# Properties

 Label 5400.2.f.j Level $5400$ Weight $2$ Character orbit 5400.f Analytic conductor $43.119$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5400,2,Mod(649,5400)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5400, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5400.649");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5400 = 2^{3} \cdot 3^{3} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5400.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$43.1192170915$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{37}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1080) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q+O(q^{10})$$ q $$q - 2 q^{11} - 3 i q^{17} + q^{19} + 3 i q^{23} + 4 q^{29} - 5 q^{31} + 10 i q^{37} - 6 q^{41} + 6 i q^{43} - 8 i q^{47} + 7 q^{49} + 3 i q^{53} + 5 q^{61} - 2 i q^{67} - 2 q^{71} - 6 i q^{73} + 11 q^{79} + 9 i q^{83} + 10 q^{89} + 8 i q^{97} +O(q^{100})$$ q - 2 * q^11 - 3*i * q^17 + q^19 + 3*i * q^23 + 4 * q^29 - 5 * q^31 + 10*i * q^37 - 6 * q^41 + 6*i * q^43 - 8*i * q^47 + 7 * q^49 + 3*i * q^53 + 5 * q^61 - 2*i * q^67 - 2 * q^71 - 6*i * q^73 + 11 * q^79 + 9*i * q^83 + 10 * q^89 + 8*i * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q - 4 q^{11} + 2 q^{19} + 8 q^{29} - 10 q^{31} - 12 q^{41} + 14 q^{49} + 10 q^{61} - 4 q^{71} + 22 q^{79} + 20 q^{89}+O(q^{100})$$ 2 * q - 4 * q^11 + 2 * q^19 + 8 * q^29 - 10 * q^31 - 12 * q^41 + 14 * q^49 + 10 * q^61 - 4 * q^71 + 22 * q^79 + 20 * q^89

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/5400\mathbb{Z}\right)^\times$$.

 $$n$$ $$1001$$ $$1351$$ $$2377$$ $$2701$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
649.1
 1.00000i − 1.00000i
0 0 0 0 0 0 0 0 0
649.2 0 0 0 0 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5400.2.f.j 2
3.b odd 2 1 5400.2.f.r 2
5.b even 2 1 inner 5400.2.f.j 2
5.c odd 4 1 1080.2.a.d 1
5.c odd 4 1 5400.2.a.w 1
15.d odd 2 1 5400.2.f.r 2
15.e even 4 1 1080.2.a.j yes 1
15.e even 4 1 5400.2.a.x 1
20.e even 4 1 2160.2.a.f 1
40.i odd 4 1 8640.2.a.bt 1
40.k even 4 1 8640.2.a.bs 1
45.k odd 12 2 3240.2.q.s 2
45.l even 12 2 3240.2.q.e 2
60.l odd 4 1 2160.2.a.r 1
120.q odd 4 1 8640.2.a.p 1
120.w even 4 1 8640.2.a.o 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.a.d 1 5.c odd 4 1
1080.2.a.j yes 1 15.e even 4 1
2160.2.a.f 1 20.e even 4 1
2160.2.a.r 1 60.l odd 4 1
3240.2.q.e 2 45.l even 12 2
3240.2.q.s 2 45.k odd 12 2
5400.2.a.w 1 5.c odd 4 1
5400.2.a.x 1 15.e even 4 1
5400.2.f.j 2 1.a even 1 1 trivial
5400.2.f.j 2 5.b even 2 1 inner
5400.2.f.r 2 3.b odd 2 1
5400.2.f.r 2 15.d odd 2 1
8640.2.a.o 1 120.w even 4 1
8640.2.a.p 1 120.q odd 4 1
8640.2.a.bs 1 40.k even 4 1
8640.2.a.bt 1 40.i odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(5400, [\chi])$$:

 $$T_{7}$$ T7 $$T_{11} + 2$$ T11 + 2 $$T_{13}$$ T13 $$T_{29} - 4$$ T29 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$(T + 2)^{2}$$
$13$ $$T^{2}$$
$17$ $$T^{2} + 9$$
$19$ $$(T - 1)^{2}$$
$23$ $$T^{2} + 9$$
$29$ $$(T - 4)^{2}$$
$31$ $$(T + 5)^{2}$$
$37$ $$T^{2} + 100$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 36$$
$47$ $$T^{2} + 64$$
$53$ $$T^{2} + 9$$
$59$ $$T^{2}$$
$61$ $$(T - 5)^{2}$$
$67$ $$T^{2} + 4$$
$71$ $$(T + 2)^{2}$$
$73$ $$T^{2} + 36$$
$79$ $$(T - 11)^{2}$$
$83$ $$T^{2} + 81$$
$89$ $$(T - 10)^{2}$$
$97$ $$T^{2} + 64$$