513190
\(544\) 0 0
\(545\) −8.21290 −0.351802
\(546\) 0 0
\(547\) 14.4482 0.617760 0.308880 0.951101i \(-0.400046\pi\)
0.308880 + 0.951101i \(0.400046\pi\)
\(548\) 0 0
\(549\) 13.6539 0.582734
\(550\) 0 0
\(551\) 3.51404 0.149703
\(552\) 0 0
\(553\) −4.40861 −0.187473
\(554\) 0 0
\(555\) −0.764838 −0.0324656
\(556\) 0 0
\(557\) −22.6385 −0.959225 −0.479613 0.877480i \(-0.659223\pi\)
−0.479613 + 0.877480i \(0.659223\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −18.6854 −0.788899
\(562\) 0 0
\(563\) 28.8754 1.21695 0.608477 0.793571i \(-0.291781\pi\)
0.608477 + 0.793571i \(0.291781\pi\)
\(564\) 0 0
\(565\) 72.3620 3.04429
\(566\) 0 0
\(567\) 12.6726 0.532199
\(568\) 0 0
\(569\) −6.59852 −0.276624 −0.138312 0.990389i \(-0.544168\pi\)
−0.138312 + 0.990389i \(0.544168\pi\)
\(570\) 0 0
\(571\) 29.9931 1.25517 0.627587 0.778547i \(-0.284043\pi\)
0.627587 + 0.778547i \(0.284043\pi\)
\(572\) 0 0
\(573\) −15.4227 −0.644292
\(574\) 0 0
\(575\) −45.5741 −1.90057
\(576\) 0 0
\(577\) −22.9455 −0.955235 −0.477617 0.878568i \(-0.658499\pi\)
−0.477617 + 0.878568i \(0.658499\pi\)
\(578\) 0 0
\(579\) −2.24454 −0.0932799
\(580\) 0 0
\(581\) 31.9316 1.32474
\(582\) 0 0
\(583\) −24.1545 −1.00038
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.8418 −1.27298 −0.636488 0.771287i \(-0.719613\pi\)
−0.636488 + 0.771287i \(0.719613\pi\)
\(588\) 0 0
\(589\) 22.8443 0.941283
\(590\) 0 0
\(591\) −20.6261 −0.848446
\(592\) 0 0
\(593\) −14.4145 −0.591933 −0.295967 0.955198i \(-0.595642\pi\)
−0.295967 + 0.955198i \(0.595642\pi\)
\(594\) 0 0
\(595\) −76.9711 −3.15551
\(596\) 0 0
\(597\) 15.9816 0.654084
\(598\) 0 0
\(599\) −40.4714 −1.65362 −0.826809 0.562483i \(-0.809846\pi\)
−0.826809 + 0.562483i \(0.809846\pi\)
\(600\) 0 0
\(601\) 25.7782 1.05152 0.525758 0.850634i \(-0.323782\pi\)
0.525758 + 0.850634i \(0.323782\pi\)
\(602\) 0 0
\(603\) 7.18469 0.292583
\(604\) 0 0
\(605\) 56.0112 2.27718
\(606\) 0 0
\(607\) −34.2526 −1.39027 −0.695135 0.718879i \(-0.744656\pi\)
−0.695135 + 0.718879i \(0.744656\pi\)
\(608\) 0 0
\(609\) 3.97771 0.161185
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 19.3912 0.783203 0.391601 0.920135i \(-0.371921\pi\)
0.391601 + 0.920135i \(0.371921\pi\)
\(614\) 0 0
\(615\) 32.1426 1.29611
\(616\) 0 0
\(617\) 28.7531 1.15756 0.578778 0.815485i \(-0.303530\pi\)
0.578778 + 0.815485i \(0.303530\pi\)
\(618\) 0 0
\(619\) 32.8313 1.31960 0.659801 0.751441i \(-0.270641\pi\)
0.659801 + 0.751441i \(0.270641\pi\)
\(620\) 0 0
\(621\) −17.1052 −0.686409
\(622\) 0 0
\(623\) −28.0915 −1.12546
\(624\) 0 0
\(625\) 58.3701 2.33481
\(626\) 0 0
\(627\) −13.4151 −0.535749
\(628\) 0 0
\(629\) −0.964921 −0.0384739
\(630\) 0 0
\(631\) 38.2847 1.52409 0.762045 0.647524i \(-0.224195\pi\)
0.762045 + 0.647524i \(0.224195\pi\)
\(632\) 0 0
\(633\) −0.880247 −0.0349867
\(634\) 0 0
\(635\) −7.03229 −0.279068
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 12.2639 0.485154
\(640\) 0 0
\(641\) −50.2675 −1.98545 −0.992724 0.120411i \(-0.961579\pi\)
−0.992724 + 0.120411i \(0.961579\pi\)
\(642\) 0 0
\(643\) −15.4064 −0.607570 −0.303785 0.952741i \(-0.598251\pi\)
−0.303785 + 0.952741i \(0.598251\pi\)
\(644\) 0 0
\(645\) 39.1727 1.54242
\(646\) 0 0
\(647\) −22.4168 −0.881295 −0.440647 0.897680i \(-0.645251\pi\)
−0.440647 + 0.897680i \(0.645251\pi\)
\(648\) 0 0
\(649\) 4.87183 0.191236
\(650\) 0 0
\(651\) 25.8585 1.01347
\(652\) 0 0
\(653\) −24.1656 −0.945674 −0.472837 0.881150i \(-0.656770\pi\)
−0.472837 + 0.881150i \(0.656770\pi\)
\(654\) 0 0
\(655\) −34.9736 −1.36653
\(656\) 0 0
\(657\) 12.2149 0.476550
\(658\) 0 0
\(659\) −0.393825 −0.0153412 −0.00767061 0.999971i \(-0.502442\pi\)
−0.00767061 + 0.999971i \(0.502442\pi\)
\(660\) 0 0
\(661\) 40.6407 1.58074 0.790370 0.612629i \(-0.209888\pi\)
0.790370 + 0.612629i \(0.209888\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −55.2612 −2.14294
\(666\) 0 0
\(667\) 4.21277 0.163119
\(668\) 0 0
\(669\) −4.55296 −0.176027
\(670\) 0 0
\(671\) 29.7661 1.14911
\(672\) 0 0
\(673\) −46.9874 −1.81123 −0.905616 0.424099i \(-0.860591\pi\)
−0.905616 + 0.424099i \(0.860591\pi\)
\(674\) 0 0
\(675\) 53.7485 2.06878
\(676\) 0 0
\(677\) 21.3124 0.819101 0.409551 0.912287i \(-0.365686\pi\)
0.409551 + 0.912287i \(0.365686\pi\)
\(678\) 0 0
\(679\) 6.00910 0.230608
\(680\) 0 0
\(681\) −22.2033 −0.850834
\(682\) 0 0
\(683\) 12.2326 0.468066 0.234033 0.972229i \(-0.424808\pi\)
0.234033 + 0.972229i \(0.424808\pi\)
\(684\) 0 0
\(685\) 44.5900 1.70370
\(686\) 0 0
\(687\) −3.41703 −0.130368
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 46.3780 1.76430 0.882152 0.470966i \(-0.156094\pi\)
0.882152 + 0.470966i \(0.156094\pi\)
\(692\) 0 0
\(693\) 47.6512 1.81012
\(694\) 0 0
\(695\) −32.6476 −1.23839
\(696\) 0 0
\(697\) 40.5511 1.53598
\(698\) 0 0
\(699\) 2.06932 0.0782688
\(700\) 0 0
\(701\) −34.0352 −1.28549 −0.642746 0.766079i \(-0.722205\pi\)
−0.642746 + 0.766079i \(0.722205\pi\)
\(702\) 0 0
\(703\) −0.692762 −0.0261280
\(704\) 0 0
\(705\) 15.7505 0.593200
\(706\) 0 0
\(707\) −3.70735 −0.139429
\(708\) 0 0
\(709\) −33.1776 −1.24601 −0.623005 0.782218i \(-0.714088\pi\)
−0.623005 + 0.782218i \(0.714088\pi\)
\(710\) 0 0
\(711\) 2.37490 0.0890657
\(712\) 0 0
\(713\) 27.3866 1.02564
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.4779 −0.465996
\(718\) 0 0
\(719\) −9.69809 −0.361678 −0.180839 0.983513i \(-0.557881\pi\)
−0.180839 + 0.983513i \(0.557881\pi\)
\(720\) 0 0
\(721\) −69.6099 −2.59241
\(722\) 0 0
\(723\) 20.7528 0.771807
\(724\) 0 0
\(725\) −13.2375 −0.491627
\(726\) 0 0
\(727\) −18.8217 −0.698059 −0.349030 0.937112i \(-0.613489\pi\)
−0.349030 + 0.937112i \(0.613489\pi\)
\(728\) 0 0
\(729\) 4.64629 0.172085
\(730\) 0 0
\(731\) 49.4204 1.82788
\(732\) 0 0
\(733\) 43.3650 1.60172 0.800861 0.598850i \(-0.204376\pi\)
0.800861 + 0.598850i \(0.204376\pi\)
\(734\) 0 0
\(735\) −38.0020 −1.40172
\(736\) 0 0
\(737\) 15.6630 0.576953
\(738\) 0 0
\(739\) 6.36900 0.234288 0.117144 0.993115i \(-0.462626\pi\)
0.117144 + 0.993115i \(0.462626\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.5334 −0.423119 −0.211560 0.977365i \(-0.567854\pi\)
−0.211560 + 0.977365i \(0.567854\pi\)
\(744\) 0 0
\(745\) 41.3885 1.51636
\(746\) 0 0
\(747\) −17.2014 −0.629366
\(748\) 0 0
\(749\) 10.7879 0.394181
\(750\) 0 0
\(751\) 48.1144 1.75572 0.877859 0.478919i \(-0.158971\pi\)
0.877859 + 0.478919i \(0.158971\pi\)
\(752\) 0 0
\(753\) 13.9855 0.509661
\(754\) 0 0
\(755\) −11.3367 −0.412586
\(756\) 0 0
\(757\) −22.6438 −0.823003 −0.411502 0.911409i \(-0.634996\pi\)
−0.411502 + 0.911409i \(0.634996\pi\)
\(758\) 0 0
\(759\) −16.0826 −0.583760
\(760\) 0 0
\(761\) −35.5528 −1.28879 −0.644395 0.764693i \(-0.722891\pi\)
−0.644395 + 0.764693i \(0.722891\pi\)
\(762\) 0 0
\(763\) −8.42048 −0.304842
\(764\) 0 0
\(765\) 41.4640 1.49913
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 37.5523 1.35417 0.677086 0.735904i \(-0.263243\pi\)
0.677086 + 0.735904i \(0.263243\pi\)
\(770\) 0 0
\(771\) 1.07547 0.0387322
\(772\) 0 0
\(773\) −4.12049 −0.148204 −0.0741019 0.997251i \(-0.523609\pi\)
−0.0741019 + 0.997251i \(0.523609\pi\)
\(774\) 0 0
\(775\) −86.0549 −3.09118
\(776\) 0 0
\(777\) −0.784169 −0.0281319
\(778\) 0 0
\(779\) 29.1135 1.04310
\(780\) 0 0
\(781\) 26.7360 0.956689
\(782\) 0 0
\(783\) −4.96840 −0.177556
\(784\) 0 0
\(785\) 50.7448 1.81116
\(786\) 0 0
\(787\) 7.06875 0.251974 0.125987 0.992032i \(-0.459790\pi\)
0.125987 + 0.992032i \(0.459790\pi\)
\(788\) 0 0
\(789\) −15.8681 −0.564918
\(790\) 0 0
\(791\) 74.1909 2.63793
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −17.0810 −0.605802
\(796\) 0 0
\(797\) −2.36362 −0.0837237 −0.0418618 0.999123i \(-0.513329\pi\)
−0.0418618 + 0.999123i \(0.513329\pi\)
\(798\) 0 0
\(799\) 19.8709 0.702982
\(800\) 0 0
\(801\) 15.1328 0.534691
\(802\) 0 0
\(803\) 26.6291 0.939721
\(804\) 0 0
\(805\) −66.2492 −2.33498
\(806\) 0 0
\(807\) −1.23595 −0.0435076
\(808\) 0 0
\(809\) 0.223889 0.00787153 0.00393576 0.999992i \(-0.498747\pi\)
0.00393576 + 0.999992i \(0.498747\pi\)
\(810\) 0 0
\(811\) −17.4773 −0.613710 −0.306855 0.951756i \(-0.599277\pi\)
−0.306855 + 0.951756i \(0.599277\pi\)
\(812\) 0 0
\(813\) 15.6623 0.549300
\(814\) 0 0
\(815\) −4.33340 −0.151792
\(816\) 0 0
\(817\) 35.4812 1.24133
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.2561 −0.776743 −0.388372 0.921503i \(-0.626962\pi\)
−0.388372 + 0.921503i \(0.626962\pi\)
\(822\) 0 0
\(823\) −35.6004 −1.24095 −0.620476 0.784225i \(-0.713061\pi\)
−0.620476 + 0.784225i \(0.713061\pi\)
\(824\) 0 0
\(825\) 50.5351 1.75941
\(826\) 0 0
\(827\) 28.9263 1.00587 0.502933 0.864325i \(-0.332254\pi\)
0.502933 + 0.864325i \(0.332254\pi\)
\(828\) 0 0
\(829\) −37.1439 −1.29006 −0.645031 0.764157i \(-0.723155\pi\)
−0.645031 + 0.764157i \(0.723155\pi\)
\(830\) 0 0
\(831\) 6.42574 0.222906
\(832\) 0 0
\(833\) −47.9434 −1.66114
\(834\) 0 0
\(835\) 33.6259 1.16367
\(836\) 0 0
\(837\) −32.2988 −1.11641
\(838\) 0 0
\(839\) 6.28498 0.216981 0.108491 0.994097i \(-0.465398\pi\)
0.108491 + 0.994097i \(0.465398\pi\)
\(840\) 0 0
\(841\) −27.7764 −0.957805
\(842\) 0 0
\(843\) 5.65735 0.194850
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 57.4268 1.97321
\(848\) 0 0
\(849\) 1.77036 0.0607584
\(850\) 0 0
\(851\) −0.830509 −0.0284695
\(852\) 0 0
\(853\) 14.5503 0.498194 0.249097 0.968479i \(-0.419866\pi\)
0.249097 + 0.968479i \(0.419866\pi\)
\(854\) 0 0
\(855\) 29.7689 1.01808
\(856\) 0 0
\(857\) 34.8702 1.19114 0.595572 0.803302i \(-0.296925\pi\)
0.595572 + 0.803302i \(0.296925\pi\)
\(858\) 0 0
\(859\) −26.0178 −0.887717 −0.443859 0.896097i \(-0.646391\pi\)
−0.443859 + 0.896097i \(0.646391\pi\)
\(860\) 0 0
\(861\) 32.9550 1.12310
\(862\) 0 0
\(863\) 15.7106 0.534796 0.267398 0.963586i \(-0.413836\pi\)
0.267398 + 0.963586i \(0.413836\pi\)
\(864\) 0 0
\(865\) 79.2492 2.69455
\(866\) 0 0
\(867\) −2.19532 −0.0745570
\(868\) 0 0
\(869\) 5.17739 0.175631
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.23708 −0.109558
\(874\) 0 0
\(875\) 121.192 4.09703
\(876\) 0 0
\(877\) −10.0348 −0.338852 −0.169426 0.985543i \(-0.554191\pi\)
−0.169426 + 0.985543i \(0.554191\pi\)
\(878\) 0 0
\(879\) −10.3829 −0.350208
\(880\) 0 0
\(881\) 54.6749 1.84204 0.921022 0.389511i \(-0.127356\pi\)
0.921022 + 0.389511i \(0.127356\pi\)
\(882\) 0 0
\(883\) −16.6038 −0.558762 −0.279381 0.960180i \(-0.590129\pi\)
−0.279381 + 0.960180i \(0.590129\pi\)
\(884\) 0 0
\(885\) 3.44515 0.115807
\(886\) 0 0
\(887\) 55.3861 1.85968 0.929842 0.367959i \(-0.119943\pi\)
0.929842 + 0.367959i \(0.119943\pi\)
\(888\) 0 0
\(889\) −7.21003 −0.241817
\(890\) 0 0
\(891\) −14.8825 −0.498581
\(892\) 0 0
\(893\) 14.2663 0.477402
\(894\) 0 0
\(895\) 77.1524 2.57892
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.95472 0.265305
\(900\) 0 0
\(901\) −21.5495 −0.717917
\(902\) 0 0
\(903\) 40.1628 1.33653
\(904\) 0 0
\(905\) −57.8513 −1.92304
\(906\) 0 0
\(907\) 20.9907 0.696985 0.348493 0.937311i \(-0.386694\pi\)
0.348493 + 0.937311i \(0.386694\pi\)
\(908\) 0 0
\(909\) 1.99713 0.0662407
\(910\) 0 0
\(911\) 37.8886 1.25530 0.627652 0.778494i \(-0.284016\pi\)
0.627652 + 0.778494i \(0.284016\pi\)
\(912\) 0 0
\(913\) −37.4999 −1.24106
\(914\) 0 0
\(915\) 21.0493 0.695868
\(916\) 0 0
\(917\) −35.8575 −1.18412
\(918\) 0 0
\(919\) −27.2228 −0.897997 −0.448999 0.893532i \(-0.648219\pi\)
−0.448999 + 0.893532i \(0.648219\pi\)
\(920\) 0 0
\(921\) −16.9685 −0.559131
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2.60965 0.0858047
\(926\) 0 0
\(927\) 37.4986 1.23161
\(928\) 0 0
\(929\) 26.5485 0.871029 0.435514 0.900182i \(-0.356566\pi\)
0.435514 + 0.900182i \(0.356566\pi\)
\(930\) 0 0
\(931\) −34.4208 −1.12810
\(932\) 0 0
\(933\) 14.3085 0.468438
\(934\) 0 0
\(935\) 90.3935 2.95618
\(936\) 0 0
\(937\) −17.9293 −0.585724 −0.292862 0.956155i \(-0.594608\pi\)
−0.292862 + 0.956155i \(0.594608\pi\)
\(938\) 0 0
\(939\) 16.6964 0.544867
\(940\) 0 0
\(941\) −11.9807 −0.390558 −0.195279 0.980748i \(-0.562561\pi\)
−0.195279 + 0.980748i \(0.562561\pi\)
\(942\) 0 0
\(943\) 34.9024 1.13658
\(944\) 0 0
\(945\) 78.1320 2.54163
\(946\) 0 0
\(947\) −29.1251 −0.946438 −0.473219 0.880945i \(-0.656908\pi\)
−0.473219 + 0.880945i \(0.656908\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 20.8038 0.674609
\(952\) 0 0
\(953\) 31.1838 1.01014 0.505072 0.863077i \(-0.331466\pi\)
0.505072 + 0.863077i \(0.331466\pi\)
\(954\) 0 0
\(955\) 74.6095 2.41431
\(956\) 0 0
\(957\) −4.67135 −0.151003
\(958\) 0 0
\(959\) 45.7170 1.47628
\(960\) 0 0
\(961\) 20.7125 0.668145
\(962\) 0 0
\(963\) −5.81139 −0.187269
\(964\) 0 0
\(965\) 10.8583 0.349541
\(966\) 0 0
\(967\) −56.4990 −1.81688 −0.908442 0.418010i \(-0.862728\pi\)
−0.908442 + 0.418010i \(0.862728\pi\)
\(968\) 0 0
\(969\) −11.9683 −0.384477
\(970\) 0 0
\(971\) −30.2789 −0.971696 −0.485848 0.874043i \(-0.661489\pi\)
−0.485848 + 0.874043i \(0.661489\pi\)
\(972\) 0 0
\(973\) −33.4727 −1.07309
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.4707 −1.19879 −0.599397 0.800452i \(-0.704593\pi\)
−0.599397 + 0.800452i \(0.704593\pi\)
\(978\) 0 0
\(979\) 32.9902 1.05437
\(980\) 0 0
\(981\) 4.53608 0.144826
\(982\) 0 0
\(983\) 39.5666 1.26198 0.630989 0.775792i \(-0.282649\pi\)
0.630989 + 0.775792i \(0.282649\pi\)
\(984\) 0 0
\(985\) 99.7821 3.17932
\(986\) 0 0
\(987\) 16.1486 0.514017
\(988\) 0 0
\(989\) 42.5362 1.35257
\(990\) 0 0
\(991\) 30.8316 0.979398 0.489699 0.871892i \(-0.337107\pi\)
0.489699 + 0.871892i \(0.337107\pi\)
\(992\) 0 0
\(993\) −22.0335 −0.699212
\(994\) 0 0
\(995\) −77.3135 −2.45100
\(996\) 0 0
\(997\) −54.0175 −1.71075 −0.855376 0.518007i \(-0.826674\pi\)
−0.855376 + 0.518007i \(0.826674\pi\)
\(998\) 0 0
\(999\) 0.979474 0.0309892
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.bq.1.5 yes 9
4.3 odd 2 5408.2.a.bs.1.5 yes 9
13.12 even 2 5408.2.a.bp.1.5 9
52.51 odd 2 5408.2.a.br.1.5 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5408.2.a.bp.1.5 9 13.12 even 2
5408.2.a.bq.1.5 yes 9 1.1 even 1 trivial
5408.2.a.br.1.5 yes 9 52.51 odd 2
5408.2.a.bs.1.5 yes 9 4.3 odd 2