Properties

Label 54.26.c.b.37.5
Level $54$
Weight $26$
Character 54.37
Analytic conductor $213.838$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,26,Mod(19,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.19"); S:= CuspForms(chi, 26); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 26, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(213.838261174\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.5
Character \(\chi\) \(=\) 54.37
Dual form 54.26.c.b.19.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2048.00 + 3547.24i) q^{2} +(-8.38861e6 + 1.45295e7i) q^{4} +(-1.32723e8 + 2.29884e8i) q^{5} +(1.71990e10 + 2.97895e10i) q^{7} -6.87195e10 q^{8} -1.08727e12 q^{10} +(-2.36007e12 - 4.08776e12i) q^{11} +(-7.65246e13 + 1.32545e14i) q^{13} +(-7.04470e13 + 1.22018e14i) q^{14} +(-1.40737e14 - 2.43764e14i) q^{16} -3.04534e15 q^{17} -1.34946e16 q^{19} +(-2.22673e15 - 3.85681e15i) q^{20} +(9.66685e15 - 1.67435e16i) q^{22} +(2.18045e16 - 3.77665e16i) q^{23} +(1.13781e17 + 1.97074e17i) q^{25} -6.26890e17 q^{26} -5.77102e17 q^{28} +(1.77130e18 + 3.06797e18i) q^{29} +(3.31858e18 - 5.74794e18i) q^{31} +(5.76461e17 - 9.98459e17i) q^{32} +(-6.23686e18 - 1.08026e19i) q^{34} -9.13082e18 q^{35} -4.38443e19 q^{37} +(-2.76370e19 - 4.78686e19i) q^{38} +(9.12068e18 - 1.57975e19i) q^{40} +(1.03447e19 - 1.79175e19i) q^{41} +(-4.98521e19 - 8.63463e19i) q^{43} +7.91908e19 q^{44} +1.78622e20 q^{46} +(2.23292e20 + 3.86754e20i) q^{47} +(7.89248e19 - 1.36702e20i) q^{49} +(-4.66045e20 + 8.07214e20i) q^{50} +(-1.28387e21 - 2.22373e21i) q^{52} -4.84464e21 q^{53} +1.25295e21 q^{55} +(-1.18190e21 - 2.04712e21i) q^{56} +(-7.25522e21 + 1.25664e22i) q^{58} +(-2.56635e21 + 4.44505e21i) q^{59} +(-8.18264e21 - 1.41727e22i) q^{61} +2.71858e22 q^{62} +4.72237e21 q^{64} +(-2.03132e22 - 3.51835e22i) q^{65} +(-4.45640e22 + 7.71871e22i) q^{67} +(2.55462e22 - 4.42473e22i) q^{68} +(-1.86999e22 - 3.23892e22i) q^{70} +1.00409e23 q^{71} -3.45994e23 q^{73} +(-8.97932e22 - 1.55526e23i) q^{74} +(1.13201e23 - 1.96070e23i) q^{76} +(8.11816e22 - 1.40611e23i) q^{77} +(1.58647e23 + 2.74785e23i) q^{79} +7.47166e22 q^{80} +8.47436e22 q^{82} +(8.67339e23 + 1.50228e24i) q^{83} +(4.04188e23 - 7.00075e23i) q^{85} +(2.04194e23 - 3.53675e23i) q^{86} +(1.62183e23 + 2.80909e23i) q^{88} +9.46991e23 q^{89} -5.26458e24 q^{91} +(3.65819e23 + 6.33617e23i) q^{92} +(-9.14605e23 + 1.58414e24i) q^{94} +(1.79105e24 - 3.10219e24i) q^{95} +(7.88434e23 + 1.36561e24i) q^{97} +6.46552e23 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 53248 q^{2} - 218103808 q^{4} - 49854096 q^{5} - 35213963498 q^{7} - 1786706395136 q^{8} - 408404754432 q^{10} + 1998346177329 q^{11} - 158355783504242 q^{13} + 144236394487808 q^{14} - 36\!\cdots\!28 q^{16}+ \cdots - 14\!\cdots\!64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2048.00 + 3547.24i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −8.38861e6 + 1.45295e7i −0.250000 + 0.433013i
\(5\) −1.32723e8 + 2.29884e8i −0.243121 + 0.421098i −0.961602 0.274449i \(-0.911505\pi\)
0.718481 + 0.695547i \(0.244838\pi\)
\(6\) 0 0
\(7\) 1.71990e10 + 2.97895e10i 0.469653 + 0.813463i 0.999398 0.0346941i \(-0.0110457\pi\)
−0.529745 + 0.848157i \(0.677712\pi\)
\(8\) −6.87195e10 −0.353553
\(9\) 0 0
\(10\) −1.08727e12 −0.343825
\(11\) −2.36007e12 4.08776e12i −0.226734 0.392714i 0.730104 0.683336i \(-0.239471\pi\)
−0.956838 + 0.290621i \(0.906138\pi\)
\(12\) 0 0
\(13\) −7.65246e13 + 1.32545e14i −0.910981 + 1.57787i −0.0982994 + 0.995157i \(0.531340\pi\)
−0.812681 + 0.582708i \(0.801993\pi\)
\(14\) −7.04470e13 + 1.22018e14i −0.332095 + 0.575205i
\(15\) 0 0
\(16\) −1.40737e14 2.43764e14i −0.125000 0.216506i
\(17\) −3.04534e15 −1.26772 −0.633862 0.773446i \(-0.718531\pi\)
−0.633862 + 0.773446i \(0.718531\pi\)
\(18\) 0 0
\(19\) −1.34946e16 −1.39875 −0.699375 0.714755i \(-0.746538\pi\)
−0.699375 + 0.714755i \(0.746538\pi\)
\(20\) −2.22673e15 3.85681e15i −0.121560 0.210549i
\(21\) 0 0
\(22\) 9.66685e15 1.67435e16i 0.160325 0.277691i
\(23\) 2.18045e16 3.77665e16i 0.207467 0.359343i −0.743449 0.668792i \(-0.766811\pi\)
0.950916 + 0.309450i \(0.100145\pi\)
\(24\) 0 0
\(25\) 1.13781e17 + 1.97074e17i 0.381784 + 0.661270i
\(26\) −6.26890e17 −1.28832
\(27\) 0 0
\(28\) −5.77102e17 −0.469653
\(29\) 1.77130e18 + 3.06797e18i 0.929642 + 1.61019i 0.783920 + 0.620862i \(0.213217\pi\)
0.145723 + 0.989325i \(0.453449\pi\)
\(30\) 0 0
\(31\) 3.31858e18 5.74794e18i 0.756712 1.31066i −0.187807 0.982206i \(-0.560138\pi\)
0.944519 0.328457i \(-0.106529\pi\)
\(32\) 5.76461e17 9.98459e17i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −6.23686e18 1.08026e19i −0.448208 0.776319i
\(35\) −9.13082e18 −0.456730
\(36\) 0 0
\(37\) −4.38443e19 −1.09494 −0.547472 0.836824i \(-0.684410\pi\)
−0.547472 + 0.836824i \(0.684410\pi\)
\(38\) −2.76370e19 4.78686e19i −0.494533 0.856556i
\(39\) 0 0
\(40\) 9.12068e18 1.57975e19i 0.0859562 0.148881i
\(41\) 1.03447e19 1.79175e19i 0.0716010 0.124017i −0.828002 0.560725i \(-0.810523\pi\)
0.899603 + 0.436708i \(0.143856\pi\)
\(42\) 0 0
\(43\) −4.98521e19 8.63463e19i −0.190251 0.329525i 0.755082 0.655630i \(-0.227597\pi\)
−0.945333 + 0.326105i \(0.894264\pi\)
\(44\) 7.91908e19 0.226734
\(45\) 0 0
\(46\) 1.78622e20 0.293402
\(47\) 2.23292e20 + 3.86754e20i 0.280318 + 0.485524i 0.971463 0.237191i \(-0.0762269\pi\)
−0.691145 + 0.722716i \(0.742894\pi\)
\(48\) 0 0
\(49\) 7.89248e19 1.36702e20i 0.0588521 0.101935i
\(50\) −4.66045e20 + 8.07214e20i −0.269962 + 0.467589i
\(51\) 0 0
\(52\) −1.28387e21 2.22373e21i −0.455490 0.788933i
\(53\) −4.84464e21 −1.35461 −0.677303 0.735705i \(-0.736851\pi\)
−0.677303 + 0.735705i \(0.736851\pi\)
\(54\) 0 0
\(55\) 1.25295e21 0.220495
\(56\) −1.18190e21 2.04712e21i −0.166047 0.287603i
\(57\) 0 0
\(58\) −7.25522e21 + 1.25664e22i −0.657356 + 1.13857i
\(59\) −2.56635e21 + 4.44505e21i −0.187787 + 0.325257i −0.944512 0.328476i \(-0.893465\pi\)
0.756725 + 0.653733i \(0.226798\pi\)
\(60\) 0 0
\(61\) −8.18264e21 1.41727e22i −0.394703 0.683646i 0.598360 0.801227i \(-0.295819\pi\)
−0.993063 + 0.117582i \(0.962486\pi\)
\(62\) 2.71858e22 1.07015
\(63\) 0 0
\(64\) 4.72237e21 0.125000
\(65\) −2.03132e22 3.51835e22i −0.442957 0.767224i
\(66\) 0 0
\(67\) −4.45640e22 + 7.71871e22i −0.665348 + 1.15242i 0.313842 + 0.949475i \(0.398384\pi\)
−0.979191 + 0.202942i \(0.934950\pi\)
\(68\) 2.55462e22 4.42473e22i 0.316931 0.548941i
\(69\) 0 0
\(70\) −1.86999e22 3.23892e22i −0.161478 0.279689i
\(71\) 1.00409e23 0.726179 0.363089 0.931754i \(-0.381722\pi\)
0.363089 + 0.931754i \(0.381722\pi\)
\(72\) 0 0
\(73\) −3.45994e23 −1.76820 −0.884102 0.467294i \(-0.845229\pi\)
−0.884102 + 0.467294i \(0.845229\pi\)
\(74\) −8.97932e22 1.55526e23i −0.387121 0.670514i
\(75\) 0 0
\(76\) 1.13201e23 1.96070e23i 0.349688 0.605677i
\(77\) 8.11816e22 1.40611e23i 0.212972 0.368879i
\(78\) 0 0
\(79\) 1.58647e23 + 2.74785e23i 0.302060 + 0.523184i 0.976602 0.215053i \(-0.0689923\pi\)
−0.674542 + 0.738236i \(0.735659\pi\)
\(80\) 7.47166e22 0.121560
\(81\) 0 0
\(82\) 8.47436e22 0.101259
\(83\) 8.67339e23 + 1.50228e24i 0.890662 + 1.54267i 0.839083 + 0.544003i \(0.183092\pi\)
0.0515784 + 0.998669i \(0.483575\pi\)
\(84\) 0 0
\(85\) 4.04188e23 7.00075e23i 0.308210 0.533836i
\(86\) 2.04194e23 3.53675e23i 0.134528 0.233009i
\(87\) 0 0
\(88\) 1.62183e23 + 2.80909e23i 0.0801625 + 0.138846i
\(89\) 9.46991e23 0.406416 0.203208 0.979136i \(-0.434863\pi\)
0.203208 + 0.979136i \(0.434863\pi\)
\(90\) 0 0
\(91\) −5.26458e24 −1.71138
\(92\) 3.65819e23 + 6.33617e23i 0.103733 + 0.179671i
\(93\) 0 0
\(94\) −9.14605e23 + 1.58414e24i −0.198215 + 0.343318i
\(95\) 1.79105e24 3.10219e24i 0.340065 0.589011i
\(96\) 0 0
\(97\) 7.88434e23 + 1.36561e24i 0.115377 + 0.199839i 0.917930 0.396742i \(-0.129859\pi\)
−0.802553 + 0.596580i \(0.796526\pi\)
\(98\) 6.46552e23 0.0832295
\(99\) 0 0
\(100\) −3.81784e24 −0.381784
\(101\) −4.23384e24 7.33323e24i −0.373867 0.647557i 0.616290 0.787520i \(-0.288635\pi\)
−0.990157 + 0.139963i \(0.955302\pi\)
\(102\) 0 0
\(103\) 6.13560e24 1.06272e25i 0.424025 0.734433i −0.572304 0.820042i \(-0.693950\pi\)
0.996329 + 0.0856089i \(0.0272835\pi\)
\(104\) 5.25873e24 9.10839e24i 0.322080 0.557860i
\(105\) 0 0
\(106\) −9.92181e24 1.71851e25i −0.478925 0.829523i
\(107\) 9.32764e24 0.400382 0.200191 0.979757i \(-0.435844\pi\)
0.200191 + 0.979757i \(0.435844\pi\)
\(108\) 0 0
\(109\) 1.87852e25 0.639711 0.319856 0.947466i \(-0.396366\pi\)
0.319856 + 0.947466i \(0.396366\pi\)
\(110\) 2.56603e24 + 4.44450e24i 0.0779567 + 0.135025i
\(111\) 0 0
\(112\) 4.84108e24 8.38500e24i 0.117413 0.203366i
\(113\) −2.40021e25 + 4.15728e25i −0.520917 + 0.902254i 0.478787 + 0.877931i \(0.341077\pi\)
−0.999704 + 0.0243235i \(0.992257\pi\)
\(114\) 0 0
\(115\) 5.78793e24 + 1.00250e25i 0.100879 + 0.174727i
\(116\) −5.94348e25 −0.929642
\(117\) 0 0
\(118\) −2.10235e25 −0.265571
\(119\) −5.23768e25 9.07193e25i −0.595390 1.03125i
\(120\) 0 0
\(121\) 4.30337e25 7.45365e25i 0.397184 0.687942i
\(122\) 3.35161e25 5.80516e25i 0.279097 0.483410i
\(123\) 0 0
\(124\) 5.56765e25 + 9.64345e25i 0.378356 + 0.655332i
\(125\) −1.39515e26 −0.857521
\(126\) 0 0
\(127\) 1.71215e26 0.862970 0.431485 0.902120i \(-0.357990\pi\)
0.431485 + 0.902120i \(0.357990\pi\)
\(128\) 9.67141e24 + 1.67514e25i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 8.32029e25 1.44112e26i 0.313218 0.542509i
\(131\) −6.13452e25 + 1.06253e26i −0.209841 + 0.363454i −0.951664 0.307141i \(-0.900628\pi\)
0.741824 + 0.670595i \(0.233961\pi\)
\(132\) 0 0
\(133\) −2.32093e26 4.01998e26i −0.656927 1.13783i
\(134\) −3.65068e26 −0.940945
\(135\) 0 0
\(136\) 2.09274e26 0.448208
\(137\) −3.33562e26 5.77747e26i −0.651883 1.12909i −0.982665 0.185388i \(-0.940646\pi\)
0.330782 0.943707i \(-0.392687\pi\)
\(138\) 0 0
\(139\) 2.83147e26 4.90426e26i 0.461666 0.799628i −0.537379 0.843341i \(-0.680585\pi\)
0.999044 + 0.0437129i \(0.0139187\pi\)
\(140\) 7.65949e25 1.32666e26i 0.114182 0.197770i
\(141\) 0 0
\(142\) 2.05638e26 + 3.56175e26i 0.256743 + 0.444692i
\(143\) 7.22414e26 0.826201
\(144\) 0 0
\(145\) −9.40369e26 −0.904062
\(146\) −7.08595e26 1.22732e27i −0.625154 1.08280i
\(147\) 0 0
\(148\) 3.67793e26 6.37036e26i 0.273736 0.474125i
\(149\) −5.55749e26 + 9.62585e26i −0.380233 + 0.658583i −0.991095 0.133154i \(-0.957490\pi\)
0.610862 + 0.791737i \(0.290823\pi\)
\(150\) 0 0
\(151\) −3.78651e26 6.55843e26i −0.219294 0.379829i 0.735298 0.677744i \(-0.237042\pi\)
−0.954592 + 0.297915i \(0.903709\pi\)
\(152\) 9.27342e26 0.494533
\(153\) 0 0
\(154\) 6.65039e26 0.301188
\(155\) 8.80905e26 + 1.52577e27i 0.367945 + 0.637299i
\(156\) 0 0
\(157\) −4.05457e26 + 7.02271e26i −0.144278 + 0.249896i −0.929103 0.369821i \(-0.879419\pi\)
0.784826 + 0.619717i \(0.212752\pi\)
\(158\) −6.49819e26 + 1.12552e27i −0.213589 + 0.369947i
\(159\) 0 0
\(160\) 1.53020e26 + 2.65038e26i 0.0429781 + 0.0744403i
\(161\) 1.50006e27 0.389749
\(162\) 0 0
\(163\) 4.58614e27 1.02118 0.510590 0.859824i \(-0.329427\pi\)
0.510590 + 0.859824i \(0.329427\pi\)
\(164\) 1.73555e26 + 3.00606e26i 0.0358005 + 0.0620083i
\(165\) 0 0
\(166\) −3.55262e27 + 6.15332e27i −0.629793 + 1.09083i
\(167\) 3.98366e27 6.89990e27i 0.655129 1.13472i −0.326733 0.945117i \(-0.605948\pi\)
0.981862 0.189599i \(-0.0607189\pi\)
\(168\) 0 0
\(169\) −8.18383e27 1.41748e28i −1.15977 2.00878i
\(170\) 3.31111e27 0.435875
\(171\) 0 0
\(172\) 1.67276e27 0.190251
\(173\) 4.54830e27 + 7.87788e27i 0.481141 + 0.833361i 0.999766 0.0216410i \(-0.00688909\pi\)
−0.518625 + 0.855002i \(0.673556\pi\)
\(174\) 0 0
\(175\) −3.91382e27 + 6.77894e27i −0.358612 + 0.621135i
\(176\) −6.64301e26 + 1.15060e27i −0.0566834 + 0.0981786i
\(177\) 0 0
\(178\) 1.93944e27 + 3.35921e27i 0.143690 + 0.248878i
\(179\) 1.04876e28 0.724459 0.362229 0.932089i \(-0.382016\pi\)
0.362229 + 0.932089i \(0.382016\pi\)
\(180\) 0 0
\(181\) −1.06095e28 −0.637839 −0.318920 0.947782i \(-0.603320\pi\)
−0.318920 + 0.947782i \(0.603320\pi\)
\(182\) −1.07819e28 1.86747e28i −0.605064 1.04800i
\(183\) 0 0
\(184\) −1.49839e27 + 2.59529e27i −0.0733505 + 0.127047i
\(185\) 5.81917e27 1.00791e28i 0.266204 0.461079i
\(186\) 0 0
\(187\) 7.18722e27 + 1.24486e28i 0.287436 + 0.497854i
\(188\) −7.49245e27 −0.280318
\(189\) 0 0
\(190\) 1.46723e28 0.480925
\(191\) 1.98703e28 + 3.44164e28i 0.609941 + 1.05645i 0.991250 + 0.132002i \(0.0421404\pi\)
−0.381308 + 0.924448i \(0.624526\pi\)
\(192\) 0 0
\(193\) 2.01477e27 3.48968e27i 0.0542948 0.0940414i −0.837601 0.546283i \(-0.816042\pi\)
0.891895 + 0.452242i \(0.149376\pi\)
\(194\) −3.22943e27 + 5.59353e27i −0.0815837 + 0.141307i
\(195\) 0 0
\(196\) 1.32414e27 + 2.29347e27i 0.0294261 + 0.0509675i
\(197\) 1.57433e28 0.328298 0.164149 0.986436i \(-0.447512\pi\)
0.164149 + 0.986436i \(0.447512\pi\)
\(198\) 0 0
\(199\) −8.51081e27 −0.156425 −0.0782127 0.996937i \(-0.524921\pi\)
−0.0782127 + 0.996937i \(0.524921\pi\)
\(200\) −7.81894e27 1.35428e28i −0.134981 0.233794i
\(201\) 0 0
\(202\) 1.73418e28 3.00369e28i 0.264364 0.457892i
\(203\) −6.09289e28 + 1.05532e29i −0.873219 + 1.51246i
\(204\) 0 0
\(205\) 2.74596e27 + 4.75615e27i 0.0348154 + 0.0603020i
\(206\) 5.02628e28 0.599662
\(207\) 0 0
\(208\) 4.30795e28 0.455490
\(209\) 3.18482e28 + 5.51627e28i 0.317144 + 0.549309i
\(210\) 0 0
\(211\) 1.02857e29 1.78154e29i 0.909294 1.57494i 0.0942462 0.995549i \(-0.469956\pi\)
0.815048 0.579394i \(-0.196711\pi\)
\(212\) 4.06397e28 7.03901e28i 0.338651 0.586561i
\(213\) 0 0
\(214\) 1.91030e28 + 3.30874e28i 0.141556 + 0.245183i
\(215\) 2.64661e28 0.185016
\(216\) 0 0
\(217\) 2.28304e29 1.42157
\(218\) 3.84720e28 + 6.66355e28i 0.226172 + 0.391742i
\(219\) 0 0
\(220\) −1.05105e28 + 1.82047e28i −0.0551237 + 0.0954771i
\(221\) 2.33044e29 4.03644e29i 1.15487 2.00030i
\(222\) 0 0
\(223\) −1.75459e29 3.03903e29i −0.776898 1.34563i −0.933722 0.358000i \(-0.883459\pi\)
0.156824 0.987627i \(-0.449874\pi\)
\(224\) 3.96581e28 0.166047
\(225\) 0 0
\(226\) −1.96625e29 −0.736688
\(227\) 7.43757e27 + 1.28823e28i 0.0263699 + 0.0456740i 0.878909 0.476989i \(-0.158272\pi\)
−0.852539 + 0.522663i \(0.824939\pi\)
\(228\) 0 0
\(229\) −1.92922e29 + 3.34151e29i −0.612968 + 1.06169i 0.377769 + 0.925900i \(0.376691\pi\)
−0.990737 + 0.135792i \(0.956642\pi\)
\(230\) −2.37074e28 + 4.10624e28i −0.0713322 + 0.123551i
\(231\) 0 0
\(232\) −1.21722e29 2.10829e29i −0.328678 0.569287i
\(233\) 3.90887e29 1.00024 0.500118 0.865957i \(-0.333290\pi\)
0.500118 + 0.865957i \(0.333290\pi\)
\(234\) 0 0
\(235\) −1.18544e29 −0.272604
\(236\) −4.30562e28 7.45756e28i −0.0938936 0.162628i
\(237\) 0 0
\(238\) 2.14535e29 3.71586e29i 0.421005 0.729201i
\(239\) 3.63162e29 6.29015e29i 0.676280 1.17135i −0.299813 0.953998i \(-0.596924\pi\)
0.976093 0.217354i \(-0.0697425\pi\)
\(240\) 0 0
\(241\) −1.38816e29 2.40436e29i −0.232930 0.403446i 0.725739 0.687970i \(-0.241498\pi\)
−0.958669 + 0.284524i \(0.908165\pi\)
\(242\) 3.52532e29 0.561702
\(243\) 0 0
\(244\) 2.74564e29 0.394703
\(245\) 2.09503e28 + 3.62870e28i 0.0286164 + 0.0495650i
\(246\) 0 0
\(247\) 1.03267e30 1.78864e30i 1.27423 2.20704i
\(248\) −2.28051e29 + 3.94996e29i −0.267538 + 0.463389i
\(249\) 0 0
\(250\) −2.85726e29 4.94892e29i −0.303179 0.525122i
\(251\) −1.12542e29 −0.113604 −0.0568020 0.998385i \(-0.518090\pi\)
−0.0568020 + 0.998385i \(0.518090\pi\)
\(252\) 0 0
\(253\) −2.05841e29 −0.188159
\(254\) 3.50649e29 + 6.07341e29i 0.305106 + 0.528459i
\(255\) 0 0
\(256\) −3.96141e28 + 6.86136e28i −0.0312500 + 0.0541266i
\(257\) 6.96320e29 1.20606e30i 0.523173 0.906161i −0.476464 0.879194i \(-0.658082\pi\)
0.999636 0.0269673i \(-0.00858501\pi\)
\(258\) 0 0
\(259\) −7.54078e29 1.30610e30i −0.514244 0.890696i
\(260\) 6.81598e29 0.442957
\(261\) 0 0
\(262\) −5.02540e29 −0.296759
\(263\) −7.47940e29 1.29547e30i −0.421133 0.729424i 0.574917 0.818212i \(-0.305034\pi\)
−0.996051 + 0.0887872i \(0.971701\pi\)
\(264\) 0 0
\(265\) 6.42996e29 1.11370e30i 0.329333 0.570421i
\(266\) 9.50655e29 1.64658e30i 0.464518 0.804568i
\(267\) 0 0
\(268\) −7.47660e29 1.29498e30i −0.332674 0.576209i
\(269\) 1.83919e30 0.781130 0.390565 0.920575i \(-0.372280\pi\)
0.390565 + 0.920575i \(0.372280\pi\)
\(270\) 0 0
\(271\) 4.56536e30 1.76750 0.883749 0.467961i \(-0.155011\pi\)
0.883749 + 0.467961i \(0.155011\pi\)
\(272\) 4.28594e29 + 7.42346e29i 0.158466 + 0.274470i
\(273\) 0 0
\(274\) 1.36627e30 2.36645e30i 0.460951 0.798390i
\(275\) 5.37060e29 9.30216e29i 0.173127 0.299865i
\(276\) 0 0
\(277\) −1.50581e28 2.60814e28i −0.00443376 0.00767950i 0.863800 0.503835i \(-0.168078\pi\)
−0.868234 + 0.496155i \(0.834745\pi\)
\(278\) 2.31954e30 0.652894
\(279\) 0 0
\(280\) 6.27465e29 0.161478
\(281\) 2.79701e30 + 4.84457e30i 0.688439 + 1.19241i 0.972343 + 0.233558i \(0.0750369\pi\)
−0.283904 + 0.958853i \(0.591630\pi\)
\(282\) 0 0
\(283\) 3.70023e29 6.40898e29i 0.0833485 0.144364i −0.821338 0.570442i \(-0.806772\pi\)
0.904686 + 0.426078i \(0.140105\pi\)
\(284\) −8.42292e29 + 1.45889e30i −0.181545 + 0.314445i
\(285\) 0 0
\(286\) 1.47950e30 + 2.56257e30i 0.292106 + 0.505942i
\(287\) 7.11672e29 0.134510
\(288\) 0 0
\(289\) 3.50349e30 0.607124
\(290\) −1.92588e30 3.33571e30i −0.319634 0.553623i
\(291\) 0 0
\(292\) 2.90240e30 5.02711e30i 0.442051 0.765655i
\(293\) 5.90145e29 1.02216e30i 0.0861219 0.149168i −0.819747 0.572726i \(-0.805886\pi\)
0.905869 + 0.423559i \(0.139219\pi\)
\(294\) 0 0
\(295\) −6.81230e29 1.17992e30i −0.0913100 0.158154i
\(296\) 3.01296e30 0.387121
\(297\) 0 0
\(298\) −4.55269e30 −0.537731
\(299\) 3.33716e30 + 5.78013e30i 0.377996 + 0.654709i
\(300\) 0 0
\(301\) 1.71481e30 2.97014e30i 0.178704 0.309525i
\(302\) 1.55096e30 2.68633e30i 0.155065 0.268580i
\(303\) 0 0
\(304\) 1.89920e30 + 3.28951e30i 0.174844 + 0.302838i
\(305\) 4.34411e30 0.383842
\(306\) 0 0
\(307\) −1.44737e31 −1.17855 −0.589276 0.807932i \(-0.700587\pi\)
−0.589276 + 0.807932i \(0.700587\pi\)
\(308\) 1.36200e30 + 2.35905e30i 0.106486 + 0.184440i
\(309\) 0 0
\(310\) −3.60819e30 + 6.24956e30i −0.260176 + 0.450639i
\(311\) 5.85692e30 1.01445e31i 0.405662 0.702627i −0.588736 0.808325i \(-0.700374\pi\)
0.994398 + 0.105698i \(0.0337078\pi\)
\(312\) 0 0
\(313\) −3.19904e30 5.54090e30i −0.204511 0.354223i 0.745466 0.666544i \(-0.232227\pi\)
−0.949977 + 0.312321i \(0.898894\pi\)
\(314\) −3.32150e30 −0.204039
\(315\) 0 0
\(316\) −5.32331e30 −0.302060
\(317\) 8.22057e29 + 1.42384e30i 0.0448396 + 0.0776644i 0.887574 0.460665i \(-0.152389\pi\)
−0.842735 + 0.538329i \(0.819056\pi\)
\(318\) 0 0
\(319\) 8.36076e30 1.44813e31i 0.421563 0.730168i
\(320\) −6.26768e29 + 1.08559e30i −0.0303901 + 0.0526372i
\(321\) 0 0
\(322\) 3.07212e30 + 5.32107e30i 0.137797 + 0.238672i
\(323\) 4.10957e31 1.77323
\(324\) 0 0
\(325\) −3.48281e31 −1.39119
\(326\) 9.39242e30 + 1.62682e31i 0.361042 + 0.625343i
\(327\) 0 0
\(328\) −7.10881e29 + 1.23128e30i −0.0253148 + 0.0438465i
\(329\) −7.68080e30 + 1.33035e31i −0.263304 + 0.456056i
\(330\) 0 0
\(331\) −1.48237e30 2.56754e30i −0.0471093 0.0815958i 0.841509 0.540243i \(-0.181668\pi\)
−0.888619 + 0.458647i \(0.848334\pi\)
\(332\) −2.91031e31 −0.890662
\(333\) 0 0
\(334\) 3.26342e31 0.926492
\(335\) −1.18294e31 2.04891e31i −0.323520 0.560354i
\(336\) 0 0
\(337\) −1.64567e31 + 2.85038e31i −0.417800 + 0.723651i −0.995718 0.0924441i \(-0.970532\pi\)
0.577918 + 0.816095i \(0.303865\pi\)
\(338\) 3.35210e31 5.80600e31i 0.820083 1.42043i
\(339\) 0 0
\(340\) 6.78115e30 + 1.17453e31i 0.154105 + 0.266918i
\(341\) −3.13283e31 −0.686289
\(342\) 0 0
\(343\) 5.15597e31 1.04987
\(344\) 3.42581e30 + 5.93367e30i 0.0672640 + 0.116505i
\(345\) 0 0
\(346\) −1.86298e31 + 3.22678e31i −0.340218 + 0.589275i
\(347\) −2.48515e31 + 4.30441e31i −0.437759 + 0.758220i −0.997516 0.0704362i \(-0.977561\pi\)
0.559758 + 0.828656i \(0.310894\pi\)
\(348\) 0 0
\(349\) −1.48658e31 2.57483e31i −0.243709 0.422116i 0.718059 0.695982i \(-0.245031\pi\)
−0.961768 + 0.273866i \(0.911697\pi\)
\(350\) −3.20620e31 −0.507154
\(351\) 0 0
\(352\) −5.44195e30 −0.0801625
\(353\) 3.99075e31 + 6.91218e31i 0.567376 + 0.982724i 0.996824 + 0.0796324i \(0.0253746\pi\)
−0.429448 + 0.903091i \(0.641292\pi\)
\(354\) 0 0
\(355\) −1.33266e31 + 2.30824e31i −0.176549 + 0.305792i
\(356\) −7.94394e30 + 1.37593e31i −0.101604 + 0.175983i
\(357\) 0 0
\(358\) 2.14786e31 + 3.72021e31i 0.256135 + 0.443639i
\(359\) −1.48192e32 −1.70665 −0.853324 0.521380i \(-0.825417\pi\)
−0.853324 + 0.521380i \(0.825417\pi\)
\(360\) 0 0
\(361\) 8.90279e31 0.956502
\(362\) −2.17282e31 3.76343e31i −0.225510 0.390595i
\(363\) 0 0
\(364\) 4.41625e31 7.64917e31i 0.427845 0.741049i
\(365\) 4.59214e31 7.95383e31i 0.429887 0.744587i
\(366\) 0 0
\(367\) −4.12223e31 7.13991e31i −0.360418 0.624262i 0.627612 0.778526i \(-0.284032\pi\)
−0.988030 + 0.154265i \(0.950699\pi\)
\(368\) −1.22748e31 −0.103733
\(369\) 0 0
\(370\) 4.76706e31 0.376469
\(371\) −8.33228e31 1.44319e32i −0.636194 1.10192i
\(372\) 0 0
\(373\) −5.32861e31 + 9.22942e31i −0.380411 + 0.658891i −0.991121 0.132963i \(-0.957551\pi\)
0.610710 + 0.791854i \(0.290884\pi\)
\(374\) −2.94389e31 + 5.09896e31i −0.203248 + 0.352036i
\(375\) 0 0
\(376\) −1.53445e31 2.65775e31i −0.0991073 0.171659i
\(377\) −5.42191e32 −3.38755
\(378\) 0 0
\(379\) −1.49459e32 −0.874044 −0.437022 0.899451i \(-0.643967\pi\)
−0.437022 + 0.899451i \(0.643967\pi\)
\(380\) 3.00488e31 + 5.20461e31i 0.170033 + 0.294505i
\(381\) 0 0
\(382\) −8.13889e31 + 1.40970e32i −0.431294 + 0.747023i
\(383\) −1.00039e32 + 1.73272e32i −0.513078 + 0.888677i 0.486807 + 0.873510i \(0.338162\pi\)
−0.999885 + 0.0151676i \(0.995172\pi\)
\(384\) 0 0
\(385\) 2.15494e31 + 3.73246e31i 0.103556 + 0.179364i
\(386\) 1.65050e31 0.0767844
\(387\) 0 0
\(388\) −2.64555e31 −0.115377
\(389\) 1.28159e32 + 2.21978e32i 0.541227 + 0.937433i 0.998834 + 0.0482784i \(0.0153735\pi\)
−0.457607 + 0.889155i \(0.651293\pi\)
\(390\) 0 0
\(391\) −6.64022e31 + 1.15012e32i −0.263010 + 0.455547i
\(392\) −5.42367e30 + 9.39407e30i −0.0208074 + 0.0360394i
\(393\) 0 0
\(394\) 3.22423e31 + 5.58453e31i 0.116071 + 0.201041i
\(395\) −8.42247e31 −0.293749
\(396\) 0 0
\(397\) 9.44560e31 0.309277 0.154639 0.987971i \(-0.450579\pi\)
0.154639 + 0.987971i \(0.450579\pi\)
\(398\) −1.74301e31 3.01899e31i −0.0553047 0.0957906i
\(399\) 0 0
\(400\) 3.20264e31 5.54713e31i 0.0954461 0.165318i
\(401\) 2.95530e32 5.11873e32i 0.853683 1.47862i −0.0241781 0.999708i \(-0.507697\pi\)
0.877861 0.478915i \(-0.158970\pi\)
\(402\) 0 0
\(403\) 5.07905e32 + 8.79718e32i 1.37870 + 2.38798i
\(404\) 1.42064e32 0.373867
\(405\) 0 0
\(406\) −4.99130e32 −1.23492
\(407\) 1.03476e32 + 1.79225e32i 0.248261 + 0.430000i
\(408\) 0 0
\(409\) −3.51371e32 + 6.08593e32i −0.792912 + 1.37336i 0.131244 + 0.991350i \(0.458103\pi\)
−0.924156 + 0.382014i \(0.875231\pi\)
\(410\) −1.12475e31 + 1.94812e31i −0.0246182 + 0.0426400i
\(411\) 0 0
\(412\) 1.02938e32 + 1.78294e32i 0.212012 + 0.367216i
\(413\) −1.76554e32 −0.352779
\(414\) 0 0
\(415\) −4.60465e32 −0.866154
\(416\) 8.82269e31 + 1.52813e32i 0.161040 + 0.278930i
\(417\) 0 0
\(418\) −1.30450e32 + 2.25946e32i −0.224255 + 0.388420i
\(419\) −3.54977e32 + 6.14837e32i −0.592276 + 1.02585i 0.401649 + 0.915794i \(0.368437\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(420\) 0 0
\(421\) −4.79284e32 8.30145e32i −0.753472 1.30505i −0.946131 0.323785i \(-0.895044\pi\)
0.192659 0.981266i \(-0.438289\pi\)
\(422\) 8.42607e32 1.28594
\(423\) 0 0
\(424\) 3.32921e32 0.478925
\(425\) −3.46501e32 6.00157e32i −0.483997 0.838308i
\(426\) 0 0
\(427\) 2.81466e32 4.87513e32i 0.370747 0.642152i
\(428\) −7.82459e31 + 1.35526e32i −0.100095 + 0.173370i
\(429\) 0 0
\(430\) 5.42027e31 + 9.38818e31i 0.0654131 + 0.113299i
\(431\) −1.23517e31 −0.0144798 −0.00723989 0.999974i \(-0.502305\pi\)
−0.00723989 + 0.999974i \(0.502305\pi\)
\(432\) 0 0
\(433\) −5.28994e32 −0.585264 −0.292632 0.956225i \(-0.594531\pi\)
−0.292632 + 0.956225i \(0.594531\pi\)
\(434\) 4.67567e32 + 8.09851e32i 0.502600 + 0.870529i
\(435\) 0 0
\(436\) −1.57582e32 + 2.72939e32i −0.159928 + 0.277003i
\(437\) −2.94243e32 + 5.09644e32i −0.290194 + 0.502631i
\(438\) 0 0
\(439\) −2.47060e32 4.27921e32i −0.230142 0.398618i 0.727707 0.685888i \(-0.240586\pi\)
−0.957850 + 0.287269i \(0.907253\pi\)
\(440\) −8.61018e31 −0.0779567
\(441\) 0 0
\(442\) 1.90909e33 1.63324
\(443\) 8.61201e32 + 1.49164e33i 0.716239 + 1.24056i 0.962480 + 0.271354i \(0.0874714\pi\)
−0.246240 + 0.969209i \(0.579195\pi\)
\(444\) 0 0
\(445\) −1.25688e32 + 2.17698e32i −0.0988083 + 0.171141i
\(446\) 7.18678e32 1.24479e33i 0.549350 0.951502i
\(447\) 0 0
\(448\) 8.12199e31 + 1.40677e32i 0.0587066 + 0.101683i
\(449\) −1.93531e33 −1.36042 −0.680209 0.733019i \(-0.738111\pi\)
−0.680209 + 0.733019i \(0.738111\pi\)
\(450\) 0 0
\(451\) −9.76567e31 −0.0649374
\(452\) −4.02688e32 6.97476e32i −0.260458 0.451127i
\(453\) 0 0
\(454\) −3.04643e31 + 5.27657e31i −0.0186463 + 0.0322964i
\(455\) 6.98733e32 1.21024e33i 0.416072 0.720658i
\(456\) 0 0
\(457\) 3.28123e32 + 5.68326e32i 0.184963 + 0.320365i 0.943564 0.331190i \(-0.107450\pi\)
−0.758601 + 0.651555i \(0.774117\pi\)
\(458\) −1.58042e33 −0.866868
\(459\) 0 0
\(460\) −1.94211e32 −0.100879
\(461\) −3.64612e32 6.31526e32i −0.184319 0.319249i 0.759028 0.651058i \(-0.225674\pi\)
−0.943347 + 0.331809i \(0.892341\pi\)
\(462\) 0 0
\(463\) 1.64393e33 2.84736e33i 0.787263 1.36358i −0.140374 0.990099i \(-0.544831\pi\)
0.927638 0.373482i \(-0.121836\pi\)
\(464\) 4.98575e32 8.63558e32i 0.232411 0.402547i
\(465\) 0 0
\(466\) 8.00537e32 + 1.38657e33i 0.353637 + 0.612517i
\(467\) 1.54771e33 0.665624 0.332812 0.942993i \(-0.392003\pi\)
0.332812 + 0.942993i \(0.392003\pi\)
\(468\) 0 0
\(469\) −3.06582e33 −1.24993
\(470\) −2.42779e32 4.20506e32i −0.0963802 0.166935i
\(471\) 0 0
\(472\) 1.76358e32 3.05462e32i 0.0663928 0.114996i
\(473\) −2.35309e32 + 4.07567e32i −0.0862728 + 0.149429i
\(474\) 0 0
\(475\) −1.53542e33 2.65943e33i −0.534021 0.924952i
\(476\) 1.75747e33 0.595390
\(477\) 0 0
\(478\) 2.97502e33 0.956405
\(479\) −9.88473e32 1.71208e33i −0.309578 0.536206i 0.668692 0.743540i \(-0.266855\pi\)
−0.978270 + 0.207334i \(0.933521\pi\)
\(480\) 0 0
\(481\) 3.35517e33 5.81133e33i 0.997473 1.72767i
\(482\) 5.68589e32 9.84824e32i 0.164706 0.285280i
\(483\) 0 0
\(484\) 7.21985e32 + 1.25052e33i 0.198592 + 0.343971i
\(485\) −4.18574e32 −0.112202
\(486\) 0 0
\(487\) 4.90778e33 1.24960 0.624802 0.780783i \(-0.285180\pi\)
0.624802 + 0.780783i \(0.285180\pi\)
\(488\) 5.62307e32 + 9.73943e32i 0.139549 + 0.241705i
\(489\) 0 0
\(490\) −8.58125e31 + 1.48632e32i −0.0202348 + 0.0350478i
\(491\) −1.01574e32 + 1.75931e32i −0.0233488 + 0.0404412i −0.877464 0.479643i \(-0.840766\pi\)
0.854115 + 0.520084i \(0.174099\pi\)
\(492\) 0 0
\(493\) −5.39420e33 9.34303e33i −1.17853 2.04127i
\(494\) 8.45963e33 1.80204
\(495\) 0 0
\(496\) −1.86819e33 −0.378356
\(497\) 1.72693e33 + 2.99114e33i 0.341052 + 0.590719i
\(498\) 0 0
\(499\) −1.42155e33 + 2.46220e33i −0.266997 + 0.462452i −0.968085 0.250623i \(-0.919365\pi\)
0.701088 + 0.713075i \(0.252698\pi\)
\(500\) 1.17033e33 2.02708e33i 0.214380 0.371317i
\(501\) 0 0
\(502\) −2.30486e32 3.99214e32i −0.0401651 0.0695680i
\(503\) −4.97587e33 −0.845802 −0.422901 0.906176i \(-0.638988\pi\)
−0.422901 + 0.906176i \(0.638988\pi\)
\(504\) 0 0
\(505\) 2.24772e33 0.363580
\(506\) −4.21561e32 7.30166e32i −0.0665242 0.115223i
\(507\) 0 0
\(508\) −1.43626e33 + 2.48767e33i −0.215742 + 0.373677i
\(509\) 4.63620e33 8.03014e33i 0.679501 1.17693i −0.295630 0.955303i \(-0.595530\pi\)
0.975131 0.221628i \(-0.0711371\pi\)
\(510\) 0 0
\(511\) −5.95074e33 1.03070e34i −0.830442 1.43837i
\(512\) −3.24519e32 −0.0441942
\(513\) 0 0
\(514\) 5.70426e33 0.739878
\(515\) 1.62867e33 + 2.82095e33i 0.206179 + 0.357112i
\(516\) 0 0
\(517\) 1.05397e33 1.82553e33i 0.127115 0.220170i
\(518\) 3.08870e33 5.34979e33i 0.363625 0.629817i
\(519\) 0 0
\(520\) 1.39591e33 + 2.41779e33i 0.156609 + 0.271255i
\(521\) 1.64259e34 1.79911 0.899557 0.436804i \(-0.143890\pi\)
0.899557 + 0.436804i \(0.143890\pi\)
\(522\) 0 0
\(523\) −8.40356e33 −0.877389 −0.438695 0.898636i \(-0.644559\pi\)
−0.438695 + 0.898636i \(0.644559\pi\)
\(524\) −1.02920e33 1.78263e33i −0.104920 0.181727i
\(525\) 0 0
\(526\) 3.06356e33 5.30624e33i 0.297786 0.515781i
\(527\) −1.01062e34 + 1.75045e34i −0.959302 + 1.66156i
\(528\) 0 0
\(529\) 4.57201e33 + 7.91896e33i 0.413915 + 0.716922i
\(530\) 5.26743e33 0.465747
\(531\) 0 0
\(532\) 7.78776e33 0.656927
\(533\) 1.58325e33 + 2.74226e33i 0.130454 + 0.225953i
\(534\) 0 0
\(535\) −1.23800e33 + 2.14427e33i −0.0973412 + 0.168600i
\(536\) 3.06241e33 5.30426e33i 0.235236 0.407441i
\(537\) 0 0
\(538\) 3.76666e33 + 6.52405e33i 0.276171 + 0.478342i
\(539\) −7.45072e32 −0.0533751
\(540\) 0 0
\(541\) −2.09754e34 −1.43464 −0.717321 0.696742i \(-0.754632\pi\)
−0.717321 + 0.696742i \(0.754632\pi\)
\(542\) 9.34986e33 + 1.61944e34i 0.624905 + 1.08237i
\(543\) 0 0
\(544\) −1.75552e33 + 3.04065e33i −0.112052 + 0.194080i
\(545\) −2.49323e33 + 4.31841e33i −0.155527 + 0.269381i
\(546\) 0 0
\(547\) −2.29840e33 3.98095e33i −0.136957 0.237217i 0.789386 0.613897i \(-0.210399\pi\)
−0.926343 + 0.376680i \(0.877066\pi\)
\(548\) 1.11925e34 0.651883
\(549\) 0 0
\(550\) 4.39960e33 0.244838
\(551\) −2.39029e34 4.14011e34i −1.30034 2.25225i
\(552\) 0 0
\(553\) −5.45714e33 + 9.45204e33i −0.283727 + 0.491429i
\(554\) 6.16779e31 1.06829e32i 0.00313514 0.00543023i
\(555\) 0 0
\(556\) 4.75042e33 + 8.22798e33i 0.230833 + 0.399814i
\(557\) −3.15350e34 −1.49832 −0.749158 0.662391i \(-0.769542\pi\)
−0.749158 + 0.662391i \(0.769542\pi\)
\(558\) 0 0
\(559\) 1.52596e34 0.693261
\(560\) 1.28505e33 + 2.22577e33i 0.0570912 + 0.0988849i
\(561\) 0 0
\(562\) −1.14566e34 + 1.98433e34i −0.486800 + 0.843162i
\(563\) −4.91693e33 + 8.51638e33i −0.204333 + 0.353916i −0.949920 0.312493i \(-0.898836\pi\)
0.745587 + 0.666409i \(0.232169\pi\)
\(564\) 0 0
\(565\) −6.37128e33 1.10354e34i −0.253292 0.438714i
\(566\) 3.03122e33 0.117873
\(567\) 0 0
\(568\) −6.90006e33 −0.256743
\(569\) 7.27436e33 + 1.25996e34i 0.264784 + 0.458619i 0.967507 0.252844i \(-0.0813660\pi\)
−0.702723 + 0.711464i \(0.748033\pi\)
\(570\) 0 0
\(571\) 5.50961e33 9.54292e33i 0.191942 0.332453i −0.753952 0.656930i \(-0.771855\pi\)
0.945894 + 0.324477i \(0.105188\pi\)
\(572\) −6.06005e33 + 1.04963e34i −0.206550 + 0.357755i
\(573\) 0 0
\(574\) 1.45750e33 + 2.52447e33i 0.0475566 + 0.0823705i
\(575\) 9.92372e33 0.316830
\(576\) 0 0
\(577\) 4.28784e34 1.31081 0.655406 0.755277i \(-0.272497\pi\)
0.655406 + 0.755277i \(0.272497\pi\)
\(578\) 7.17514e33 + 1.24277e34i 0.214651 + 0.371786i
\(579\) 0 0
\(580\) 7.88839e33 1.36631e34i 0.226016 0.391470i
\(581\) −2.98347e34 + 5.16752e34i −0.836604 + 1.44904i
\(582\) 0 0
\(583\) 1.14337e34 + 1.98037e34i 0.307135 + 0.531973i
\(584\) 2.37765e34 0.625154
\(585\) 0 0
\(586\) 4.83447e33 0.121795
\(587\) −3.25757e34 5.64228e34i −0.803374 1.39148i −0.917383 0.398005i \(-0.869703\pi\)
0.114009 0.993480i \(-0.463631\pi\)
\(588\) 0 0
\(589\) −4.47829e34 + 7.75662e34i −1.05845 + 1.83329i
\(590\) 2.79032e33 4.83297e33i 0.0645659 0.111831i
\(591\) 0 0
\(592\) 6.17054e33 + 1.06877e34i 0.136868 + 0.237062i
\(593\) −6.49827e34 −1.41128 −0.705641 0.708569i \(-0.749341\pi\)
−0.705641 + 0.708569i \(0.749341\pi\)
\(594\) 0 0
\(595\) 2.78065e34 0.579007
\(596\) −9.32391e33 1.61495e34i −0.190117 0.329292i
\(597\) 0 0
\(598\) −1.36690e34 + 2.36754e34i −0.267284 + 0.462949i
\(599\) −3.34332e34 + 5.79079e34i −0.640239 + 1.10893i 0.345140 + 0.938551i \(0.387831\pi\)
−0.985379 + 0.170375i \(0.945502\pi\)
\(600\) 0 0
\(601\) −4.00918e34 6.94411e34i −0.736419 1.27552i −0.954098 0.299495i \(-0.903182\pi\)
0.217679 0.976020i \(-0.430152\pi\)
\(602\) 1.40477e34 0.252726
\(603\) 0 0
\(604\) 1.27054e34 0.219294
\(605\) 1.14231e34 + 1.97855e34i 0.193127 + 0.334506i
\(606\) 0 0
\(607\) −2.20568e34 + 3.82036e34i −0.357837 + 0.619791i −0.987599 0.156997i \(-0.949819\pi\)
0.629763 + 0.776788i \(0.283152\pi\)
\(608\) −7.77911e33 + 1.34738e34i −0.123633 + 0.214139i
\(609\) 0 0
\(610\) 8.89673e33 + 1.54096e34i 0.135709 + 0.235054i
\(611\) −6.83494e34 −1.02146
\(612\) 0 0
\(613\) −8.57385e34 −1.23004 −0.615021 0.788511i \(-0.710853\pi\)
−0.615021 + 0.788511i \(0.710853\pi\)
\(614\) −2.96420e34 5.13415e34i −0.416681 0.721712i
\(615\) 0 0
\(616\) −5.57875e33 + 9.66269e33i −0.0752971 + 0.130418i
\(617\) 4.85117e34 8.40247e34i 0.641626 1.11133i −0.343444 0.939173i \(-0.611594\pi\)
0.985070 0.172155i \(-0.0550731\pi\)
\(618\) 0 0
\(619\) −2.10368e34 3.64367e34i −0.267206 0.462814i 0.700933 0.713227i \(-0.252767\pi\)
−0.968139 + 0.250413i \(0.919434\pi\)
\(620\) −2.95583e34 −0.367945
\(621\) 0 0
\(622\) 4.79799e34 0.573692
\(623\) 1.62873e34 + 2.82104e34i 0.190875 + 0.330604i
\(624\) 0 0
\(625\) −1.53924e34 + 2.66604e34i −0.173303 + 0.300170i
\(626\) 1.31033e34 2.26955e34i 0.144611 0.250473i
\(627\) 0 0
\(628\) −6.80243e33 1.17822e34i −0.0721388 0.124948i
\(629\) 1.33521e35 1.38809
\(630\) 0 0
\(631\) −7.03375e34 −0.702781 −0.351390 0.936229i \(-0.614291\pi\)
−0.351390 + 0.936229i \(0.614291\pi\)
\(632\) −1.09021e34 1.88831e34i −0.106794 0.184973i
\(633\) 0 0
\(634\) −3.36715e33 + 5.83207e33i −0.0317064 + 0.0549170i
\(635\) −2.27242e34 + 3.93596e34i −0.209806 + 0.363395i
\(636\) 0 0
\(637\) 1.20794e34 + 2.09221e34i 0.107226 + 0.185721i
\(638\) 6.84913e34 0.596180
\(639\) 0 0
\(640\) −5.13449e33 −0.0429781
\(641\) −4.16184e34 7.20852e34i −0.341633 0.591726i 0.643103 0.765780i \(-0.277647\pi\)
−0.984736 + 0.174053i \(0.944313\pi\)
\(642\) 0 0
\(643\) 4.34702e34 7.52926e34i 0.343206 0.594450i −0.641820 0.766855i \(-0.721821\pi\)
0.985026 + 0.172405i \(0.0551539\pi\)
\(644\) −1.25834e34 + 2.17951e34i −0.0974373 + 0.168766i
\(645\) 0 0
\(646\) 8.41640e34 + 1.45776e35i 0.626931 + 1.08588i
\(647\) −2.39516e35 −1.74997 −0.874987 0.484147i \(-0.839130\pi\)
−0.874987 + 0.484147i \(0.839130\pi\)
\(648\) 0 0
\(649\) 2.42271e34 0.170311
\(650\) −7.13279e34 1.23544e35i −0.491861 0.851928i
\(651\) 0 0
\(652\) −3.84714e34 + 6.66344e34i −0.255295 + 0.442184i
\(653\) −6.00416e34 + 1.03995e35i −0.390875 + 0.677015i −0.992565 0.121715i \(-0.961161\pi\)
0.601690 + 0.798729i \(0.294494\pi\)
\(654\) 0 0
\(655\) −1.62839e34 2.82045e34i −0.102033 0.176727i
\(656\) −5.82354e33 −0.0358005
\(657\) 0 0
\(658\) −6.29211e34 −0.372368
\(659\) 4.13089e34 + 7.15492e34i 0.239870 + 0.415467i 0.960677 0.277669i \(-0.0895618\pi\)
−0.720807 + 0.693136i \(0.756228\pi\)
\(660\) 0 0
\(661\) −3.31071e34 + 5.73431e34i −0.185098 + 0.320600i −0.943610 0.331060i \(-0.892594\pi\)
0.758511 + 0.651660i \(0.225927\pi\)
\(662\) 6.07179e33 1.05167e34i 0.0333113 0.0576969i
\(663\) 0 0
\(664\) −5.96031e34 1.03236e35i −0.314897 0.545417i
\(665\) 1.23217e35 0.638851
\(666\) 0 0
\(667\) 1.54489e35 0.771479
\(668\) 6.68347e34 + 1.15761e35i 0.327564 + 0.567358i
\(669\) 0 0
\(670\) 4.84531e34 8.39232e34i 0.228763 0.396230i
\(671\) −3.86232e34 + 6.68973e34i −0.178985 + 0.310011i
\(672\) 0 0
\(673\) −3.53069e34 6.11533e34i −0.157642 0.273043i 0.776376 0.630270i \(-0.217056\pi\)
−0.934018 + 0.357227i \(0.883722\pi\)
\(674\) −1.34813e35 −0.590858
\(675\) 0 0
\(676\) 2.74604e35 1.15977
\(677\) 1.17229e35 + 2.03047e35i 0.486046 + 0.841856i 0.999871 0.0160384i \(-0.00510541\pi\)
−0.513825 + 0.857895i \(0.671772\pi\)
\(678\) 0 0
\(679\) −2.71205e34 + 4.69741e34i −0.108374 + 0.187710i
\(680\) −2.77756e34 + 4.81088e34i −0.108969 + 0.188739i
\(681\) 0 0
\(682\) −6.41603e34 1.11129e35i −0.242640 0.420264i
\(683\) −1.42849e35 −0.530420 −0.265210 0.964191i \(-0.585441\pi\)
−0.265210 + 0.964191i \(0.585441\pi\)
\(684\) 0 0
\(685\) 1.77086e35 0.633946
\(686\) 1.05594e35 + 1.82895e35i 0.371184 + 0.642909i
\(687\) 0 0
\(688\) −1.40321e34 + 2.43043e34i −0.0475628 + 0.0823812i
\(689\) 3.70734e35 6.42130e35i 1.23402 2.13738i
\(690\) 0 0
\(691\) 2.88162e34 + 4.99111e34i 0.0925041 + 0.160222i 0.908564 0.417745i \(-0.137180\pi\)
−0.816060 + 0.577967i \(0.803846\pi\)
\(692\) −1.52616e35 −0.481141
\(693\) 0 0
\(694\) −2.03584e35 −0.619084
\(695\) 7.51605e34 + 1.30182e35i 0.224481 + 0.388813i
\(696\) 0 0
\(697\) −3.15031e34 + 5.45650e34i −0.0907703 + 0.157219i
\(698\) 6.08904e34 1.05465e35i 0.172328 0.298481i
\(699\) 0 0
\(700\) −6.56630e34 1.13732e35i −0.179306 0.310567i
\(701\) 6.28311e35 1.68539 0.842693 0.538395i \(-0.180969\pi\)
0.842693 + 0.538395i \(0.180969\pi\)
\(702\) 0 0
\(703\) 5.91662e35 1.53155
\(704\) −1.11451e34 1.93039e34i −0.0283417 0.0490893i
\(705\) 0 0
\(706\) −1.63461e35 + 2.83123e35i −0.401195 + 0.694891i
\(707\) 1.45635e35 2.52248e35i 0.351176 0.608254i
\(708\) 0 0
\(709\) −3.60866e35 6.25039e35i −0.839979 1.45489i −0.889911 0.456134i \(-0.849234\pi\)
0.0499322 0.998753i \(-0.484099\pi\)
\(710\) −1.09172e35 −0.249678
\(711\) 0 0
\(712\) −6.50768e34 −0.143690
\(713\) −1.44720e35 2.50662e35i −0.313985 0.543838i
\(714\) 0 0
\(715\) −9.58812e34 + 1.66071e35i −0.200867 + 0.347911i
\(716\) −8.79764e34 + 1.52380e35i −0.181115 + 0.313700i
\(717\) 0 0
\(718\) −3.03497e35 5.25673e35i −0.603391 1.04510i
\(719\) 7.06277e35 1.37995 0.689975 0.723833i \(-0.257621\pi\)
0.689975 + 0.723833i \(0.257621\pi\)
\(720\) 0 0
\(721\) 4.22104e35 0.796578
\(722\) 1.82329e35 + 3.15803e35i 0.338175 + 0.585736i
\(723\) 0 0
\(724\) 8.89986e34 1.54150e35i 0.159460 0.276193i
\(725\) −4.03078e35 + 6.98152e35i −0.709846 + 1.22949i
\(726\) 0 0
\(727\) −1.02681e35 1.77849e35i −0.174707 0.302601i 0.765353 0.643611i \(-0.222564\pi\)
−0.940060 + 0.341010i \(0.889231\pi\)
\(728\) 3.61779e35 0.605064
\(729\) 0 0
\(730\) 3.76188e35 0.607953
\(731\) 1.51817e35 + 2.62954e35i 0.241186 + 0.417747i
\(732\) 0 0
\(733\) −3.49051e35 + 6.04573e35i −0.535906 + 0.928216i 0.463213 + 0.886247i \(0.346697\pi\)
−0.999119 + 0.0419694i \(0.986637\pi\)
\(734\) 1.68846e35 2.92451e35i 0.254854 0.441420i
\(735\) 0 0
\(736\) −2.51389e34 4.35418e34i −0.0366753 0.0635234i
\(737\) 4.20697e35 0.603428
\(738\) 0 0
\(739\) 1.04387e36 1.44741 0.723704 0.690110i \(-0.242438\pi\)
0.723704 + 0.690110i \(0.242438\pi\)
\(740\) 9.76294e34 + 1.69099e35i 0.133102 + 0.230539i
\(741\) 0 0
\(742\) 3.41290e35 5.91132e35i 0.449857 0.779176i
\(743\) 4.89050e35 8.47060e35i 0.633860 1.09788i −0.352896 0.935663i \(-0.614803\pi\)
0.986755 0.162215i \(-0.0518637\pi\)
\(744\) 0 0
\(745\) −1.47522e35 2.55515e35i −0.184885 0.320231i
\(746\) −4.36519e35 −0.537983
\(747\) 0 0
\(748\) −2.41163e35 −0.287436
\(749\) 1.60426e35 + 2.77866e35i 0.188041 + 0.325696i
\(750\) 0 0
\(751\) −1.26972e35 + 2.19922e35i −0.143949 + 0.249327i −0.928980 0.370129i \(-0.879313\pi\)
0.785031 + 0.619456i \(0.212647\pi\)
\(752\) 6.28512e34 1.08861e35i 0.0700794 0.121381i
\(753\) 0 0
\(754\) −1.11041e36 1.92328e36i −1.19768 2.07444i
\(755\) 2.01023e35 0.213260
\(756\) 0 0
\(757\) −7.81917e35 −0.802532 −0.401266 0.915962i \(-0.631430\pi\)
−0.401266 + 0.915962i \(0.631430\pi\)
\(758\) −3.06093e35 5.30169e35i −0.309021 0.535241i
\(759\) 0 0
\(760\) −1.23080e35 + 2.13181e35i −0.120231 + 0.208247i
\(761\) 8.13655e35 1.40929e36i 0.781865 1.35423i −0.148988 0.988839i \(-0.547602\pi\)
0.930854 0.365392i \(-0.119065\pi\)
\(762\) 0 0
\(763\) 3.23086e35 + 5.59601e35i 0.300442 + 0.520382i
\(764\) −6.66738e35 −0.609941
\(765\) 0 0
\(766\) −8.19517e35 −0.725602
\(767\) −3.92778e35 6.80312e35i −0.342141 0.592606i
\(768\) 0 0
\(769\) −1.40603e35 + 2.43531e35i −0.118553 + 0.205340i −0.919195 0.393804i \(-0.871159\pi\)
0.800641 + 0.599144i \(0.204492\pi\)
\(770\) −8.82663e34 + 1.52882e35i −0.0732252 + 0.126830i
\(771\) 0 0
\(772\) 3.38022e34 + 5.85471e34i 0.0271474 + 0.0470207i
\(773\) −6.80034e35 −0.537387 −0.268693 0.963226i \(-0.586592\pi\)
−0.268693 + 0.963226i \(0.586592\pi\)
\(774\) 0 0
\(775\) 1.51036e36 1.15560
\(776\) −5.41808e34 9.38438e34i −0.0407919 0.0706536i
\(777\) 0 0
\(778\) −5.24940e35 + 9.09223e35i −0.382705 + 0.662865i
\(779\) −1.39597e35 + 2.41790e35i −0.100152 + 0.173468i
\(780\) 0 0
\(781\) −2.36972e35 4.10448e35i −0.164649 0.285181i
\(782\) −5.43967e35 −0.371953
\(783\) 0 0
\(784\) −4.44307e34 −0.0294261
\(785\) −1.07627e35 1.86416e35i −0.0701538 0.121510i
\(786\) 0 0
\(787\) 5.70824e35 9.88697e35i 0.360428 0.624279i −0.627603 0.778533i \(-0.715964\pi\)
0.988031 + 0.154254i \(0.0492974\pi\)
\(788\) −1.32064e35 + 2.28742e35i −0.0820745 + 0.142157i
\(789\) 0 0
\(790\) −1.72492e35 2.98765e35i −0.103856 0.179884i
\(791\) −1.65125e36 −0.978601
\(792\) 0 0
\(793\) 2.50469e36 1.43827
\(794\) 1.93446e35 + 3.35058e35i 0.109346 + 0.189393i
\(795\) 0 0
\(796\) 7.13938e34 1.23658e35i 0.0391064 0.0677342i
\(797\) 4.10949e35 7.11785e35i 0.221595 0.383813i −0.733698 0.679476i \(-0.762207\pi\)
0.955292 + 0.295663i \(0.0955405\pi\)
\(798\) 0 0
\(799\) −6.80002e35 1.17780e36i −0.355365 0.615511i
\(800\) 2.62360e35 0.134981
\(801\) 0 0
\(802\) 2.42098e36 1.20729
\(803\) 8.16569e35 + 1.41434e36i 0.400912 + 0.694399i
\(804\) 0 0
\(805\) −1.99093e35 + 3.44839e35i −0.0947562 + 0.164123i
\(806\) −2.08038e36 + 3.60332e36i −0.974888 + 1.68856i
\(807\) 0 0
\(808\) 2.90947e35 + 5.03936e35i 0.132182 + 0.228946i
\(809\) 5.29083e35 0.236683 0.118341 0.992973i \(-0.462242\pi\)
0.118341 + 0.992973i \(0.462242\pi\)
\(810\) 0 0
\(811\) 1.68688e36 0.731682 0.365841 0.930677i \(-0.380781\pi\)
0.365841 + 0.930677i \(0.380781\pi\)
\(812\) −1.02222e36 1.77053e36i −0.436609 0.756230i
\(813\) 0 0
\(814\) −4.23836e35 + 7.34106e35i −0.175547 + 0.304056i
\(815\) −6.08689e35 + 1.05428e36i −0.248270 + 0.430017i
\(816\) 0 0
\(817\) 6.72734e35 + 1.16521e36i 0.266114 + 0.460923i
\(818\) −2.87843e36 −1.12135
\(819\) 0 0
\(820\) −9.21392e34 −0.0348154
\(821\) 1.60023e36 + 2.77169e36i 0.595517 + 1.03147i 0.993474 + 0.114061i \(0.0363859\pi\)
−0.397957 + 0.917404i \(0.630281\pi\)
\(822\) 0 0
\(823\) −2.28957e36 + 3.96566e36i −0.826527 + 1.43159i 0.0742202 + 0.997242i \(0.476353\pi\)
−0.900747 + 0.434344i \(0.856980\pi\)
\(824\) −4.21635e35 + 7.30293e35i −0.149915 + 0.259661i
\(825\) 0 0
\(826\) −3.61584e35 6.26281e35i −0.124726 0.216032i
\(827\) −1.41774e36 −0.481701 −0.240851 0.970562i \(-0.577426\pi\)
−0.240851 + 0.970562i \(0.577426\pi\)
\(828\) 0 0
\(829\) −2.97714e36 −0.981450 −0.490725 0.871315i \(-0.663268\pi\)
−0.490725 + 0.871315i \(0.663268\pi\)
\(830\) −9.43032e35 1.63338e36i −0.306232 0.530409i
\(831\) 0 0
\(832\) −3.61377e35 + 6.25924e35i −0.113873 + 0.197233i
\(833\) −2.40353e35 + 4.16304e35i −0.0746083 + 0.129225i
\(834\) 0 0
\(835\) 1.05745e36 + 1.83156e36i 0.318551 + 0.551746i
\(836\) −1.06865e36 −0.317144
\(837\) 0 0
\(838\) −2.90797e36 −0.837605
\(839\) −1.35797e36 2.35208e36i −0.385360 0.667463i 0.606459 0.795115i \(-0.292589\pi\)
−0.991819 + 0.127652i \(0.959256\pi\)
\(840\) 0 0
\(841\) −4.45979e36 + 7.72458e36i −1.22847 + 2.12777i
\(842\) 1.96315e36 3.40027e36i 0.532785 0.922810i
\(843\) 0 0
\(844\) 1.72566e36 + 2.98893e36i 0.454647 + 0.787472i
\(845\) 4.34474e36 1.12786
\(846\) 0 0
\(847\) 2.96054e36 0.746154
\(848\) 6.81822e35 + 1.18095e36i 0.169326 + 0.293281i
\(849\) 0 0
\(850\) 1.41927e36 2.45824e36i 0.342238 0.592773i
\(851\) −9.56004e35 + 1.65585e36i −0.227164 + 0.393460i
\(852\) 0 0
\(853\) −2.52908e34 4.38049e34i −0.00583578 0.0101079i 0.863093 0.505045i \(-0.168524\pi\)
−0.868929 + 0.494938i \(0.835191\pi\)
\(854\) 2.30577e36 0.524315
\(855\) 0 0
\(856\) −6.40990e35 −0.141556
\(857\) 2.07326e36 + 3.59100e36i 0.451226 + 0.781546i 0.998462 0.0554317i \(-0.0176535\pi\)
−0.547237 + 0.836978i \(0.684320\pi\)
\(858\) 0 0
\(859\) −1.38778e36 + 2.40370e36i −0.293362 + 0.508119i −0.974603 0.223941i \(-0.928108\pi\)
0.681240 + 0.732060i \(0.261441\pi\)
\(860\) −2.22014e35 + 3.84540e35i −0.0462541 + 0.0801144i
\(861\) 0 0
\(862\) −2.52963e34 4.38145e34i −0.00511937 0.00886702i
\(863\) −1.35077e36 −0.269431 −0.134715 0.990884i \(-0.543012\pi\)
−0.134715 + 0.990884i \(0.543012\pi\)
\(864\) 0 0
\(865\) −2.41466e36 −0.467902
\(866\) −1.08338e36 1.87647e36i −0.206922 0.358399i
\(867\) 0 0
\(868\) −1.91516e36 + 3.31715e36i −0.355392 + 0.615557i
\(869\) 7.48836e35 1.29702e36i 0.136975 0.237247i
\(870\) 0 0
\(871\) −6.82049e36 1.18134e37i −1.21224 2.09966i
\(872\) −1.29091e36 −0.226172
\(873\) 0 0
\(874\) −2.41044e36 −0.410396
\(875\) −2.39951e36 4.15607e36i −0.402737 0.697561i
\(876\) 0 0
\(877\) −3.29641e36 + 5.70955e36i −0.537707 + 0.931337i 0.461320 + 0.887234i \(0.347376\pi\)
−0.999027 + 0.0441026i \(0.985957\pi\)
\(878\) 1.01196e36 1.75277e36i 0.162735 0.281866i
\(879\) 0 0
\(880\) −1.76336e35 3.05424e35i −0.0275619 0.0477386i
\(881\) −1.19143e37 −1.83599 −0.917995 0.396593i \(-0.870192\pi\)
−0.917995 + 0.396593i \(0.870192\pi\)
\(882\) 0 0
\(883\) 1.83480e36 0.274841 0.137420 0.990513i \(-0.456119\pi\)
0.137420 + 0.990513i \(0.456119\pi\)
\(884\) 3.90982e36 + 6.77201e36i 0.577436 + 1.00015i
\(885\) 0 0
\(886\) −3.52748e36 + 6.10978e36i −0.506458 + 0.877210i
\(887\) −6.33369e36 + 1.09703e37i −0.896626 + 1.55300i −0.0648476 + 0.997895i \(0.520656\pi\)
−0.831779 + 0.555107i \(0.812677\pi\)
\(888\) 0 0
\(889\) 2.94472e36 + 5.10041e36i 0.405296 + 0.701994i
\(890\) −1.02964e36 −0.139736
\(891\) 0 0
\(892\) 5.88741e36 0.776898
\(893\) −3.01324e36 5.21909e36i −0.392094 0.679127i
\(894\) 0 0
\(895\) −1.39195e36 + 2.41093e36i −0.176131 + 0.305068i
\(896\) −3.32677e35 + 5.76213e35i −0.0415119 + 0.0719006i
\(897\) 0 0
\(898\) −3.96352e36 6.86502e36i −0.480980 0.833082i
\(899\) 2.35127e37 2.81389
\(900\) 0 0
\(901\) 1.47536e37 1.71727
\(902\) −2.00001e35 3.46412e35i −0.0229589 0.0397659i
\(903\) 0 0
\(904\) 1.64941e36 2.85686e36i 0.184172 0.318995i
\(905\) 1.40812e36 2.43894e36i 0.155072 0.268593i
\(906\) 0 0
\(907\) −3.20559e35 5.55225e35i −0.0343413 0.0594809i 0.848344 0.529446i \(-0.177600\pi\)
−0.882685 + 0.469965i \(0.844267\pi\)
\(908\) −2.49564e35 −0.0263699
\(909\) 0 0
\(910\) 5.72402e36 0.588415
\(911\) −4.43527e36 7.68211e36i −0.449718 0.778934i 0.548650 0.836052i \(-0.315142\pi\)
−0.998367 + 0.0571183i \(0.981809\pi\)
\(912\) 0 0
\(913\) 4.09396e36 7.09095e36i 0.403886 0.699552i
\(914\) −1.34399e36 + 2.32786e36i −0.130789 + 0.226532i
\(915\) 0 0
\(916\) −3.23669e36 5.60612e36i −0.306484 0.530846i
\(917\) −4.22030e36 −0.394209
\(918\) 0 0
\(919\) 1.08231e37 0.983800 0.491900 0.870652i \(-0.336303\pi\)
0.491900 + 0.870652i \(0.336303\pi\)
\(920\) −3.97744e35 6.88912e35i −0.0356661 0.0617755i
\(921\) 0 0
\(922\) 1.49345e36 2.58673e36i 0.130333 0.225743i
\(923\) −7.68376e36 + 1.33087e37i −0.661535 + 1.14581i
\(924\) 0 0
\(925\) −4.98864e36 8.64057e36i −0.418033 0.724054i
\(926\) 1.34670e37 1.11336
\(927\) 0 0
\(928\) 4.08433e36 0.328678
\(929\) −2.23607e35 3.87298e35i −0.0177537 0.0307503i 0.857012 0.515296i \(-0.172318\pi\)
−0.874766 + 0.484546i \(0.838985\pi\)
\(930\) 0 0
\(931\) −1.06506e36 + 1.84474e36i −0.0823195 + 0.142581i
\(932\) −3.27900e36 + 5.67939e36i −0.250059 + 0.433115i
\(933\) 0 0
\(934\) 3.16971e36 + 5.49010e36i 0.235334 + 0.407610i
\(935\) −3.81565e36 −0.279527
\(936\) 0 0
\(937\) −1.11792e37 −0.797383 −0.398692 0.917085i \(-0.630536\pi\)
−0.398692 + 0.917085i \(0.630536\pi\)
\(938\) −6.27880e36 1.08752e37i −0.441918 0.765424i
\(939\) 0 0
\(940\) 9.94423e35 1.72239e36i 0.0681511 0.118041i
\(941\) 9.90013e36 1.71475e37i 0.669531 1.15966i −0.308505 0.951223i \(-0.599829\pi\)
0.978036 0.208438i \(-0.0668381\pi\)
\(942\) 0 0
\(943\) −4.51121e35 7.81365e35i −0.0297096 0.0514586i
\(944\) 1.44473e36 0.0938936
\(945\) 0 0
\(946\) −1.92765e36 −0.122008
\(947\) −1.08685e37 1.88247e37i −0.678881 1.17586i −0.975318 0.220804i \(-0.929132\pi\)
0.296437 0.955052i \(-0.404201\pi\)
\(948\) 0 0
\(949\) 2.64770e37 4.58596e37i 1.61080 2.78999i
\(950\) 6.28910e36 1.08930e37i 0.377610 0.654040i
\(951\) 0 0
\(952\) 3.59931e36 + 6.23418e36i 0.210502 + 0.364601i
\(953\) −2.05005e37 −1.18332 −0.591661 0.806187i \(-0.701528\pi\)
−0.591661 + 0.806187i \(0.701528\pi\)
\(954\) 0 0
\(955\) −1.05490e37 −0.593158
\(956\) 6.09285e36 + 1.05531e37i 0.338140 + 0.585676i
\(957\) 0 0
\(958\) 4.04878e36 7.01270e36i 0.218905 0.379155i
\(959\) 1.14739e37 1.98733e37i 0.612318 1.06057i
\(960\) 0 0
\(961\) −1.24095e37 2.14939e37i −0.645226 1.11756i
\(962\) 2.74856e37 1.41064
\(963\) 0 0
\(964\) 4.65788e36 0.232930
\(965\) 5.34813e35 + 9.26323e35i 0.0264004 + 0.0457268i
\(966\) 0 0
\(967\) −1.26084e37 + 2.18383e37i −0.606495 + 1.05048i 0.385318 + 0.922784i \(0.374092\pi\)
−0.991813 + 0.127697i \(0.959242\pi\)
\(968\) −2.95725e36 + 5.12211e36i −0.140426 + 0.243224i
\(969\) 0 0
\(970\) −8.57241e35 1.48478e36i −0.0396694 0.0687095i
\(971\) 1.87523e37 0.856669 0.428335 0.903620i \(-0.359100\pi\)
0.428335 + 0.903620i \(0.359100\pi\)
\(972\) 0 0
\(973\) 1.94794e37 0.867290
\(974\) 1.00511e37 + 1.74091e37i 0.441802 + 0.765224i
\(975\) 0 0
\(976\) −2.30321e36 + 3.98927e36i −0.0986757 + 0.170911i
\(977\) −1.83554e37 + 3.17925e37i −0.776393 + 1.34475i 0.157616 + 0.987501i \(0.449619\pi\)
−0.934008 + 0.357251i \(0.883714\pi\)
\(978\) 0 0
\(979\) −2.23497e36 3.87107e36i −0.0921483 0.159605i
\(980\) −7.02976e35 −0.0286164
\(981\) 0 0
\(982\) −8.32094e35 −0.0330201
\(983\) 1.22359e37 + 2.11933e37i 0.479422 + 0.830383i 0.999721 0.0236005i \(-0.00751297\pi\)
−0.520299 + 0.853984i \(0.674180\pi\)
\(984\) 0 0
\(985\) −2.08951e36 + 3.61913e36i −0.0798161 + 0.138246i
\(986\) 2.20946e37 3.82691e37i 0.833347 1.44340i
\(987\) 0 0
\(988\) 1.73253e37 + 3.00083e37i 0.637117 + 1.10352i
\(989\) −4.34800e36 −0.157883
\(990\) 0 0
\(991\) −5.14810e37 −1.82274 −0.911372 0.411583i \(-0.864976\pi\)
−0.911372 + 0.411583i \(0.864976\pi\)
\(992\) −3.82606e36 6.62693e36i −0.133769 0.231695i
\(993\) 0 0
\(994\) −7.07352e36 + 1.22517e37i −0.241160 + 0.417702i
\(995\) 1.12958e36 1.95650e36i 0.0380303 0.0658704i
\(996\) 0 0
\(997\) −2.18392e37 3.78266e37i −0.717047 1.24196i −0.962165 0.272468i \(-0.912160\pi\)
0.245118 0.969493i \(-0.421173\pi\)
\(998\) −1.16454e37 −0.377591
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.26.c.b.37.5 26
3.2 odd 2 18.26.c.b.13.4 yes 26
9.2 odd 6 18.26.c.b.7.4 26
9.7 even 3 inner 54.26.c.b.19.5 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.26.c.b.7.4 26 9.2 odd 6
18.26.c.b.13.4 yes 26 3.2 odd 2
54.26.c.b.19.5 26 9.7 even 3 inner
54.26.c.b.37.5 26 1.1 even 1 trivial