Properties

Label 54.2.e.a.13.1
Level $54$
Weight $2$
Character 54.13
Analytic conductor $0.431$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,2,Mod(7,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.431192170915\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 13.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 54.13
Dual form 54.2.e.a.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{2} +(-0.592396 - 1.62760i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-0.673648 - 0.565258i) q^{5} +(-1.50000 + 0.866025i) q^{6} +(3.31908 + 1.20805i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-2.29813 + 1.92836i) q^{9} +O(q^{10})\) \(q+(-0.173648 - 0.984808i) q^{2} +(-0.592396 - 1.62760i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-0.673648 - 0.565258i) q^{5} +(-1.50000 + 0.866025i) q^{6} +(3.31908 + 1.20805i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-2.29813 + 1.92836i) q^{9} +(-0.439693 + 0.761570i) q^{10} +(2.73783 - 2.29731i) q^{11} +(1.11334 + 1.32683i) q^{12} +(-0.641559 + 3.63846i) q^{13} +(0.613341 - 3.47843i) q^{14} +(-0.520945 + 1.43128i) q^{15} +(0.766044 - 0.642788i) q^{16} +(-3.12449 + 5.41177i) q^{17} +(2.29813 + 1.92836i) q^{18} +(-2.08512 - 3.61154i) q^{19} +(0.826352 + 0.300767i) q^{20} -6.11776i q^{21} +(-2.73783 - 2.29731i) q^{22} +(-1.93969 + 0.705990i) q^{23} +(1.11334 - 1.32683i) q^{24} +(-0.733956 - 4.16247i) q^{25} +3.69459 q^{26} +(4.50000 + 2.59808i) q^{27} -3.53209 q^{28} +(0.0282185 + 0.160035i) q^{29} +(1.50000 + 0.264490i) q^{30} +(-1.53936 + 0.560282i) q^{31} +(-0.766044 - 0.642788i) q^{32} +(-5.36097 - 3.09516i) q^{33} +(5.87211 + 2.13727i) q^{34} +(-1.55303 - 2.68993i) q^{35} +(1.50000 - 2.59808i) q^{36} +(3.85844 - 6.68302i) q^{37} +(-3.19459 + 2.68058i) q^{38} +(6.30200 - 1.11121i) q^{39} +(0.152704 - 0.866025i) q^{40} +(-1.33750 + 7.58532i) q^{41} +(-6.02481 + 1.06234i) q^{42} +(-8.29086 + 6.95686i) q^{43} +(-1.78699 + 3.09516i) q^{44} +2.63816 q^{45} +(1.03209 + 1.78763i) q^{46} +(6.02481 + 2.19285i) q^{47} +(-1.50000 - 0.866025i) q^{48} +(4.19459 + 3.51968i) q^{49} +(-3.97178 + 1.44561i) q^{50} +(10.6591 + 1.87949i) q^{51} +(-0.641559 - 3.63846i) q^{52} +0.716881 q^{53} +(1.77719 - 4.88279i) q^{54} -3.14290 q^{55} +(0.613341 + 3.47843i) q^{56} +(-4.64290 + 5.53320i) q^{57} +(0.152704 - 0.0555796i) q^{58} +(-5.35117 - 4.49016i) q^{59} -1.52314i q^{60} +(1.19207 + 0.433877i) q^{61} +(0.819078 + 1.41868i) q^{62} +(-9.95723 + 3.62414i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(2.48886 - 2.08840i) q^{65} +(-2.11721 + 5.81699i) q^{66} +(0.624485 - 3.54163i) q^{67} +(1.08512 - 6.15403i) q^{68} +(2.29813 + 2.73881i) q^{69} +(-2.37939 + 1.99654i) q^{70} +(6.76991 - 11.7258i) q^{71} +(-2.81908 - 1.02606i) q^{72} +(1.16385 + 2.01584i) q^{73} +(-7.25150 - 2.63933i) q^{74} +(-6.34002 + 3.66041i) q^{75} +(3.19459 + 2.68058i) q^{76} +(11.8623 - 4.31753i) q^{77} +(-2.18866 - 6.01330i) q^{78} +(-1.14930 - 6.51800i) q^{79} -0.879385 q^{80} +(1.56283 - 8.86327i) q^{81} +7.70233 q^{82} +(-0.773318 - 4.38571i) q^{83} +(2.09240 + 5.74881i) q^{84} +(5.16385 - 1.87949i) q^{85} +(8.29086 + 6.95686i) q^{86} +(0.243756 - 0.140732i) q^{87} +(3.35844 + 1.22237i) q^{88} +(-4.62449 - 8.00984i) q^{89} +(-0.458111 - 2.59808i) q^{90} +(-6.52481 + 11.3013i) q^{91} +(1.58125 - 1.32683i) q^{92} +(1.82383 + 2.17355i) q^{93} +(1.11334 - 6.31407i) q^{94} +(-0.636812 + 3.61154i) q^{95} +(-0.592396 + 1.62760i) q^{96} +(-8.64930 + 7.25762i) q^{97} +(2.73783 - 4.74205i) q^{98} +(-1.86184 + 10.5590i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{5} - 9 q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{10} - 3 q^{11} - 12 q^{13} - 3 q^{14} - 6 q^{17} + 9 q^{19} + 6 q^{20} + 3 q^{22} - 6 q^{23} - 9 q^{25} + 18 q^{26} + 27 q^{27} - 12 q^{28} + 15 q^{29} + 9 q^{30} - 18 q^{31} - 9 q^{33} + 6 q^{34} + 3 q^{35} + 9 q^{36} + 15 q^{37} - 15 q^{38} + 3 q^{40} - 3 q^{41} - 9 q^{42} - 18 q^{43} - 3 q^{44} - 18 q^{45} - 3 q^{46} + 9 q^{47} - 9 q^{48} + 21 q^{49} - 9 q^{50} + 27 q^{51} - 12 q^{52} - 12 q^{53} - 18 q^{55} - 3 q^{56} - 27 q^{57} + 3 q^{58} - 6 q^{59} + 18 q^{61} - 12 q^{62} - 9 q^{63} - 3 q^{64} + 21 q^{65} + 18 q^{66} - 9 q^{67} - 15 q^{68} - 3 q^{70} + 12 q^{71} + 3 q^{73} - 3 q^{74} - 18 q^{75} + 15 q^{76} + 39 q^{77} + 18 q^{78} + 33 q^{79} + 6 q^{80} - 6 q^{82} - 18 q^{83} + 9 q^{84} + 27 q^{85} + 18 q^{86} + 9 q^{87} + 12 q^{88} - 15 q^{89} - 9 q^{90} - 12 q^{91} + 12 q^{92} + 27 q^{93} + 21 q^{95} - 12 q^{97} - 3 q^{98} - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 0.984808i −0.122788 0.696364i
\(3\) −0.592396 1.62760i −0.342020 0.939693i
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) −0.673648 0.565258i −0.301265 0.252791i 0.479606 0.877484i \(-0.340780\pi\)
−0.780870 + 0.624693i \(0.785224\pi\)
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) 3.31908 + 1.20805i 1.25449 + 0.456598i 0.881918 0.471403i \(-0.156252\pi\)
0.372576 + 0.928002i \(0.378475\pi\)
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) −2.29813 + 1.92836i −0.766044 + 0.642788i
\(10\) −0.439693 + 0.761570i −0.139043 + 0.240830i
\(11\) 2.73783 2.29731i 0.825486 0.692665i −0.128764 0.991675i \(-0.541101\pi\)
0.954250 + 0.299011i \(0.0966566\pi\)
\(12\) 1.11334 + 1.32683i 0.321394 + 0.383022i
\(13\) −0.641559 + 3.63846i −0.177937 + 1.00913i 0.756763 + 0.653689i \(0.226780\pi\)
−0.934700 + 0.355439i \(0.884331\pi\)
\(14\) 0.613341 3.47843i 0.163922 0.929649i
\(15\) −0.520945 + 1.43128i −0.134507 + 0.369556i
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) −3.12449 + 5.41177i −0.757799 + 1.31255i 0.186172 + 0.982517i \(0.440392\pi\)
−0.943971 + 0.330029i \(0.892941\pi\)
\(18\) 2.29813 + 1.92836i 0.541675 + 0.454519i
\(19\) −2.08512 3.61154i −0.478360 0.828544i 0.521332 0.853354i \(-0.325435\pi\)
−0.999692 + 0.0248102i \(0.992102\pi\)
\(20\) 0.826352 + 0.300767i 0.184778 + 0.0672537i
\(21\) 6.11776i 1.33500i
\(22\) −2.73783 2.29731i −0.583706 0.489788i
\(23\) −1.93969 + 0.705990i −0.404454 + 0.147209i −0.536233 0.844070i \(-0.680153\pi\)
0.131779 + 0.991279i \(0.457931\pi\)
\(24\) 1.11334 1.32683i 0.227260 0.270838i
\(25\) −0.733956 4.16247i −0.146791 0.832494i
\(26\) 3.69459 0.724569
\(27\) 4.50000 + 2.59808i 0.866025 + 0.500000i
\(28\) −3.53209 −0.667502
\(29\) 0.0282185 + 0.160035i 0.00524004 + 0.0297178i 0.987316 0.158770i \(-0.0507527\pi\)
−0.982076 + 0.188487i \(0.939642\pi\)
\(30\) 1.50000 + 0.264490i 0.273861 + 0.0482891i
\(31\) −1.53936 + 0.560282i −0.276478 + 0.100630i −0.476538 0.879154i \(-0.658108\pi\)
0.200060 + 0.979784i \(0.435886\pi\)
\(32\) −0.766044 0.642788i −0.135419 0.113630i
\(33\) −5.36097 3.09516i −0.933225 0.538797i
\(34\) 5.87211 + 2.13727i 1.00706 + 0.366539i
\(35\) −1.55303 2.68993i −0.262511 0.454682i
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 3.85844 6.68302i 0.634324 1.09868i −0.352334 0.935874i \(-0.614612\pi\)
0.986658 0.162807i \(-0.0520547\pi\)
\(38\) −3.19459 + 2.68058i −0.518231 + 0.434848i
\(39\) 6.30200 1.11121i 1.00913 0.177937i
\(40\) 0.152704 0.866025i 0.0241446 0.136931i
\(41\) −1.33750 + 7.58532i −0.208882 + 1.18463i 0.682331 + 0.731043i \(0.260966\pi\)
−0.891213 + 0.453585i \(0.850145\pi\)
\(42\) −6.02481 + 1.06234i −0.929649 + 0.163922i
\(43\) −8.29086 + 6.95686i −1.26434 + 1.06091i −0.269139 + 0.963101i \(0.586739\pi\)
−0.995205 + 0.0978094i \(0.968816\pi\)
\(44\) −1.78699 + 3.09516i −0.269399 + 0.466612i
\(45\) 2.63816 0.393273
\(46\) 1.03209 + 1.78763i 0.152173 + 0.263572i
\(47\) 6.02481 + 2.19285i 0.878810 + 0.319861i 0.741729 0.670699i \(-0.234006\pi\)
0.137080 + 0.990560i \(0.456228\pi\)
\(48\) −1.50000 0.866025i −0.216506 0.125000i
\(49\) 4.19459 + 3.51968i 0.599228 + 0.502812i
\(50\) −3.97178 + 1.44561i −0.561695 + 0.204440i
\(51\) 10.6591 + 1.87949i 1.49257 + 0.263181i
\(52\) −0.641559 3.63846i −0.0889683 0.504564i
\(53\) 0.716881 0.0984712 0.0492356 0.998787i \(-0.484321\pi\)
0.0492356 + 0.998787i \(0.484321\pi\)
\(54\) 1.77719 4.88279i 0.241845 0.664463i
\(55\) −3.14290 −0.423789
\(56\) 0.613341 + 3.47843i 0.0819611 + 0.464825i
\(57\) −4.64290 + 5.53320i −0.614968 + 0.732890i
\(58\) 0.152704 0.0555796i 0.0200510 0.00729796i
\(59\) −5.35117 4.49016i −0.696663 0.584569i 0.224159 0.974552i \(-0.428036\pi\)
−0.920822 + 0.389983i \(0.872481\pi\)
\(60\) 1.52314i 0.196637i
\(61\) 1.19207 + 0.433877i 0.152628 + 0.0555522i 0.417205 0.908813i \(-0.363010\pi\)
−0.264576 + 0.964365i \(0.585232\pi\)
\(62\) 0.819078 + 1.41868i 0.104023 + 0.180173i
\(63\) −9.95723 + 3.62414i −1.25449 + 0.456598i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 2.48886 2.08840i 0.308705 0.259034i
\(66\) −2.11721 + 5.81699i −0.260611 + 0.716022i
\(67\) 0.624485 3.54163i 0.0762930 0.432679i −0.922605 0.385746i \(-0.873944\pi\)
0.998898 0.0469331i \(-0.0149448\pi\)
\(68\) 1.08512 6.15403i 0.131590 0.746286i
\(69\) 2.29813 + 2.73881i 0.276663 + 0.329714i
\(70\) −2.37939 + 1.99654i −0.284391 + 0.238632i
\(71\) 6.76991 11.7258i 0.803441 1.39160i −0.113897 0.993493i \(-0.536334\pi\)
0.917338 0.398108i \(-0.130333\pi\)
\(72\) −2.81908 1.02606i −0.332232 0.120922i
\(73\) 1.16385 + 2.01584i 0.136218 + 0.235937i 0.926062 0.377371i \(-0.123172\pi\)
−0.789844 + 0.613308i \(0.789839\pi\)
\(74\) −7.25150 2.63933i −0.842969 0.306816i
\(75\) −6.34002 + 3.66041i −0.732083 + 0.422668i
\(76\) 3.19459 + 2.68058i 0.366445 + 0.307484i
\(77\) 11.8623 4.31753i 1.35184 0.492028i
\(78\) −2.18866 6.01330i −0.247817 0.680872i
\(79\) −1.14930 6.51800i −0.129306 0.733333i −0.978656 0.205503i \(-0.934117\pi\)
0.849350 0.527830i \(-0.176994\pi\)
\(80\) −0.879385 −0.0983183
\(81\) 1.56283 8.86327i 0.173648 0.984808i
\(82\) 7.70233 0.850580
\(83\) −0.773318 4.38571i −0.0848827 0.481394i −0.997382 0.0723151i \(-0.976961\pi\)
0.912499 0.409079i \(-0.134150\pi\)
\(84\) 2.09240 + 5.74881i 0.228299 + 0.627247i
\(85\) 5.16385 1.87949i 0.560098 0.203859i
\(86\) 8.29086 + 6.95686i 0.894026 + 0.750177i
\(87\) 0.243756 0.140732i 0.0261334 0.0150881i
\(88\) 3.35844 + 1.22237i 0.358011 + 0.130305i
\(89\) −4.62449 8.00984i −0.490194 0.849042i 0.509742 0.860327i \(-0.329741\pi\)
−0.999936 + 0.0112857i \(0.996408\pi\)
\(90\) −0.458111 2.59808i −0.0482891 0.273861i
\(91\) −6.52481 + 11.3013i −0.683986 + 1.18470i
\(92\) 1.58125 1.32683i 0.164857 0.138331i
\(93\) 1.82383 + 2.17355i 0.189122 + 0.225387i
\(94\) 1.11334 6.31407i 0.114832 0.651247i
\(95\) −0.636812 + 3.61154i −0.0653355 + 0.370536i
\(96\) −0.592396 + 1.62760i −0.0604612 + 0.166116i
\(97\) −8.64930 + 7.25762i −0.878203 + 0.736900i −0.965809 0.259255i \(-0.916523\pi\)
0.0876055 + 0.996155i \(0.472079\pi\)
\(98\) 2.73783 4.74205i 0.276562 0.479020i
\(99\) −1.86184 + 10.5590i −0.187122 + 1.06122i
\(100\) 2.11334 + 3.66041i 0.211334 + 0.366041i
\(101\) −8.80928 3.20631i −0.876556 0.319040i −0.135737 0.990745i \(-0.543340\pi\)
−0.740819 + 0.671705i \(0.765562\pi\)
\(102\) 10.8235i 1.07169i
\(103\) −2.47178 2.07407i −0.243552 0.204364i 0.512838 0.858485i \(-0.328594\pi\)
−0.756390 + 0.654121i \(0.773039\pi\)
\(104\) −3.47178 + 1.26363i −0.340436 + 0.123909i
\(105\) −3.45811 + 4.12122i −0.337477 + 0.402190i
\(106\) −0.124485 0.705990i −0.0120911 0.0685718i
\(107\) −2.28312 −0.220717 −0.110359 0.993892i \(-0.535200\pi\)
−0.110359 + 0.993892i \(0.535200\pi\)
\(108\) −5.11721 0.902302i −0.492404 0.0868241i
\(109\) 10.4192 0.997980 0.498990 0.866608i \(-0.333704\pi\)
0.498990 + 0.866608i \(0.333704\pi\)
\(110\) 0.545759 + 3.09516i 0.0520361 + 0.295112i
\(111\) −13.1630 2.32099i −1.24937 0.220298i
\(112\) 3.31908 1.20805i 0.313623 0.114150i
\(113\) 8.52869 + 7.15642i 0.802311 + 0.673219i 0.948759 0.315999i \(-0.102340\pi\)
−0.146448 + 0.989218i \(0.546784\pi\)
\(114\) 6.25537 + 3.61154i 0.585869 + 0.338252i
\(115\) 1.70574 + 0.620838i 0.159061 + 0.0578934i
\(116\) −0.0812519 0.140732i −0.00754405 0.0130667i
\(117\) −5.54189 9.59883i −0.512348 0.887412i
\(118\) −3.49273 + 6.04958i −0.321531 + 0.556909i
\(119\) −16.9081 + 14.1876i −1.54996 + 1.30057i
\(120\) −1.50000 + 0.264490i −0.136931 + 0.0241446i
\(121\) 0.307934 1.74638i 0.0279940 0.158762i
\(122\) 0.220285 1.24930i 0.0199437 0.113106i
\(123\) 13.1382 2.31661i 1.18463 0.208882i
\(124\) 1.25490 1.05299i 0.112693 0.0945610i
\(125\) −4.05690 + 7.02676i −0.362861 + 0.628493i
\(126\) 5.29813 + 9.17664i 0.471995 + 0.817520i
\(127\) 4.95336 + 8.57948i 0.439540 + 0.761305i 0.997654 0.0684588i \(-0.0218082\pi\)
−0.558114 + 0.829764i \(0.688475\pi\)
\(128\) 0.939693 + 0.342020i 0.0830579 + 0.0302306i
\(129\) 16.2344 + 9.37295i 1.42936 + 0.825242i
\(130\) −2.48886 2.08840i −0.218287 0.183165i
\(131\) 8.48545 3.08845i 0.741377 0.269839i 0.0564046 0.998408i \(-0.482036\pi\)
0.684973 + 0.728569i \(0.259814\pi\)
\(132\) 6.09627 + 1.07494i 0.530612 + 0.0935612i
\(133\) −2.55778 14.5059i −0.221788 1.25782i
\(134\) −3.59627 −0.310670
\(135\) −1.56283 4.29385i −0.134507 0.369556i
\(136\) −6.24897 −0.535845
\(137\) 0.352044 + 1.99654i 0.0300772 + 0.170576i 0.996146 0.0877077i \(-0.0279542\pi\)
−0.966069 + 0.258284i \(0.916843\pi\)
\(138\) 2.29813 2.73881i 0.195630 0.233143i
\(139\) −0.155230 + 0.0564991i −0.0131664 + 0.00479219i −0.348595 0.937273i \(-0.613341\pi\)
0.335429 + 0.942066i \(0.391119\pi\)
\(140\) 2.37939 + 1.99654i 0.201095 + 0.168739i
\(141\) 11.1050i 0.935210i
\(142\) −12.7233 4.63089i −1.06771 0.388616i
\(143\) 6.60220 + 11.4353i 0.552103 + 0.956271i
\(144\) −0.520945 + 2.95442i −0.0434120 + 0.246202i
\(145\) 0.0714517 0.123758i 0.00593374 0.0102775i
\(146\) 1.78312 1.49621i 0.147572 0.123828i
\(147\) 3.24376 8.91215i 0.267540 0.735061i
\(148\) −1.34002 + 7.59964i −0.110149 + 0.624687i
\(149\) −1.00727 + 5.71253i −0.0825191 + 0.467989i 0.915345 + 0.402670i \(0.131918\pi\)
−0.997864 + 0.0653193i \(0.979193\pi\)
\(150\) 4.70574 + 5.60808i 0.384222 + 0.457898i
\(151\) 10.7626 9.03093i 0.875851 0.734926i −0.0894705 0.995989i \(-0.528517\pi\)
0.965322 + 0.261063i \(0.0840730\pi\)
\(152\) 2.08512 3.61154i 0.169126 0.292934i
\(153\) −3.25537 18.4621i −0.263181 1.49257i
\(154\) −6.31180 10.9324i −0.508620 0.880955i
\(155\) 1.35369 + 0.492704i 0.108731 + 0.0395749i
\(156\) −5.54189 + 3.19961i −0.443706 + 0.256174i
\(157\) −3.65657 3.06823i −0.291826 0.244871i 0.485106 0.874455i \(-0.338781\pi\)
−0.776933 + 0.629584i \(0.783225\pi\)
\(158\) −6.21941 + 2.26368i −0.494790 + 0.180089i
\(159\) −0.424678 1.16679i −0.0336791 0.0925327i
\(160\) 0.152704 + 0.866025i 0.0120723 + 0.0684653i
\(161\) −7.29086 −0.574600
\(162\) −9.00000 −0.707107
\(163\) −10.7169 −0.839411 −0.419705 0.907660i \(-0.637867\pi\)
−0.419705 + 0.907660i \(0.637867\pi\)
\(164\) −1.33750 7.58532i −0.104441 0.592314i
\(165\) 1.86184 + 5.11538i 0.144944 + 0.398231i
\(166\) −4.18479 + 1.52314i −0.324803 + 0.118219i
\(167\) −9.88120 8.29131i −0.764630 0.641601i 0.174698 0.984622i \(-0.444105\pi\)
−0.939328 + 0.343021i \(0.888550\pi\)
\(168\) 5.29813 3.05888i 0.408760 0.235998i
\(169\) −0.610815 0.222318i −0.0469857 0.0171014i
\(170\) −2.74763 4.75903i −0.210733 0.365001i
\(171\) 11.7562 + 4.27892i 0.899022 + 0.327217i
\(172\) 5.41147 9.37295i 0.412621 0.714681i
\(173\) 9.86097 8.27433i 0.749715 0.629086i −0.185712 0.982604i \(-0.559459\pi\)
0.935428 + 0.353518i \(0.115015\pi\)
\(174\) −0.180922 0.215615i −0.0137157 0.0163457i
\(175\) 2.59240 14.7022i 0.195967 1.11138i
\(176\) 0.620615 3.51968i 0.0467806 0.265306i
\(177\) −4.13816 + 11.3695i −0.311043 + 0.854583i
\(178\) −7.08512 + 5.94512i −0.531052 + 0.445606i
\(179\) 4.48158 7.76233i 0.334969 0.580184i −0.648510 0.761206i \(-0.724607\pi\)
0.983479 + 0.181023i \(0.0579408\pi\)
\(180\) −2.47906 + 0.902302i −0.184778 + 0.0672537i
\(181\) 0.992726 + 1.71945i 0.0737887 + 0.127806i 0.900559 0.434734i \(-0.143158\pi\)
−0.826770 + 0.562540i \(0.809824\pi\)
\(182\) 12.2626 + 4.46324i 0.908967 + 0.330837i
\(183\) 2.19723i 0.162424i
\(184\) −1.58125 1.32683i −0.116571 0.0978151i
\(185\) −6.37686 + 2.32099i −0.468836 + 0.170642i
\(186\) 1.82383 2.17355i 0.133729 0.159372i
\(187\) 3.87820 + 21.9944i 0.283602 + 1.60839i
\(188\) −6.41147 −0.467605
\(189\) 11.7973 + 14.0594i 0.858124 + 1.02267i
\(190\) 3.66725 0.266050
\(191\) 2.27853 + 12.9222i 0.164869 + 0.935018i 0.949200 + 0.314675i \(0.101895\pi\)
−0.784331 + 0.620343i \(0.786993\pi\)
\(192\) 1.70574 + 0.300767i 0.123101 + 0.0217060i
\(193\) −5.40895 + 1.96870i −0.389345 + 0.141710i −0.529273 0.848452i \(-0.677535\pi\)
0.139928 + 0.990162i \(0.455313\pi\)
\(194\) 8.64930 + 7.25762i 0.620984 + 0.521067i
\(195\) −4.87346 2.81369i −0.348995 0.201493i
\(196\) −5.14543 1.87278i −0.367531 0.133770i
\(197\) 13.3405 + 23.1064i 0.950471 + 1.64626i 0.744409 + 0.667724i \(0.232731\pi\)
0.206062 + 0.978539i \(0.433935\pi\)
\(198\) 10.7219 0.761975
\(199\) 5.32160 9.21729i 0.377239 0.653396i −0.613421 0.789756i \(-0.710207\pi\)
0.990659 + 0.136360i \(0.0435404\pi\)
\(200\) 3.23783 2.71686i 0.228949 0.192111i
\(201\) −6.13429 + 1.08164i −0.432679 + 0.0762930i
\(202\) −1.62789 + 9.23222i −0.114538 + 0.649576i
\(203\) −0.0996702 + 0.565258i −0.00699548 + 0.0396733i
\(204\) −10.6591 + 1.87949i −0.746286 + 0.131590i
\(205\) 5.18866 4.35381i 0.362392 0.304083i
\(206\) −1.61334 + 2.79439i −0.112407 + 0.194694i
\(207\) 3.09627 5.36289i 0.215205 0.372747i
\(208\) 1.84730 + 3.19961i 0.128087 + 0.221853i
\(209\) −14.0055 5.09759i −0.968782 0.352608i
\(210\) 4.65910 + 2.68993i 0.321508 + 0.185623i
\(211\) −4.09105 3.43280i −0.281640 0.236324i 0.491014 0.871152i \(-0.336626\pi\)
−0.772653 + 0.634828i \(0.781071\pi\)
\(212\) −0.673648 + 0.245188i −0.0462663 + 0.0168396i
\(213\) −23.0954 4.07234i −1.58247 0.279032i
\(214\) 0.396459 + 2.24843i 0.0271014 + 0.153700i
\(215\) 9.51754 0.649091
\(216\) 5.19615i 0.353553i
\(217\) −5.78611 −0.392787
\(218\) −1.80928 10.2609i −0.122540 0.694957i
\(219\) 2.59152 3.08845i 0.175119 0.208698i
\(220\) 2.95336 1.07494i 0.199116 0.0724722i
\(221\) −17.6860 14.8403i −1.18969 0.998266i
\(222\) 13.3660i 0.897069i
\(223\) 17.9008 + 6.51536i 1.19873 + 0.436301i 0.862779 0.505580i \(-0.168722\pi\)
0.335947 + 0.941881i \(0.390944\pi\)
\(224\) −1.76604 3.05888i −0.117999 0.204380i
\(225\) 9.71348 + 8.15058i 0.647565 + 0.543372i
\(226\) 5.56670 9.64181i 0.370292 0.641364i
\(227\) −2.65136 + 2.22475i −0.175977 + 0.147662i −0.726522 0.687143i \(-0.758864\pi\)
0.550545 + 0.834806i \(0.314420\pi\)
\(228\) 2.47044 6.78747i 0.163609 0.449511i
\(229\) −5.02528 + 28.4998i −0.332080 + 1.88332i 0.122272 + 0.992497i \(0.460982\pi\)
−0.454352 + 0.890822i \(0.650129\pi\)
\(230\) 0.315207 1.78763i 0.0207842 0.117873i
\(231\) −14.0544 16.7494i −0.924710 1.10203i
\(232\) −0.124485 + 0.104455i −0.00817285 + 0.00685784i
\(233\) 3.33022 5.76811i 0.218170 0.377882i −0.736078 0.676896i \(-0.763325\pi\)
0.954249 + 0.299015i \(0.0966579\pi\)
\(234\) −8.49067 + 7.12452i −0.555052 + 0.465744i
\(235\) −2.81908 4.88279i −0.183896 0.318518i
\(236\) 6.56418 + 2.38917i 0.427292 + 0.155521i
\(237\) −9.92783 + 5.73184i −0.644882 + 0.372323i
\(238\) 16.9081 + 14.1876i 1.09599 + 0.919643i
\(239\) −7.31908 + 2.66393i −0.473432 + 0.172315i −0.567706 0.823231i \(-0.692169\pi\)
0.0942745 + 0.995546i \(0.469947\pi\)
\(240\) 0.520945 + 1.43128i 0.0336268 + 0.0923889i
\(241\) 3.80200 + 21.5622i 0.244909 + 1.38895i 0.820705 + 0.571352i \(0.193581\pi\)
−0.575796 + 0.817593i \(0.695308\pi\)
\(242\) −1.77332 −0.113993
\(243\) −15.3516 + 2.70691i −0.984808 + 0.173648i
\(244\) −1.26857 −0.0812119
\(245\) −0.836152 4.74205i −0.0534198 0.302959i
\(246\) −4.56283 12.5363i −0.290916 0.799284i
\(247\) 14.4782 5.26963i 0.921224 0.335298i
\(248\) −1.25490 1.05299i −0.0796862 0.0668647i
\(249\) −6.68004 + 3.85673i −0.423331 + 0.244410i
\(250\) 7.62449 + 2.77509i 0.482215 + 0.175512i
\(251\) −8.04236 13.9298i −0.507629 0.879239i −0.999961 0.00883173i \(-0.997189\pi\)
0.492332 0.870407i \(-0.336145\pi\)
\(252\) 8.11721 6.81115i 0.511336 0.429062i
\(253\) −3.68866 + 6.38895i −0.231904 + 0.401670i
\(254\) 7.58899 6.36792i 0.476176 0.399559i
\(255\) −6.11809 7.29125i −0.383130 0.456596i
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 4.49138 25.4719i 0.280165 1.58889i −0.441898 0.897065i \(-0.645695\pi\)
0.722063 0.691828i \(-0.243194\pi\)
\(258\) 6.41147 17.6154i 0.399161 1.09669i
\(259\) 20.8799 17.5203i 1.29741 1.08866i
\(260\) −1.62449 + 2.81369i −0.100746 + 0.174498i
\(261\) −0.373455 0.313366i −0.0231163 0.0193969i
\(262\) −4.51501 7.82023i −0.278939 0.483136i
\(263\) 29.5967 + 10.7723i 1.82501 + 0.664250i 0.994180 + 0.107727i \(0.0343574\pi\)
0.830832 + 0.556523i \(0.187865\pi\)
\(264\) 6.19031i 0.380987i
\(265\) −0.482926 0.405223i −0.0296659 0.0248926i
\(266\) −13.8414 + 5.03785i −0.848669 + 0.308890i
\(267\) −10.2973 + 12.2718i −0.630182 + 0.751021i
\(268\) 0.624485 + 3.54163i 0.0381465 + 0.216340i
\(269\) −4.60906 −0.281019 −0.140510 0.990079i \(-0.544874\pi\)
−0.140510 + 0.990079i \(0.544874\pi\)
\(270\) −3.95723 + 2.28471i −0.240830 + 0.139043i
\(271\) −1.31820 −0.0800750 −0.0400375 0.999198i \(-0.512748\pi\)
−0.0400375 + 0.999198i \(0.512748\pi\)
\(272\) 1.08512 + 6.15403i 0.0657952 + 0.373143i
\(273\) 22.2592 + 3.92490i 1.34719 + 0.237546i
\(274\) 1.90508 0.693392i 0.115090 0.0418893i
\(275\) −11.5719 9.70999i −0.697813 0.585535i
\(276\) −3.09627 1.78763i −0.186373 0.107603i
\(277\) −28.9624 10.5415i −1.74018 0.633375i −0.740916 0.671598i \(-0.765608\pi\)
−0.999269 + 0.0382227i \(0.987830\pi\)
\(278\) 0.0825961 + 0.143061i 0.00495378 + 0.00858021i
\(279\) 2.45723 4.25605i 0.147111 0.254803i
\(280\) 1.55303 2.68993i 0.0928115 0.160754i
\(281\) 16.4172 13.7756i 0.979365 0.821785i −0.00462815 0.999989i \(-0.501473\pi\)
0.983994 + 0.178204i \(0.0570287\pi\)
\(282\) −10.9363 + 1.92836i −0.651247 + 0.114832i
\(283\) −0.307934 + 1.74638i −0.0183047 + 0.103811i −0.992591 0.121501i \(-0.961229\pi\)
0.974287 + 0.225313i \(0.0723403\pi\)
\(284\) −2.35117 + 13.3341i −0.139516 + 0.791235i
\(285\) 6.25537 1.10299i 0.370536 0.0653355i
\(286\) 10.1152 8.48762i 0.598121 0.501884i
\(287\) −13.6027 + 23.5605i −0.802940 + 1.39073i
\(288\) 3.00000 0.176777
\(289\) −11.0248 19.0955i −0.648519 1.12327i
\(290\) −0.134285 0.0488759i −0.00788551 0.00287009i
\(291\) 16.9363 + 9.77817i 0.992823 + 0.573207i
\(292\) −1.78312 1.49621i −0.104349 0.0875593i
\(293\) 29.0920 10.5886i 1.69957 0.618594i 0.703795 0.710403i \(-0.251487\pi\)
0.995777 + 0.0918092i \(0.0292650\pi\)
\(294\) −9.34002 1.64690i −0.544721 0.0960490i
\(295\) 1.06670 + 6.04958i 0.0621059 + 0.352220i
\(296\) 7.71688 0.448535
\(297\) 18.2888 3.22481i 1.06122 0.187122i
\(298\) 5.80066 0.336023
\(299\) −1.32429 7.51044i −0.0765858 0.434340i
\(300\) 4.70574 5.60808i 0.271686 0.323783i
\(301\) −35.9222 + 13.0746i −2.07052 + 0.753608i
\(302\) −10.7626 9.03093i −0.619320 0.519672i
\(303\) 16.2373i 0.932811i
\(304\) −3.91875 1.42631i −0.224756 0.0818044i
\(305\) −0.557781 0.966105i −0.0319385 0.0553190i
\(306\) −17.6163 + 6.41182i −1.00706 + 0.366539i
\(307\) −4.26857 + 7.39338i −0.243620 + 0.421963i −0.961743 0.273954i \(-0.911668\pi\)
0.718123 + 0.695917i \(0.245002\pi\)
\(308\) −9.67024 + 8.11430i −0.551013 + 0.462355i
\(309\) −1.91147 + 5.25173i −0.108740 + 0.298761i
\(310\) 0.250152 1.41868i 0.0142077 0.0805759i
\(311\) −3.12789 + 17.7391i −0.177366 + 1.00589i 0.758011 + 0.652242i \(0.226171\pi\)
−0.935377 + 0.353652i \(0.884940\pi\)
\(312\) 4.11334 + 4.90209i 0.232872 + 0.277526i
\(313\) 13.1800 11.0594i 0.744980 0.625113i −0.189190 0.981941i \(-0.560586\pi\)
0.934170 + 0.356828i \(0.116142\pi\)
\(314\) −2.38666 + 4.13381i −0.134687 + 0.233285i
\(315\) 8.75624 + 3.18701i 0.493358 + 0.179568i
\(316\) 3.30928 + 5.73184i 0.186161 + 0.322441i
\(317\) −23.4094 8.52033i −1.31480 0.478549i −0.413014 0.910725i \(-0.635524\pi\)
−0.901790 + 0.432175i \(0.857746\pi\)
\(318\) −1.07532 + 0.620838i −0.0603011 + 0.0348148i
\(319\) 0.444907 + 0.373321i 0.0249100 + 0.0209020i
\(320\) 0.826352 0.300767i 0.0461945 0.0168134i
\(321\) 1.35251 + 3.71599i 0.0754898 + 0.207407i
\(322\) 1.26604 + 7.18009i 0.0705539 + 0.400131i
\(323\) 26.0597 1.45000
\(324\) 1.56283 + 8.86327i 0.0868241 + 0.492404i
\(325\) 15.6159 0.866212
\(326\) 1.86097 + 10.5541i 0.103069 + 0.584536i
\(327\) −6.17230 16.9583i −0.341329 0.937794i
\(328\) −7.23783 + 2.63435i −0.399642 + 0.145458i
\(329\) 17.3478 + 14.5565i 0.956413 + 0.802526i
\(330\) 4.71436 2.72183i 0.259517 0.149832i
\(331\) −8.32547 3.03022i −0.457609 0.166556i 0.102922 0.994689i \(-0.467181\pi\)
−0.560531 + 0.828133i \(0.689403\pi\)
\(332\) 2.22668 + 3.85673i 0.122205 + 0.211665i
\(333\) 4.02007 + 22.7989i 0.220298 + 1.24937i
\(334\) −6.44949 + 11.1708i −0.352901 + 0.611242i
\(335\) −2.42262 + 2.03282i −0.132362 + 0.111065i
\(336\) −3.93242 4.68647i −0.214531 0.255668i
\(337\) 3.65910 20.7518i 0.199324 1.13042i −0.706801 0.707412i \(-0.749862\pi\)
0.906125 0.423010i \(-0.139026\pi\)
\(338\) −0.112874 + 0.640140i −0.00613953 + 0.0348190i
\(339\) 6.59539 18.1207i 0.358212 0.984180i
\(340\) −4.20961 + 3.53228i −0.228298 + 0.191565i
\(341\) −2.92737 + 5.07035i −0.158526 + 0.274575i
\(342\) 2.17247 12.3207i 0.117474 0.666225i
\(343\) −2.69207 4.66280i −0.145358 0.251767i
\(344\) −10.1702 3.70167i −0.548343 0.199580i
\(345\) 3.14403i 0.169269i
\(346\) −9.86097 8.27433i −0.530129 0.444831i
\(347\) −20.7754 + 7.56164i −1.11528 + 0.405930i −0.832929 0.553380i \(-0.813338\pi\)
−0.282355 + 0.959310i \(0.591116\pi\)
\(348\) −0.180922 + 0.215615i −0.00969844 + 0.0115582i
\(349\) 0.381911 + 2.16593i 0.0204433 + 0.115939i 0.993322 0.115377i \(-0.0368077\pi\)
−0.972878 + 0.231317i \(0.925697\pi\)
\(350\) −14.9290 −0.797989
\(351\) −12.3400 + 14.7063i −0.658662 + 0.784962i
\(352\) −3.57398 −0.190494
\(353\) 0.826352 + 4.68647i 0.0439823 + 0.249436i 0.998870 0.0475321i \(-0.0151356\pi\)
−0.954887 + 0.296968i \(0.904025\pi\)
\(354\) 11.9153 + 2.10100i 0.633293 + 0.111667i
\(355\) −11.1887 + 4.07234i −0.593833 + 0.216137i
\(356\) 7.08512 + 5.94512i 0.375511 + 0.315091i
\(357\) 33.1079 + 19.1148i 1.75225 + 1.01166i
\(358\) −8.42262 3.06558i −0.445149 0.162021i
\(359\) 1.30288 + 2.25666i 0.0687634 + 0.119102i 0.898357 0.439266i \(-0.144761\pi\)
−0.829594 + 0.558367i \(0.811428\pi\)
\(360\) 1.31908 + 2.28471i 0.0695215 + 0.120415i
\(361\) 0.804530 1.39349i 0.0423437 0.0733414i
\(362\) 1.52094 1.27622i 0.0799391 0.0670768i
\(363\) −3.02481 + 0.533356i −0.158762 + 0.0279940i
\(364\) 2.26604 12.8514i 0.118773 0.673595i
\(365\) 0.355448 2.01584i 0.0186050 0.105514i
\(366\) −2.16385 + 0.381545i −0.113106 + 0.0199437i
\(367\) −10.9042 + 9.14971i −0.569195 + 0.477611i −0.881379 0.472411i \(-0.843384\pi\)
0.312184 + 0.950022i \(0.398939\pi\)
\(368\) −1.03209 + 1.78763i −0.0538014 + 0.0931867i
\(369\) −11.5535 20.0112i −0.601451 1.04174i
\(370\) 3.39306 + 5.87695i 0.176397 + 0.305528i
\(371\) 2.37939 + 0.866025i 0.123532 + 0.0449618i
\(372\) −2.45723 1.41868i −0.127402 0.0735554i
\(373\) −1.76810 1.48362i −0.0915489 0.0768187i 0.595865 0.803085i \(-0.296810\pi\)
−0.687413 + 0.726266i \(0.741254\pi\)
\(374\) 20.9868 7.63857i 1.08520 0.394981i
\(375\) 13.8400 + 2.44037i 0.714696 + 0.126020i
\(376\) 1.11334 + 6.31407i 0.0574162 + 0.325623i
\(377\) −0.600385 −0.0309214
\(378\) 11.7973 14.0594i 0.606785 0.723139i
\(379\) −6.02734 −0.309604 −0.154802 0.987946i \(-0.549474\pi\)
−0.154802 + 0.987946i \(0.549474\pi\)
\(380\) −0.636812 3.61154i −0.0326677 0.185268i
\(381\) 11.0296 13.1445i 0.565062 0.673414i
\(382\) 12.3302 4.48783i 0.630869 0.229618i
\(383\) 16.3007 + 13.6779i 0.832925 + 0.698907i 0.955960 0.293495i \(-0.0948185\pi\)
−0.123036 + 0.992402i \(0.539263\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) −10.4315 3.79677i −0.531641 0.193501i
\(386\) 2.87804 + 4.98491i 0.146488 + 0.253725i
\(387\) 5.63816 31.9756i 0.286604 1.62541i
\(388\) 5.64543 9.77817i 0.286603 0.496411i
\(389\) −15.8248 + 13.2785i −0.802347 + 0.673249i −0.948768 0.315973i \(-0.897669\pi\)
0.146421 + 0.989222i \(0.453225\pi\)
\(390\) −1.92468 + 5.28801i −0.0974599 + 0.267769i
\(391\) 2.23989 12.7030i 0.113276 0.642419i
\(392\) −0.950837 + 5.39246i −0.0480245 + 0.272361i
\(393\) −10.0535 11.9813i −0.507132 0.604376i
\(394\) 20.4388 17.1502i 1.02969 0.864015i
\(395\) −2.91013 + 5.04049i −0.146425 + 0.253615i
\(396\) −1.86184 10.5590i −0.0935612 0.530612i
\(397\) 12.2638 + 21.2416i 0.615504 + 1.06608i 0.990296 + 0.138975i \(0.0443807\pi\)
−0.374792 + 0.927109i \(0.622286\pi\)
\(398\) −10.0013 3.64019i −0.501322 0.182466i
\(399\) −22.0945 + 12.7563i −1.10611 + 0.638612i
\(400\) −3.23783 2.71686i −0.161891 0.135843i
\(401\) −13.7433 + 5.00217i −0.686310 + 0.249796i −0.661554 0.749897i \(-0.730103\pi\)
−0.0247555 + 0.999694i \(0.507881\pi\)
\(402\) 2.13041 + 5.85327i 0.106255 + 0.291934i
\(403\) −1.05097 5.96037i −0.0523527 0.296907i
\(404\) 9.37464 0.466406
\(405\) −6.06283 + 5.08732i −0.301265 + 0.252791i
\(406\) 0.573978 0.0284860
\(407\) −4.78921 27.1610i −0.237392 1.34632i
\(408\) 3.70187 + 10.1708i 0.183270 + 0.503529i
\(409\) 33.9479 12.3560i 1.67862 0.610966i 0.685497 0.728076i \(-0.259585\pi\)
0.993119 + 0.117110i \(0.0373629\pi\)
\(410\) −5.18866 4.35381i −0.256250 0.215019i
\(411\) 3.04101 1.75573i 0.150002 0.0866037i
\(412\) 3.03209 + 1.10359i 0.149380 + 0.0543700i
\(413\) −12.3366 21.3677i −0.607045 1.05143i
\(414\) −5.81908 2.11797i −0.285992 0.104093i
\(415\) −1.95811 + 3.39155i −0.0961199 + 0.166485i
\(416\) 2.83022 2.37484i 0.138763 0.116436i
\(417\) 0.183915 + 0.219182i 0.00900637 + 0.0107334i
\(418\) −2.58812 + 14.6779i −0.126589 + 0.717921i
\(419\) 3.42309 19.4133i 0.167229 0.948401i −0.779508 0.626392i \(-0.784531\pi\)
0.946737 0.322009i \(-0.104358\pi\)
\(420\) 1.84002 5.05542i 0.0897839 0.246679i
\(421\) 2.63041 2.20718i 0.128199 0.107571i −0.576434 0.817144i \(-0.695556\pi\)
0.704633 + 0.709572i \(0.251112\pi\)
\(422\) −2.67024 + 4.62500i −0.129985 + 0.225141i
\(423\) −18.0744 + 6.57856i −0.878810 + 0.319861i
\(424\) 0.358441 + 0.620838i 0.0174074 + 0.0301505i
\(425\) 24.8195 + 9.03358i 1.20392 + 0.438193i
\(426\) 23.4517i 1.13624i
\(427\) 3.43242 + 2.88014i 0.166106 + 0.139380i
\(428\) 2.14543 0.780873i 0.103703 0.0377449i
\(429\) 14.7010 17.5200i 0.709770 0.845871i
\(430\) −1.65270 9.37295i −0.0797004 0.452004i
\(431\) −28.7151 −1.38316 −0.691579 0.722300i \(-0.743085\pi\)
−0.691579 + 0.722300i \(0.743085\pi\)
\(432\) 5.11721 0.902302i 0.246202 0.0434120i
\(433\) −14.1179 −0.678464 −0.339232 0.940703i \(-0.610167\pi\)
−0.339232 + 0.940703i \(0.610167\pi\)
\(434\) 1.00475 + 5.69821i 0.0482294 + 0.273523i
\(435\) −0.243756 0.0429807i −0.0116872 0.00206077i
\(436\) −9.79086 + 3.56358i −0.468897 + 0.170665i
\(437\) 6.59421 + 5.53320i 0.315444 + 0.264689i
\(438\) −3.49154 2.01584i −0.166832 0.0963207i
\(439\) −14.5842 5.30823i −0.696068 0.253348i −0.0303369 0.999540i \(-0.509658\pi\)
−0.665731 + 0.746192i \(0.731880\pi\)
\(440\) −1.57145 2.72183i −0.0749160 0.129758i
\(441\) −16.4270 −0.782236
\(442\) −11.5437 + 19.9943i −0.549078 + 0.951031i
\(443\) −27.3897 + 22.9826i −1.30132 + 1.09194i −0.311407 + 0.950277i \(0.600800\pi\)
−0.989915 + 0.141662i \(0.954755\pi\)
\(444\) 13.1630 2.32099i 0.624687 0.110149i
\(445\) −1.41235 + 8.00984i −0.0669519 + 0.379703i
\(446\) 3.30793 18.7602i 0.156635 0.888322i
\(447\) 9.89440 1.74465i 0.467989 0.0825191i
\(448\) −2.70574 + 2.27038i −0.127834 + 0.107266i
\(449\) 12.8564 22.2679i 0.606730 1.05089i −0.385045 0.922898i \(-0.625814\pi\)
0.991775 0.127990i \(-0.0408525\pi\)
\(450\) 6.34002 10.9812i 0.298872 0.517661i
\(451\) 13.7640 + 23.8399i 0.648121 + 1.12258i
\(452\) −10.4620 3.80785i −0.492090 0.179106i
\(453\) −21.0744 12.1673i −0.990164 0.571671i
\(454\) 2.65136 + 2.22475i 0.124434 + 0.104413i
\(455\) 10.7836 3.92490i 0.505542 0.184002i
\(456\) −7.11334 1.25427i −0.333113 0.0587368i
\(457\) 0.352921 + 2.00152i 0.0165090 + 0.0936270i 0.991949 0.126638i \(-0.0404188\pi\)
−0.975440 + 0.220265i \(0.929308\pi\)
\(458\) 28.9394 1.35225
\(459\) −28.1204 + 16.2353i −1.31255 + 0.757799i
\(460\) −1.81521 −0.0846345
\(461\) 3.74628 + 21.2462i 0.174482 + 0.989535i 0.938740 + 0.344625i \(0.111994\pi\)
−0.764259 + 0.644910i \(0.776895\pi\)
\(462\) −14.0544 + 16.7494i −0.653869 + 0.779251i
\(463\) 20.2986 7.38809i 0.943356 0.343353i 0.175866 0.984414i \(-0.443728\pi\)
0.767490 + 0.641061i \(0.221505\pi\)
\(464\) 0.124485 + 0.104455i 0.00577908 + 0.00484922i
\(465\) 2.49514i 0.115709i
\(466\) −6.25877 2.27801i −0.289932 0.105527i
\(467\) −12.2622 21.2387i −0.567426 0.982810i −0.996819 0.0796928i \(-0.974606\pi\)
0.429394 0.903117i \(-0.358727\pi\)
\(468\) 8.49067 + 7.12452i 0.392481 + 0.329331i
\(469\) 6.35117 11.0005i 0.293270 0.507958i
\(470\) −4.31908 + 3.62414i −0.199224 + 0.167169i
\(471\) −2.82770 + 7.76903i −0.130293 + 0.357978i
\(472\) 1.21301 6.87933i 0.0558334 0.316647i
\(473\) −6.71688 + 38.0933i −0.308843 + 1.75153i
\(474\) 7.36871 + 8.78168i 0.338456 + 0.403356i
\(475\) −13.5025 + 11.3300i −0.619538 + 0.519854i
\(476\) 11.0360 19.1148i 0.505832 0.876127i
\(477\) −1.64749 + 1.38241i −0.0754333 + 0.0632961i
\(478\) 3.89440 + 6.74530i 0.178126 + 0.308523i
\(479\) −13.4620 4.89976i −0.615094 0.223876i 0.0156369 0.999878i \(-0.495022\pi\)
−0.630730 + 0.776002i \(0.717245\pi\)
\(480\) 1.31908 0.761570i 0.0602074 0.0347608i
\(481\) 21.8405 + 18.3263i 0.995841 + 0.835609i
\(482\) 20.5744 7.48849i 0.937140 0.341091i
\(483\) 4.31908 + 11.8666i 0.196525 + 0.539948i
\(484\) 0.307934 + 1.74638i 0.0139970 + 0.0793808i
\(485\) 9.92902 0.450853
\(486\) 5.33157 + 14.6484i 0.241845 + 0.664463i
\(487\) 32.3114 1.46417 0.732084 0.681214i \(-0.238548\pi\)
0.732084 + 0.681214i \(0.238548\pi\)
\(488\) 0.220285 + 1.24930i 0.00997183 + 0.0565531i
\(489\) 6.34864 + 17.4427i 0.287095 + 0.788788i
\(490\) −4.52481 + 1.64690i −0.204410 + 0.0743993i
\(491\) 24.8576 + 20.8580i 1.12181 + 0.941307i 0.998694 0.0510857i \(-0.0162682\pi\)
0.123112 + 0.992393i \(0.460713\pi\)
\(492\) −11.5535 + 6.67042i −0.520872 + 0.300726i
\(493\) −0.954241 0.347315i −0.0429768 0.0156423i
\(494\) −7.70368 13.3432i −0.346605 0.600337i
\(495\) 7.22281 6.06066i 0.324641 0.272406i
\(496\) −0.819078 + 1.41868i −0.0367777 + 0.0637008i
\(497\) 36.6352 30.7406i 1.64331 1.37890i
\(498\) 4.95811 + 5.90885i 0.222178 + 0.264782i
\(499\) −4.31180 + 24.4535i −0.193023 + 1.09469i 0.722184 + 0.691702i \(0.243139\pi\)
−0.915206 + 0.402985i \(0.867973\pi\)
\(500\) 1.40895 7.99054i 0.0630101 0.357348i
\(501\) −7.64131 + 20.9943i −0.341389 + 0.937957i
\(502\) −12.3216 + 10.3391i −0.549940 + 0.461455i
\(503\) 7.46198 12.9245i 0.332713 0.576276i −0.650330 0.759652i \(-0.725369\pi\)
0.983043 + 0.183376i \(0.0587025\pi\)
\(504\) −8.11721 6.81115i −0.361569 0.303393i
\(505\) 4.12196 + 7.13944i 0.183425 + 0.317701i
\(506\) 6.93242 + 2.52319i 0.308184 + 0.112170i
\(507\) 1.12586i 0.0500012i
\(508\) −7.58899 6.36792i −0.336707 0.282531i
\(509\) −14.4595 + 5.26281i −0.640904 + 0.233270i −0.641970 0.766729i \(-0.721883\pi\)
0.00106632 + 0.999999i \(0.499661\pi\)
\(510\) −6.11809 + 7.29125i −0.270914 + 0.322862i
\(511\) 1.42767 + 8.09672i 0.0631564 + 0.358178i
\(512\) −1.00000 −0.0441942
\(513\) 21.6692i 0.956720i
\(514\) −25.8648 −1.14085
\(515\) 0.492726 + 2.79439i 0.0217121 + 0.123135i
\(516\) −18.4611 3.25519i −0.812705 0.143302i
\(517\) 21.5326 7.83721i 0.947001 0.344680i
\(518\) −20.8799 17.5203i −0.917408 0.769797i
\(519\) −19.3089 11.1480i −0.847565 0.489342i
\(520\) 3.05303 + 1.11121i 0.133884 + 0.0487299i
\(521\) −6.69207 11.5910i −0.293185 0.507811i 0.681376 0.731933i \(-0.261382\pi\)
−0.974561 + 0.224122i \(0.928048\pi\)
\(522\) −0.243756 + 0.422197i −0.0106689 + 0.0184791i
\(523\) 12.4402 21.5470i 0.543970 0.942184i −0.454701 0.890644i \(-0.650254\pi\)
0.998671 0.0515397i \(-0.0164129\pi\)
\(524\) −6.91740 + 5.80439i −0.302188 + 0.253566i
\(525\) −25.4650 + 4.49016i −1.11138 + 0.195967i
\(526\) 5.46926 31.0177i 0.238471 1.35244i
\(527\) 1.77760 10.0813i 0.0774334 0.439147i
\(528\) −6.09627 + 1.07494i −0.265306 + 0.0467806i
\(529\) −14.3550 + 12.0453i −0.624132 + 0.523709i
\(530\) −0.315207 + 0.545955i −0.0136917 + 0.0237148i
\(531\) 20.9564 0.909428
\(532\) 7.36484 + 12.7563i 0.319306 + 0.553055i
\(533\) −26.7408 9.73286i −1.15827 0.421577i
\(534\) 13.8735 + 8.00984i 0.600363 + 0.346620i
\(535\) 1.53802 + 1.29055i 0.0664943 + 0.0557954i
\(536\) 3.37939 1.23000i 0.145967 0.0531277i
\(537\) −15.2888 2.69583i −0.659760 0.116334i
\(538\) 0.800355 + 4.53904i 0.0345057 + 0.195692i
\(539\) 19.5699 0.842934
\(540\) 2.93717 + 3.50038i 0.126396 + 0.150632i
\(541\) −9.09421 −0.390991 −0.195495 0.980705i \(-0.562631\pi\)
−0.195495 + 0.980705i \(0.562631\pi\)
\(542\) 0.228903 + 1.29817i 0.00983223 + 0.0557614i
\(543\) 2.21048 2.63435i 0.0948610 0.113051i
\(544\) 5.87211 2.13727i 0.251765 0.0916349i
\(545\) −7.01889 5.88954i −0.300656 0.252280i
\(546\) 22.6026i 0.967303i
\(547\) −20.8701 7.59608i −0.892339 0.324785i −0.145160 0.989408i \(-0.546370\pi\)
−0.747179 + 0.664623i \(0.768592\pi\)
\(548\) −1.01367 1.75573i −0.0433019 0.0750010i
\(549\) −3.57620 + 1.30163i −0.152628 + 0.0555522i
\(550\) −7.55303 + 13.0822i −0.322062 + 0.557828i
\(551\) 0.519134 0.435605i 0.0221158 0.0185574i
\(552\) −1.22281 + 3.35965i −0.0520463 + 0.142996i
\(553\) 4.05943 23.0222i 0.172625 0.979002i
\(554\) −5.35204 + 30.3530i −0.227387 + 1.28957i
\(555\) 7.55525 + 9.00400i 0.320703 + 0.382199i
\(556\) 0.126545 0.106183i 0.00536668 0.00450318i
\(557\) 1.35369 2.34466i 0.0573578 0.0993466i −0.835921 0.548850i \(-0.815066\pi\)
0.893279 + 0.449504i \(0.148399\pi\)
\(558\) −4.61809 1.68085i −0.195499 0.0711559i
\(559\) −19.9932 34.6292i −0.845622 1.46466i
\(560\) −2.91875 1.06234i −0.123340 0.0448919i
\(561\) 33.5005 19.3415i 1.41439 0.816600i
\(562\) −16.4172 13.7756i −0.692516 0.581090i
\(563\) −6.60859 + 2.40533i −0.278519 + 0.101373i −0.477503 0.878630i \(-0.658458\pi\)
0.198984 + 0.980003i \(0.436236\pi\)
\(564\) 3.79813 + 10.4353i 0.159930 + 0.439405i
\(565\) −1.70011 9.64181i −0.0715242 0.405634i
\(566\) 1.77332 0.0745381
\(567\) 15.8944 27.5299i 0.667502 1.15615i
\(568\) 13.5398 0.568119
\(569\) 4.34507 + 24.6421i 0.182155 + 1.03305i 0.929556 + 0.368680i \(0.120190\pi\)
−0.747401 + 0.664373i \(0.768699\pi\)
\(570\) −2.17247 5.96880i −0.0909946 0.250006i
\(571\) −6.43242 + 2.34121i −0.269188 + 0.0979765i −0.473088 0.881015i \(-0.656861\pi\)
0.203899 + 0.978992i \(0.434638\pi\)
\(572\) −10.1152 8.48762i −0.422936 0.354885i
\(573\) 19.6823 11.3636i 0.822241 0.474721i
\(574\) 25.5646 + 9.30477i 1.06705 + 0.388374i
\(575\) 4.36231 + 7.55574i 0.181921 + 0.315096i
\(576\) −0.520945 2.95442i −0.0217060 0.123101i
\(577\) −2.10014 + 3.63754i −0.0874298 + 0.151433i −0.906424 0.422369i \(-0.861199\pi\)
0.818994 + 0.573802i \(0.194532\pi\)
\(578\) −16.8910 + 14.1732i −0.702573 + 0.589529i
\(579\) 6.40848 + 7.63733i 0.266327 + 0.317397i
\(580\) −0.0248149 + 0.140732i −0.00103038 + 0.00584360i
\(581\) 2.73143 15.4907i 0.113319 0.642663i
\(582\) 6.68866 18.3770i 0.277254 0.761749i
\(583\) 1.96270 1.64690i 0.0812866 0.0682075i
\(584\) −1.16385 + 2.01584i −0.0481604 + 0.0834162i
\(585\) −1.69253 + 9.59883i −0.0699776 + 0.396863i
\(586\) −15.4795 26.8113i −0.639453 1.10757i
\(587\) 34.3491 + 12.5021i 1.41774 + 0.516015i 0.933391 0.358860i \(-0.116835\pi\)
0.484348 + 0.874875i \(0.339057\pi\)
\(588\) 9.48411i 0.391118i
\(589\) 5.23324 + 4.39121i 0.215632 + 0.180937i
\(590\) 5.77244 2.10100i 0.237648 0.0864967i
\(591\) 29.7050 35.4011i 1.22190 1.45621i
\(592\) −1.34002 7.59964i −0.0550746 0.312343i
\(593\) −45.0660 −1.85064 −0.925320 0.379186i \(-0.876204\pi\)
−0.925320 + 0.379186i \(0.876204\pi\)
\(594\) −6.35163 17.4510i −0.260611 0.716022i
\(595\) 19.4097 0.795721
\(596\) −1.00727 5.71253i −0.0412595 0.233995i
\(597\) −18.1545 3.20113i −0.743015 0.131014i
\(598\) −7.16637 + 2.60835i −0.293055 + 0.106663i
\(599\) 12.4531 + 10.4494i 0.508820 + 0.426951i 0.860714 0.509089i \(-0.170018\pi\)
−0.351893 + 0.936040i \(0.614462\pi\)
\(600\) −6.34002 3.66041i −0.258830 0.149436i
\(601\) 39.0057 + 14.1969i 1.59107 + 0.579104i 0.977574 0.210590i \(-0.0675386\pi\)
0.613501 + 0.789694i \(0.289761\pi\)
\(602\) 19.1138 + 33.1061i 0.779021 + 1.34930i
\(603\) 5.39440 + 9.34337i 0.219677 + 0.380492i
\(604\) −7.02481 + 12.1673i −0.285836 + 0.495082i
\(605\) −1.19459 + 1.00238i −0.0485671 + 0.0407526i
\(606\) 15.9907 2.81959i 0.649576 0.114538i
\(607\) −7.34565 + 41.6592i −0.298151 + 1.69090i 0.355963 + 0.934500i \(0.384153\pi\)
−0.654114 + 0.756396i \(0.726958\pi\)
\(608\) −0.724155 + 4.10689i −0.0293684 + 0.166556i
\(609\) 0.979055 0.172634i 0.0396733 0.00699548i
\(610\) −0.854570 + 0.717070i −0.0346005 + 0.0290333i
\(611\) −11.8439 + 20.5142i −0.479153 + 0.829917i
\(612\) 9.37346 + 16.2353i 0.378899 + 0.656273i
\(613\) −9.50686 16.4664i −0.383979 0.665070i 0.607648 0.794206i \(-0.292113\pi\)
−0.991627 + 0.129136i \(0.958780\pi\)
\(614\) 8.02229 + 2.91987i 0.323753 + 0.117837i
\(615\) −10.1600 5.86587i −0.409690 0.236535i
\(616\) 9.67024 + 8.11430i 0.389625 + 0.326934i
\(617\) −34.7550 + 12.6498i −1.39918 + 0.509261i −0.927935 0.372741i \(-0.878418\pi\)
−0.471246 + 0.882002i \(0.656196\pi\)
\(618\) 5.50387 + 0.970481i 0.221398 + 0.0390385i
\(619\) −5.29648 30.0379i −0.212884 1.20732i −0.884541 0.466462i \(-0.845529\pi\)
0.671658 0.740862i \(-0.265583\pi\)
\(620\) −1.44057 −0.0578547
\(621\) −10.5628 1.86251i −0.423872 0.0747401i
\(622\) 18.0128 0.722247
\(623\) −5.67277 32.1719i −0.227275 1.28894i
\(624\) 4.11334 4.90209i 0.164665 0.196241i
\(625\) −13.1540 + 4.78768i −0.526162 + 0.191507i
\(626\) −13.1800 11.0594i −0.526781 0.442021i
\(627\) 25.8151i 1.03096i
\(628\) 4.48545 + 1.63257i 0.178989 + 0.0651467i
\(629\) 24.1113 + 41.7620i 0.961380 + 1.66516i
\(630\) 1.61809 9.17664i 0.0644662 0.365606i
\(631\) −6.86349 + 11.8879i −0.273231 + 0.473251i −0.969687 0.244349i \(-0.921426\pi\)
0.696456 + 0.717599i \(0.254759\pi\)
\(632\) 5.07011 4.25433i 0.201678 0.169228i
\(633\) −3.16369 + 8.69216i −0.125745 + 0.345482i
\(634\) −4.32588 + 24.5333i −0.171803 + 0.974342i
\(635\) 1.51279 8.57948i 0.0600334 0.340466i
\(636\) 0.798133 + 0.951178i 0.0316480 + 0.0377167i
\(637\) −15.4973 + 13.0038i −0.614026 + 0.515229i
\(638\) 0.290393 0.502975i 0.0114968 0.0199130i
\(639\) 7.05350 + 40.0024i 0.279032 + 1.58247i
\(640\) −0.439693 0.761570i −0.0173804 0.0301037i
\(641\) −4.01367 1.46086i −0.158530 0.0577004i 0.261536 0.965194i \(-0.415771\pi\)
−0.420066 + 0.907493i \(0.637993\pi\)
\(642\) 3.42468 1.97724i 0.135161 0.0780354i
\(643\) −16.1511 13.5524i −0.636938 0.534454i 0.266138 0.963935i \(-0.414252\pi\)
−0.903076 + 0.429481i \(0.858697\pi\)
\(644\) 6.85117 2.49362i 0.269974 0.0982624i
\(645\) −5.63816 15.4907i −0.222002 0.609946i
\(646\) −4.52523 25.6638i −0.178043 1.00973i
\(647\) −27.4023 −1.07730 −0.538648 0.842531i \(-0.681065\pi\)
−0.538648 + 0.842531i \(0.681065\pi\)
\(648\) 8.45723 3.07818i 0.332232 0.120922i
\(649\) −24.9659 −0.979995
\(650\) −2.71167 15.3786i −0.106360 0.603199i
\(651\) 3.42767 + 9.41745i 0.134341 + 0.369099i
\(652\) 10.0706 3.66539i 0.394394 0.143548i
\(653\) 3.61540 + 3.03368i 0.141482 + 0.118717i 0.710782 0.703413i \(-0.248341\pi\)
−0.569300 + 0.822130i \(0.692786\pi\)
\(654\) −15.6288 + 9.02330i −0.611135 + 0.352839i
\(655\) −7.46198 2.71594i −0.291564 0.106121i
\(656\) 3.85117 + 6.67042i 0.150363 + 0.260436i
\(657\) −6.56196 2.38836i −0.256006 0.0931787i
\(658\) 11.3229 19.6119i 0.441414 0.764552i
\(659\) 16.1099 13.5178i 0.627554 0.526580i −0.272614 0.962124i \(-0.587888\pi\)
0.900168 + 0.435543i \(0.143444\pi\)
\(660\) −3.49912 4.17009i −0.136203 0.162321i
\(661\) 4.40184 24.9641i 0.171212 0.970989i −0.771215 0.636575i \(-0.780351\pi\)
0.942426 0.334414i \(-0.108538\pi\)
\(662\) −1.53849 + 8.72518i −0.0597949 + 0.339114i
\(663\) −13.6769 + 37.5769i −0.531166 + 1.45937i
\(664\) 3.41147 2.86257i 0.132391 0.111089i
\(665\) −6.47653 + 11.2177i −0.251149 + 0.435003i
\(666\) 21.7545 7.91799i 0.842969 0.306816i
\(667\) −0.167718 0.290497i −0.00649408 0.0112481i
\(668\) 12.1211 + 4.41171i 0.468979 + 0.170694i
\(669\) 32.9949i 1.27566i
\(670\) 2.42262 + 2.03282i 0.0935939 + 0.0785346i
\(671\) 4.26042 1.55067i 0.164472 0.0598628i
\(672\) −3.93242 + 4.68647i −0.151696 + 0.180785i
\(673\) 2.47090 + 14.0132i 0.0952464 + 0.540169i 0.994672 + 0.103094i \(0.0328743\pi\)
−0.899425 + 0.437075i \(0.856015\pi\)
\(674\) −21.0719 −0.811660
\(675\) 7.51161 20.6380i 0.289122 0.794356i
\(676\) 0.650015 0.0250006
\(677\) 8.07878 + 45.8170i 0.310493 + 1.76089i 0.596450 + 0.802650i \(0.296577\pi\)
−0.285958 + 0.958242i \(0.592312\pi\)
\(678\) −18.9907 3.34857i −0.729332 0.128601i
\(679\) −37.4752 + 13.6399i −1.43817 + 0.523450i
\(680\) 4.20961 + 3.53228i 0.161431 + 0.135457i
\(681\) 5.19166 + 2.99740i 0.198945 + 0.114861i
\(682\) 5.50165 + 2.00244i 0.210669 + 0.0766773i
\(683\) 5.10101 + 8.83522i 0.195185 + 0.338070i 0.946961 0.321348i \(-0.104136\pi\)
−0.751776 + 0.659418i \(0.770803\pi\)
\(684\) −12.5107 −0.478360
\(685\) 0.891407 1.54396i 0.0340589 0.0589918i
\(686\) −4.12449 + 3.46085i −0.157474 + 0.132136i
\(687\) 49.3631 8.70404i 1.88332 0.332080i
\(688\) −1.87939 + 10.6585i −0.0716509 + 0.406352i
\(689\) −0.459922 + 2.60835i −0.0175216 + 0.0993701i
\(690\) −3.09627 + 0.545955i −0.117873 + 0.0207842i
\(691\) −0.269915 + 0.226485i −0.0102680 + 0.00861591i −0.647907 0.761719i \(-0.724356\pi\)
0.637639 + 0.770335i \(0.279911\pi\)
\(692\) −6.43629 + 11.1480i −0.244671 + 0.423783i
\(693\) −18.9354 + 32.7971i −0.719297 + 1.24586i
\(694\) 11.0544 + 19.1467i 0.419618 + 0.726800i
\(695\) 0.136507 + 0.0496844i 0.00517800 + 0.00188464i
\(696\) 0.243756 + 0.140732i 0.00923954 + 0.00533445i
\(697\) −36.8710 30.9384i −1.39659 1.17188i
\(698\) 2.06670 0.752219i 0.0782259 0.0284719i
\(699\) −11.3610 2.00324i −0.429711 0.0757697i
\(700\) 2.59240 + 14.7022i 0.0979834 + 0.555691i
\(701\) 39.9358 1.50836 0.754178 0.656671i \(-0.228036\pi\)
0.754178 + 0.656671i \(0.228036\pi\)
\(702\) 16.6257 + 9.59883i 0.627495 + 0.362285i
\(703\) −32.1813 −1.21374
\(704\) 0.620615 + 3.51968i 0.0233903 + 0.132653i
\(705\) −6.27719 + 7.48086i −0.236413 + 0.281746i
\(706\) 4.47178 1.62760i 0.168298 0.0612554i
\(707\) −25.3653 21.2840i −0.953960 0.800468i
\(708\) 12.0992i 0.454714i
\(709\) 46.2789 + 16.8441i 1.73804 + 0.632595i 0.999150 0.0412304i \(-0.0131278\pi\)
0.738891 + 0.673825i \(0.235350\pi\)
\(710\) 5.95336 + 10.3115i 0.223426 + 0.386985i
\(711\) 15.2103 + 12.7630i 0.570432 + 0.478649i
\(712\) 4.62449 8.00984i 0.173310 0.300182i
\(713\) 2.59034 2.17355i 0.0970089 0.0814001i
\(714\) 13.0753 35.9242i 0.489332 1.34443i
\(715\) 2.01636 11.4353i 0.0754075 0.427657i
\(716\) −1.55644 + 8.82699i −0.0581668 + 0.329880i
\(717\) 8.67159 + 10.3344i 0.323846 + 0.385945i
\(718\) 1.99613 1.67495i 0.0744949 0.0625086i
\(719\) 25.8050 44.6956i 0.962364 1.66686i 0.245828 0.969314i \(-0.420940\pi\)
0.716536 0.697550i \(-0.245726\pi\)
\(720\) 2.02094 1.69577i 0.0753162 0.0631978i
\(721\) −5.69846 9.87003i −0.212222 0.367579i
\(722\) −1.51202 0.550331i −0.0562716 0.0204812i
\(723\) 32.8423 18.9615i 1.22142 0.705186i
\(724\) −1.52094 1.27622i −0.0565255 0.0474305i
\(725\) 0.645430 0.234917i 0.0239707 0.00872461i
\(726\) 1.05051 + 2.88624i 0.0389880 + 0.107119i
\(727\) −4.79932 27.2183i −0.177997 1.00947i −0.934628 0.355628i \(-0.884267\pi\)
0.756631 0.653842i \(-0.226844\pi\)
\(728\) −13.0496 −0.483651
\(729\) 13.5000 + 23.3827i 0.500000 + 0.866025i
\(730\) −2.04694 −0.0757607
\(731\) −11.7442 66.6048i −0.434376 2.46347i
\(732\) 0.751497 + 2.06472i 0.0277761 + 0.0763142i
\(733\) −25.9072 + 9.42945i −0.956904 + 0.348285i −0.772820 0.634626i \(-0.781154\pi\)
−0.184084 + 0.982910i \(0.558932\pi\)
\(734\) 10.9042 + 9.14971i 0.402481 + 0.337722i
\(735\) −7.22281 + 4.17009i −0.266417 + 0.153816i
\(736\) 1.93969 + 0.705990i 0.0714980 + 0.0260232i
\(737\) −6.42649 11.1310i −0.236723 0.410016i
\(738\) −17.7010 + 14.8529i −0.651582 + 0.546743i
\(739\) 2.01320 3.48697i 0.0740569 0.128270i −0.826619 0.562762i \(-0.809739\pi\)
0.900676 + 0.434492i \(0.143072\pi\)
\(740\) 5.19846 4.36203i 0.191099 0.160351i
\(741\) −17.1536 20.4429i −0.630155 0.750989i
\(742\) 0.439693 2.49362i 0.0161416 0.0915437i
\(743\) 5.04979 28.6388i 0.185259 1.05066i −0.740363 0.672207i \(-0.765347\pi\)
0.925622 0.378449i \(-0.123542\pi\)
\(744\) −0.970437 + 2.66625i −0.0355780 + 0.0977496i
\(745\) 3.90760 3.27887i 0.143164 0.120128i
\(746\) −1.15405 + 1.99887i −0.0422527 + 0.0731838i
\(747\) 10.2344 + 8.58770i 0.374458 + 0.314208i
\(748\) −11.1668 19.3415i −0.408300 0.707197i
\(749\) −7.57785 2.75811i −0.276889 0.100779i
\(750\) 14.0535i 0.513162i
\(751\) 31.1962 + 26.1768i 1.13837 + 0.955203i 0.999384 0.0350914i \(-0.0111722\pi\)
0.138983 + 0.990295i \(0.455617\pi\)
\(752\) 6.02481 2.19285i 0.219702 0.0799651i
\(753\) −17.9078 + 21.3416i −0.652595 + 0.777733i
\(754\) 0.104256 + 0.591264i 0.00379677 + 0.0215326i
\(755\) −12.3550 −0.449646
\(756\) −15.8944 9.17664i −0.578074 0.333751i
\(757\) 32.9486 1.19754 0.598769 0.800922i \(-0.295657\pi\)
0.598769 + 0.800922i \(0.295657\pi\)
\(758\) 1.04664 + 5.93577i 0.0380156 + 0.215597i
\(759\) 12.5838 + 2.21886i 0.456762 + 0.0805395i
\(760\) −3.44609 + 1.25427i −0.125003 + 0.0454973i
\(761\) −0.773318 0.648891i −0.0280328 0.0235223i 0.628664 0.777677i \(-0.283602\pi\)
−0.656696 + 0.754155i \(0.728047\pi\)
\(762\) −14.8601 8.57948i −0.538324 0.310802i
\(763\) 34.5822 + 12.5869i 1.25196 + 0.455676i
\(764\) −6.56077 11.3636i −0.237360 0.411120i
\(765\) −8.24288 + 14.2771i −0.298022 + 0.516189i