Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(54, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 18 | 48 |
Cusp forms | 42 | 18 | 24 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(54, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
54.2.e.a | $6$ | $0.431$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(-3\) | \(3\) | \(q+\zeta_{18}q^{2}+(-\zeta_{18}^{2}+2\zeta_{18}^{5})q^{3}+\cdots\) |
54.2.e.b | $12$ | $0.431$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(-3\) | \(-3\) | \(q+(-\beta _{4}+\beta _{6})q^{2}-\beta _{11}q^{3}+\beta _{3}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(54, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)