Properties

Label 54.16.a.c.1.2
Level $54$
Weight $16$
Character 54.1
Self dual yes
Analytic conductor $77.054$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,16,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,256,0,32768,-71472] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.0544927540\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5146}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 5146 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(71.7356\) of defining polynomial
Character \(\chi\) \(=\) 54.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+128.000 q^{2} +16384.0 q^{4} +142455. q^{5} -882046. q^{7} +2.09715e6 q^{8} +1.82343e7 q^{10} -1.32259e7 q^{11} -3.16589e8 q^{13} -1.12902e8 q^{14} +2.68435e8 q^{16} +8.98145e8 q^{17} -3.58030e9 q^{19} +2.33399e9 q^{20} -1.69292e9 q^{22} -2.48401e10 q^{23} -1.02241e10 q^{25} -4.05234e10 q^{26} -1.44514e10 q^{28} +8.44737e10 q^{29} -9.50671e8 q^{31} +3.43597e10 q^{32} +1.14963e11 q^{34} -1.25652e11 q^{35} -1.42782e11 q^{37} -4.58278e11 q^{38} +2.98750e11 q^{40} +1.47061e12 q^{41} -1.58998e12 q^{43} -2.16693e11 q^{44} -3.17954e12 q^{46} +2.03678e11 q^{47} -3.96956e12 q^{49} -1.30868e12 q^{50} -5.18699e12 q^{52} -2.22358e12 q^{53} -1.88410e12 q^{55} -1.84978e12 q^{56} +1.08126e13 q^{58} -6.14211e12 q^{59} -2.73906e13 q^{61} -1.21686e11 q^{62} +4.39805e12 q^{64} -4.50997e13 q^{65} +4.97262e13 q^{67} +1.47152e13 q^{68} -1.60835e13 q^{70} -7.41880e13 q^{71} -4.47897e13 q^{73} -1.82761e13 q^{74} -5.86596e13 q^{76} +1.16659e13 q^{77} +5.33619e13 q^{79} +3.82401e13 q^{80} +1.88238e14 q^{82} -2.22672e14 q^{83} +1.27945e14 q^{85} -2.03518e14 q^{86} -2.77367e13 q^{88} -3.77610e14 q^{89} +2.79246e14 q^{91} -4.06981e14 q^{92} +2.60708e13 q^{94} -5.10033e14 q^{95} +1.25521e15 q^{97} -5.08103e14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 256 q^{2} + 32768 q^{4} - 71472 q^{5} - 896378 q^{7} + 4194304 q^{8} - 9148416 q^{10} + 21628848 q^{11} - 151348262 q^{13} - 114736384 q^{14} + 536870912 q^{16} - 71108496 q^{17} + 1418861578 q^{19}+ \cdots - 11\!\cdots\!28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 128.000 0.707107
\(3\) 0 0
\(4\) 16384.0 0.500000
\(5\) 142455. 0.815462 0.407731 0.913102i \(-0.366320\pi\)
0.407731 + 0.913102i \(0.366320\pi\)
\(6\) 0 0
\(7\) −882046. −0.404814 −0.202407 0.979301i \(-0.564876\pi\)
−0.202407 + 0.979301i \(0.564876\pi\)
\(8\) 2.09715e6 0.353553
\(9\) 0 0
\(10\) 1.82343e7 0.576618
\(11\) −1.32259e7 −0.204635 −0.102318 0.994752i \(-0.532626\pi\)
−0.102318 + 0.994752i \(0.532626\pi\)
\(12\) 0 0
\(13\) −3.16589e8 −1.39933 −0.699665 0.714471i \(-0.746668\pi\)
−0.699665 + 0.714471i \(0.746668\pi\)
\(14\) −1.12902e8 −0.286247
\(15\) 0 0
\(16\) 2.68435e8 0.250000
\(17\) 8.98145e8 0.530859 0.265430 0.964130i \(-0.414486\pi\)
0.265430 + 0.964130i \(0.414486\pi\)
\(18\) 0 0
\(19\) −3.58030e9 −0.918898 −0.459449 0.888204i \(-0.651953\pi\)
−0.459449 + 0.888204i \(0.651953\pi\)
\(20\) 2.33399e9 0.407731
\(21\) 0 0
\(22\) −1.69292e9 −0.144699
\(23\) −2.48401e10 −1.52123 −0.760615 0.649203i \(-0.775102\pi\)
−0.760615 + 0.649203i \(0.775102\pi\)
\(24\) 0 0
\(25\) −1.02241e10 −0.335022
\(26\) −4.05234e10 −0.989476
\(27\) 0 0
\(28\) −1.44514e10 −0.202407
\(29\) 8.44737e10 0.909362 0.454681 0.890654i \(-0.349753\pi\)
0.454681 + 0.890654i \(0.349753\pi\)
\(30\) 0 0
\(31\) −9.50671e8 −0.00620608 −0.00310304 0.999995i \(-0.500988\pi\)
−0.00310304 + 0.999995i \(0.500988\pi\)
\(32\) 3.43597e10 0.176777
\(33\) 0 0
\(34\) 1.14963e11 0.375374
\(35\) −1.25652e11 −0.330111
\(36\) 0 0
\(37\) −1.42782e11 −0.247263 −0.123632 0.992328i \(-0.539454\pi\)
−0.123632 + 0.992328i \(0.539454\pi\)
\(38\) −4.58278e11 −0.649759
\(39\) 0 0
\(40\) 2.98750e11 0.288309
\(41\) 1.47061e12 1.17929 0.589643 0.807664i \(-0.299268\pi\)
0.589643 + 0.807664i \(0.299268\pi\)
\(42\) 0 0
\(43\) −1.58998e12 −0.892028 −0.446014 0.895026i \(-0.647157\pi\)
−0.446014 + 0.895026i \(0.647157\pi\)
\(44\) −2.16693e11 −0.102318
\(45\) 0 0
\(46\) −3.17954e12 −1.07567
\(47\) 2.03678e11 0.0586421 0.0293211 0.999570i \(-0.490665\pi\)
0.0293211 + 0.999570i \(0.490665\pi\)
\(48\) 0 0
\(49\) −3.96956e12 −0.836125
\(50\) −1.30868e12 −0.236896
\(51\) 0 0
\(52\) −5.18699e12 −0.699665
\(53\) −2.22358e12 −0.260007 −0.130003 0.991514i \(-0.541499\pi\)
−0.130003 + 0.991514i \(0.541499\pi\)
\(54\) 0 0
\(55\) −1.88410e12 −0.166872
\(56\) −1.84978e12 −0.143124
\(57\) 0 0
\(58\) 1.08126e13 0.643016
\(59\) −6.14211e12 −0.321312 −0.160656 0.987010i \(-0.551361\pi\)
−0.160656 + 0.987010i \(0.551361\pi\)
\(60\) 0 0
\(61\) −2.73906e13 −1.11591 −0.557953 0.829873i \(-0.688413\pi\)
−0.557953 + 0.829873i \(0.688413\pi\)
\(62\) −1.21686e11 −0.00438836
\(63\) 0 0
\(64\) 4.39805e12 0.125000
\(65\) −4.50997e13 −1.14110
\(66\) 0 0
\(67\) 4.97262e13 1.00236 0.501181 0.865343i \(-0.332899\pi\)
0.501181 + 0.865343i \(0.332899\pi\)
\(68\) 1.47152e13 0.265430
\(69\) 0 0
\(70\) −1.60835e13 −0.233423
\(71\) −7.41880e13 −0.968046 −0.484023 0.875055i \(-0.660825\pi\)
−0.484023 + 0.875055i \(0.660825\pi\)
\(72\) 0 0
\(73\) −4.47897e13 −0.474522 −0.237261 0.971446i \(-0.576250\pi\)
−0.237261 + 0.971446i \(0.576250\pi\)
\(74\) −1.82761e13 −0.174842
\(75\) 0 0
\(76\) −5.86596e13 −0.459449
\(77\) 1.16659e13 0.0828393
\(78\) 0 0
\(79\) 5.33619e13 0.312628 0.156314 0.987707i \(-0.450039\pi\)
0.156314 + 0.987707i \(0.450039\pi\)
\(80\) 3.82401e13 0.203865
\(81\) 0 0
\(82\) 1.88238e14 0.833881
\(83\) −2.22672e14 −0.900698 −0.450349 0.892853i \(-0.648700\pi\)
−0.450349 + 0.892853i \(0.648700\pi\)
\(84\) 0 0
\(85\) 1.27945e14 0.432895
\(86\) −2.03518e14 −0.630759
\(87\) 0 0
\(88\) −2.77367e13 −0.0723495
\(89\) −3.77610e14 −0.904936 −0.452468 0.891781i \(-0.649456\pi\)
−0.452468 + 0.891781i \(0.649456\pi\)
\(90\) 0 0
\(91\) 2.79246e14 0.566469
\(92\) −4.06981e14 −0.760615
\(93\) 0 0
\(94\) 2.60708e13 0.0414663
\(95\) −5.10033e14 −0.749326
\(96\) 0 0
\(97\) 1.25521e15 1.57736 0.788678 0.614807i \(-0.210766\pi\)
0.788678 + 0.614807i \(0.210766\pi\)
\(98\) −5.08103e14 −0.591230
\(99\) 0 0
\(100\) −1.67511e14 −0.167511
\(101\) −1.28364e15 −1.19133 −0.595664 0.803234i \(-0.703111\pi\)
−0.595664 + 0.803234i \(0.703111\pi\)
\(102\) 0 0
\(103\) −1.70326e15 −1.36459 −0.682295 0.731077i \(-0.739018\pi\)
−0.682295 + 0.731077i \(0.739018\pi\)
\(104\) −6.63935e14 −0.494738
\(105\) 0 0
\(106\) −2.84619e14 −0.183852
\(107\) −2.61477e15 −1.57418 −0.787091 0.616837i \(-0.788414\pi\)
−0.787091 + 0.616837i \(0.788414\pi\)
\(108\) 0 0
\(109\) 1.08119e15 0.566504 0.283252 0.959046i \(-0.408587\pi\)
0.283252 + 0.959046i \(0.408587\pi\)
\(110\) −2.41165e14 −0.117996
\(111\) 0 0
\(112\) −2.36772e14 −0.101204
\(113\) −7.13821e12 −0.00285431 −0.00142716 0.999999i \(-0.500454\pi\)
−0.00142716 + 0.999999i \(0.500454\pi\)
\(114\) 0 0
\(115\) −3.53861e15 −1.24050
\(116\) 1.38402e15 0.454681
\(117\) 0 0
\(118\) −7.86190e14 −0.227202
\(119\) −7.92205e14 −0.214900
\(120\) 0 0
\(121\) −4.00232e15 −0.958124
\(122\) −3.50599e15 −0.789064
\(123\) 0 0
\(124\) −1.55758e13 −0.00310304
\(125\) −5.80386e15 −1.08866
\(126\) 0 0
\(127\) 4.55166e15 0.757952 0.378976 0.925407i \(-0.376276\pi\)
0.378976 + 0.925407i \(0.376276\pi\)
\(128\) 5.62950e14 0.0883883
\(129\) 0 0
\(130\) −5.77277e15 −0.806880
\(131\) −1.09991e16 −1.45151 −0.725756 0.687952i \(-0.758510\pi\)
−0.725756 + 0.687952i \(0.758510\pi\)
\(132\) 0 0
\(133\) 3.15799e15 0.371983
\(134\) 6.36496e15 0.708777
\(135\) 0 0
\(136\) 1.88355e15 0.187687
\(137\) 7.16733e15 0.676010 0.338005 0.941144i \(-0.390248\pi\)
0.338005 + 0.941144i \(0.390248\pi\)
\(138\) 0 0
\(139\) 1.29993e16 1.09979 0.549894 0.835234i \(-0.314668\pi\)
0.549894 + 0.835234i \(0.314668\pi\)
\(140\) −2.05868e15 −0.165055
\(141\) 0 0
\(142\) −9.49607e15 −0.684512
\(143\) 4.18717e15 0.286352
\(144\) 0 0
\(145\) 1.20337e16 0.741550
\(146\) −5.73308e15 −0.335538
\(147\) 0 0
\(148\) −2.33934e15 −0.123632
\(149\) 2.15681e16 1.08372 0.541858 0.840470i \(-0.317721\pi\)
0.541858 + 0.840470i \(0.317721\pi\)
\(150\) 0 0
\(151\) −7.86334e15 −0.357503 −0.178752 0.983894i \(-0.557206\pi\)
−0.178752 + 0.983894i \(0.557206\pi\)
\(152\) −7.50843e15 −0.324880
\(153\) 0 0
\(154\) 1.49323e15 0.0585762
\(155\) −1.35428e14 −0.00506082
\(156\) 0 0
\(157\) −1.23936e16 −0.420680 −0.210340 0.977628i \(-0.567457\pi\)
−0.210340 + 0.977628i \(0.567457\pi\)
\(158\) 6.83032e15 0.221061
\(159\) 0 0
\(160\) 4.89473e15 0.144155
\(161\) 2.19101e16 0.615816
\(162\) 0 0
\(163\) 6.01364e16 1.54074 0.770371 0.637595i \(-0.220071\pi\)
0.770371 + 0.637595i \(0.220071\pi\)
\(164\) 2.40945e16 0.589643
\(165\) 0 0
\(166\) −2.85020e16 −0.636889
\(167\) 7.07413e16 1.51112 0.755561 0.655078i \(-0.227364\pi\)
0.755561 + 0.655078i \(0.227364\pi\)
\(168\) 0 0
\(169\) 4.90426e16 0.958126
\(170\) 1.63770e16 0.306103
\(171\) 0 0
\(172\) −2.60503e16 −0.446014
\(173\) 1.17889e17 1.93253 0.966265 0.257551i \(-0.0829155\pi\)
0.966265 + 0.257551i \(0.0829155\pi\)
\(174\) 0 0
\(175\) 9.01810e15 0.135622
\(176\) −3.55030e15 −0.0511588
\(177\) 0 0
\(178\) −4.83340e16 −0.639886
\(179\) −2.95480e16 −0.375086 −0.187543 0.982256i \(-0.560052\pi\)
−0.187543 + 0.982256i \(0.560052\pi\)
\(180\) 0 0
\(181\) 1.32418e17 1.54653 0.773266 0.634082i \(-0.218622\pi\)
0.773266 + 0.634082i \(0.218622\pi\)
\(182\) 3.57435e16 0.400554
\(183\) 0 0
\(184\) −5.20935e16 −0.537836
\(185\) −2.03400e16 −0.201634
\(186\) 0 0
\(187\) −1.18788e16 −0.108633
\(188\) 3.33706e15 0.0293211
\(189\) 0 0
\(190\) −6.52842e16 −0.529854
\(191\) −7.58644e16 −0.591954 −0.295977 0.955195i \(-0.595645\pi\)
−0.295977 + 0.955195i \(0.595645\pi\)
\(192\) 0 0
\(193\) −2.00487e17 −1.44680 −0.723398 0.690432i \(-0.757421\pi\)
−0.723398 + 0.690432i \(0.757421\pi\)
\(194\) 1.60667e17 1.11536
\(195\) 0 0
\(196\) −6.50372e16 −0.418063
\(197\) 1.60938e17 0.995777 0.497889 0.867241i \(-0.334109\pi\)
0.497889 + 0.867241i \(0.334109\pi\)
\(198\) 0 0
\(199\) −5.77124e16 −0.331033 −0.165517 0.986207i \(-0.552929\pi\)
−0.165517 + 0.986207i \(0.552929\pi\)
\(200\) −2.14414e16 −0.118448
\(201\) 0 0
\(202\) −1.64305e17 −0.842396
\(203\) −7.45097e16 −0.368123
\(204\) 0 0
\(205\) 2.09497e17 0.961663
\(206\) −2.18018e17 −0.964911
\(207\) 0 0
\(208\) −8.49836e16 −0.349833
\(209\) 4.73527e16 0.188039
\(210\) 0 0
\(211\) 3.64057e17 1.34602 0.673009 0.739635i \(-0.265002\pi\)
0.673009 + 0.739635i \(0.265002\pi\)
\(212\) −3.64312e16 −0.130003
\(213\) 0 0
\(214\) −3.34690e17 −1.11311
\(215\) −2.26501e17 −0.727415
\(216\) 0 0
\(217\) 8.38535e14 0.00251231
\(218\) 1.38392e17 0.400579
\(219\) 0 0
\(220\) −3.08691e16 −0.0834361
\(221\) −2.84343e17 −0.742848
\(222\) 0 0
\(223\) 3.09914e17 0.756753 0.378376 0.925652i \(-0.376483\pi\)
0.378376 + 0.925652i \(0.376483\pi\)
\(224\) −3.03069e16 −0.0715618
\(225\) 0 0
\(226\) −9.13691e14 −0.00201830
\(227\) 8.59847e17 1.83750 0.918750 0.394839i \(-0.129200\pi\)
0.918750 + 0.394839i \(0.129200\pi\)
\(228\) 0 0
\(229\) 6.97827e17 1.39631 0.698155 0.715947i \(-0.254005\pi\)
0.698155 + 0.715947i \(0.254005\pi\)
\(230\) −4.52942e17 −0.877169
\(231\) 0 0
\(232\) 1.77154e17 0.321508
\(233\) −8.97443e17 −1.57702 −0.788511 0.615021i \(-0.789147\pi\)
−0.788511 + 0.615021i \(0.789147\pi\)
\(234\) 0 0
\(235\) 2.90150e16 0.0478204
\(236\) −1.00632e17 −0.160656
\(237\) 0 0
\(238\) −1.01402e17 −0.151957
\(239\) −9.46030e17 −1.37379 −0.686895 0.726756i \(-0.741027\pi\)
−0.686895 + 0.726756i \(0.741027\pi\)
\(240\) 0 0
\(241\) −1.79649e17 −0.245075 −0.122537 0.992464i \(-0.539103\pi\)
−0.122537 + 0.992464i \(0.539103\pi\)
\(242\) −5.12297e17 −0.677496
\(243\) 0 0
\(244\) −4.48767e17 −0.557953
\(245\) −5.65484e17 −0.681828
\(246\) 0 0
\(247\) 1.13348e18 1.28584
\(248\) −1.99370e15 −0.00219418
\(249\) 0 0
\(250\) −7.42894e17 −0.769799
\(251\) −1.10491e18 −1.11115 −0.555576 0.831466i \(-0.687502\pi\)
−0.555576 + 0.831466i \(0.687502\pi\)
\(252\) 0 0
\(253\) 3.28533e17 0.311297
\(254\) 5.82612e17 0.535953
\(255\) 0 0
\(256\) 7.20576e16 0.0625000
\(257\) −5.92377e16 −0.0498999 −0.0249500 0.999689i \(-0.507943\pi\)
−0.0249500 + 0.999689i \(0.507943\pi\)
\(258\) 0 0
\(259\) 1.25940e17 0.100096
\(260\) −7.38914e17 −0.570550
\(261\) 0 0
\(262\) −1.40788e18 −1.02637
\(263\) 8.12014e17 0.575301 0.287651 0.957735i \(-0.407126\pi\)
0.287651 + 0.957735i \(0.407126\pi\)
\(264\) 0 0
\(265\) −3.16761e17 −0.212025
\(266\) 4.04223e17 0.263032
\(267\) 0 0
\(268\) 8.14714e17 0.501181
\(269\) −1.93296e18 −1.15632 −0.578162 0.815922i \(-0.696230\pi\)
−0.578162 + 0.815922i \(0.696230\pi\)
\(270\) 0 0
\(271\) −9.19659e17 −0.520424 −0.260212 0.965552i \(-0.583792\pi\)
−0.260212 + 0.965552i \(0.583792\pi\)
\(272\) 2.41094e17 0.132715
\(273\) 0 0
\(274\) 9.17418e17 0.478011
\(275\) 1.35223e17 0.0685573
\(276\) 0 0
\(277\) 1.27571e18 0.612566 0.306283 0.951941i \(-0.400915\pi\)
0.306283 + 0.951941i \(0.400915\pi\)
\(278\) 1.66391e18 0.777667
\(279\) 0 0
\(280\) −2.63512e17 −0.116712
\(281\) 3.50755e18 1.51254 0.756269 0.654261i \(-0.227020\pi\)
0.756269 + 0.654261i \(0.227020\pi\)
\(282\) 0 0
\(283\) −2.80748e18 −1.14794 −0.573969 0.818877i \(-0.694597\pi\)
−0.573969 + 0.818877i \(0.694597\pi\)
\(284\) −1.21550e18 −0.484023
\(285\) 0 0
\(286\) 5.35958e17 0.202482
\(287\) −1.29715e18 −0.477392
\(288\) 0 0
\(289\) −2.05576e18 −0.718188
\(290\) 1.54032e18 0.524355
\(291\) 0 0
\(292\) −7.33834e17 −0.237261
\(293\) 6.99683e17 0.220493 0.110246 0.993904i \(-0.464836\pi\)
0.110246 + 0.993904i \(0.464836\pi\)
\(294\) 0 0
\(295\) −8.74976e17 −0.262018
\(296\) −2.99435e17 −0.0874208
\(297\) 0 0
\(298\) 2.76072e18 0.766303
\(299\) 7.86410e18 2.12870
\(300\) 0 0
\(301\) 1.40244e18 0.361106
\(302\) −1.00651e18 −0.252793
\(303\) 0 0
\(304\) −9.61079e17 −0.229725
\(305\) −3.90193e18 −0.909978
\(306\) 0 0
\(307\) −3.12249e18 −0.693368 −0.346684 0.937982i \(-0.612692\pi\)
−0.346684 + 0.937982i \(0.612692\pi\)
\(308\) 1.91133e17 0.0414196
\(309\) 0 0
\(310\) −1.73348e16 −0.00357854
\(311\) 8.18278e18 1.64891 0.824457 0.565925i \(-0.191481\pi\)
0.824457 + 0.565925i \(0.191481\pi\)
\(312\) 0 0
\(313\) −2.49917e18 −0.479969 −0.239985 0.970777i \(-0.577142\pi\)
−0.239985 + 0.970777i \(0.577142\pi\)
\(314\) −1.58639e18 −0.297466
\(315\) 0 0
\(316\) 8.74281e17 0.156314
\(317\) 6.11655e18 1.06798 0.533989 0.845492i \(-0.320692\pi\)
0.533989 + 0.845492i \(0.320692\pi\)
\(318\) 0 0
\(319\) −1.11724e18 −0.186087
\(320\) 6.26525e17 0.101933
\(321\) 0 0
\(322\) 2.80450e18 0.435448
\(323\) −3.21563e18 −0.487806
\(324\) 0 0
\(325\) 3.23682e18 0.468807
\(326\) 7.69746e18 1.08947
\(327\) 0 0
\(328\) 3.08410e18 0.416941
\(329\) −1.79653e17 −0.0237392
\(330\) 0 0
\(331\) 3.13929e18 0.396388 0.198194 0.980163i \(-0.436492\pi\)
0.198194 + 0.980163i \(0.436492\pi\)
\(332\) −3.64825e18 −0.450349
\(333\) 0 0
\(334\) 9.05489e18 1.06852
\(335\) 7.08376e18 0.817388
\(336\) 0 0
\(337\) −2.61048e18 −0.288069 −0.144034 0.989573i \(-0.546008\pi\)
−0.144034 + 0.989573i \(0.546008\pi\)
\(338\) 6.27745e18 0.677498
\(339\) 0 0
\(340\) 2.09626e18 0.216448
\(341\) 1.25735e16 0.00126998
\(342\) 0 0
\(343\) 7.68890e18 0.743290
\(344\) −3.33443e18 −0.315380
\(345\) 0 0
\(346\) 1.50897e19 1.36650
\(347\) −1.72861e19 −1.53189 −0.765943 0.642908i \(-0.777728\pi\)
−0.765943 + 0.642908i \(0.777728\pi\)
\(348\) 0 0
\(349\) −1.33509e19 −1.13323 −0.566616 0.823982i \(-0.691748\pi\)
−0.566616 + 0.823982i \(0.691748\pi\)
\(350\) 1.15432e18 0.0958991
\(351\) 0 0
\(352\) −4.54439e17 −0.0361747
\(353\) 2.16624e19 1.68809 0.844047 0.536269i \(-0.180167\pi\)
0.844047 + 0.536269i \(0.180167\pi\)
\(354\) 0 0
\(355\) −1.05685e19 −0.789405
\(356\) −6.18675e18 −0.452468
\(357\) 0 0
\(358\) −3.78215e18 −0.265226
\(359\) −1.24130e19 −0.852446 −0.426223 0.904618i \(-0.640156\pi\)
−0.426223 + 0.904618i \(0.640156\pi\)
\(360\) 0 0
\(361\) −2.36258e18 −0.155626
\(362\) 1.69495e19 1.09356
\(363\) 0 0
\(364\) 4.57516e18 0.283235
\(365\) −6.38052e18 −0.386954
\(366\) 0 0
\(367\) −3.39227e17 −0.0197467 −0.00987336 0.999951i \(-0.503143\pi\)
−0.00987336 + 0.999951i \(0.503143\pi\)
\(368\) −6.66797e18 −0.380308
\(369\) 0 0
\(370\) −2.60352e18 −0.142577
\(371\) 1.96130e18 0.105254
\(372\) 0 0
\(373\) −3.52841e19 −1.81871 −0.909353 0.416026i \(-0.863422\pi\)
−0.909353 + 0.416026i \(0.863422\pi\)
\(374\) −1.52048e18 −0.0768148
\(375\) 0 0
\(376\) 4.27143e17 0.0207331
\(377\) −2.67434e19 −1.27250
\(378\) 0 0
\(379\) −8.02300e18 −0.366896 −0.183448 0.983029i \(-0.558726\pi\)
−0.183448 + 0.983029i \(0.558726\pi\)
\(380\) −8.35638e18 −0.374663
\(381\) 0 0
\(382\) −9.71065e18 −0.418575
\(383\) −3.22865e19 −1.36468 −0.682338 0.731037i \(-0.739037\pi\)
−0.682338 + 0.731037i \(0.739037\pi\)
\(384\) 0 0
\(385\) 1.66186e18 0.0675522
\(386\) −2.56624e19 −1.02304
\(387\) 0 0
\(388\) 2.05654e19 0.788678
\(389\) −3.25042e19 −1.22269 −0.611346 0.791364i \(-0.709371\pi\)
−0.611346 + 0.791364i \(0.709371\pi\)
\(390\) 0 0
\(391\) −2.23100e19 −0.807559
\(392\) −8.32476e18 −0.295615
\(393\) 0 0
\(394\) 2.06001e19 0.704121
\(395\) 7.60168e18 0.254936
\(396\) 0 0
\(397\) 2.08495e19 0.673235 0.336618 0.941641i \(-0.390717\pi\)
0.336618 + 0.941641i \(0.390717\pi\)
\(398\) −7.38719e18 −0.234076
\(399\) 0 0
\(400\) −2.74450e18 −0.0837556
\(401\) 2.30643e19 0.690807 0.345404 0.938454i \(-0.387742\pi\)
0.345404 + 0.938454i \(0.387742\pi\)
\(402\) 0 0
\(403\) 3.00972e17 0.00868436
\(404\) −2.10311e19 −0.595664
\(405\) 0 0
\(406\) −9.53725e18 −0.260302
\(407\) 1.88842e18 0.0505988
\(408\) 0 0
\(409\) 2.27668e19 0.588000 0.294000 0.955805i \(-0.405014\pi\)
0.294000 + 0.955805i \(0.405014\pi\)
\(410\) 2.68156e19 0.679998
\(411\) 0 0
\(412\) −2.79062e19 −0.682295
\(413\) 5.41762e18 0.130072
\(414\) 0 0
\(415\) −3.17207e19 −0.734484
\(416\) −1.08779e19 −0.247369
\(417\) 0 0
\(418\) 6.06115e18 0.132964
\(419\) −3.85389e19 −0.830412 −0.415206 0.909727i \(-0.636291\pi\)
−0.415206 + 0.909727i \(0.636291\pi\)
\(420\) 0 0
\(421\) 4.40422e19 0.915699 0.457850 0.889030i \(-0.348620\pi\)
0.457850 + 0.889030i \(0.348620\pi\)
\(422\) 4.65993e19 0.951778
\(423\) 0 0
\(424\) −4.66319e18 −0.0919262
\(425\) −9.18269e18 −0.177850
\(426\) 0 0
\(427\) 2.41598e19 0.451735
\(428\) −4.28404e19 −0.787091
\(429\) 0 0
\(430\) −2.89922e19 −0.514360
\(431\) −4.02778e19 −0.702241 −0.351120 0.936330i \(-0.614199\pi\)
−0.351120 + 0.936330i \(0.614199\pi\)
\(432\) 0 0
\(433\) 6.06056e19 1.02060 0.510298 0.859998i \(-0.329535\pi\)
0.510298 + 0.859998i \(0.329535\pi\)
\(434\) 1.07333e17 0.00177647
\(435\) 0 0
\(436\) 1.77142e19 0.283252
\(437\) 8.89351e19 1.39786
\(438\) 0 0
\(439\) −5.39590e18 −0.0819559 −0.0409779 0.999160i \(-0.513047\pi\)
−0.0409779 + 0.999160i \(0.513047\pi\)
\(440\) −3.95124e18 −0.0589982
\(441\) 0 0
\(442\) −3.63959e19 −0.525273
\(443\) 3.03203e19 0.430235 0.215118 0.976588i \(-0.430987\pi\)
0.215118 + 0.976588i \(0.430987\pi\)
\(444\) 0 0
\(445\) −5.37925e19 −0.737941
\(446\) 3.96689e19 0.535105
\(447\) 0 0
\(448\) −3.87928e18 −0.0506018
\(449\) 2.57015e19 0.329694 0.164847 0.986319i \(-0.447287\pi\)
0.164847 + 0.986319i \(0.447287\pi\)
\(450\) 0 0
\(451\) −1.94502e19 −0.241323
\(452\) −1.16952e17 −0.00142716
\(453\) 0 0
\(454\) 1.10060e20 1.29931
\(455\) 3.97801e19 0.461934
\(456\) 0 0
\(457\) 1.12808e20 1.26756 0.633780 0.773514i \(-0.281503\pi\)
0.633780 + 0.773514i \(0.281503\pi\)
\(458\) 8.93218e19 0.987340
\(459\) 0 0
\(460\) −5.79765e19 −0.620252
\(461\) −1.61480e20 −1.69966 −0.849829 0.527059i \(-0.823295\pi\)
−0.849829 + 0.527059i \(0.823295\pi\)
\(462\) 0 0
\(463\) 1.61498e20 1.64555 0.822773 0.568370i \(-0.192426\pi\)
0.822773 + 0.568370i \(0.192426\pi\)
\(464\) 2.26757e19 0.227340
\(465\) 0 0
\(466\) −1.14873e20 −1.11512
\(467\) 1.26466e20 1.20809 0.604043 0.796952i \(-0.293556\pi\)
0.604043 + 0.796952i \(0.293556\pi\)
\(468\) 0 0
\(469\) −4.38608e19 −0.405770
\(470\) 3.71392e18 0.0338141
\(471\) 0 0
\(472\) −1.28809e19 −0.113601
\(473\) 2.10289e19 0.182540
\(474\) 0 0
\(475\) 3.66052e19 0.307851
\(476\) −1.29795e19 −0.107450
\(477\) 0 0
\(478\) −1.21092e20 −0.971417
\(479\) 7.68671e19 0.607050 0.303525 0.952824i \(-0.401836\pi\)
0.303525 + 0.952824i \(0.401836\pi\)
\(480\) 0 0
\(481\) 4.52031e19 0.346003
\(482\) −2.29951e19 −0.173294
\(483\) 0 0
\(484\) −6.55741e19 −0.479062
\(485\) 1.78812e20 1.28627
\(486\) 0 0
\(487\) 9.62520e19 0.671340 0.335670 0.941980i \(-0.391037\pi\)
0.335670 + 0.941980i \(0.391037\pi\)
\(488\) −5.74422e19 −0.394532
\(489\) 0 0
\(490\) −7.23820e19 −0.482125
\(491\) 1.39899e20 0.917703 0.458852 0.888513i \(-0.348261\pi\)
0.458852 + 0.888513i \(0.348261\pi\)
\(492\) 0 0
\(493\) 7.58697e19 0.482743
\(494\) 1.45086e20 0.909228
\(495\) 0 0
\(496\) −2.55194e17 −0.00155152
\(497\) 6.54373e19 0.391879
\(498\) 0 0
\(499\) −1.96076e20 −1.13938 −0.569692 0.821858i \(-0.692937\pi\)
−0.569692 + 0.821858i \(0.692937\pi\)
\(500\) −9.50905e19 −0.544330
\(501\) 0 0
\(502\) −1.41428e20 −0.785703
\(503\) 2.29665e20 1.25700 0.628500 0.777810i \(-0.283669\pi\)
0.628500 + 0.777810i \(0.283669\pi\)
\(504\) 0 0
\(505\) −1.82861e20 −0.971482
\(506\) 4.20522e19 0.220120
\(507\) 0 0
\(508\) 7.45743e19 0.378976
\(509\) −6.90568e19 −0.345798 −0.172899 0.984940i \(-0.555313\pi\)
−0.172899 + 0.984940i \(0.555313\pi\)
\(510\) 0 0
\(511\) 3.95065e19 0.192093
\(512\) 9.22337e18 0.0441942
\(513\) 0 0
\(514\) −7.58243e18 −0.0352846
\(515\) −2.42639e20 −1.11277
\(516\) 0 0
\(517\) −2.69382e18 −0.0120002
\(518\) 1.61203e19 0.0707784
\(519\) 0 0
\(520\) −9.45810e19 −0.403440
\(521\) 3.69117e19 0.155196 0.0775980 0.996985i \(-0.475275\pi\)
0.0775980 + 0.996985i \(0.475275\pi\)
\(522\) 0 0
\(523\) −1.78641e20 −0.729823 −0.364912 0.931042i \(-0.618901\pi\)
−0.364912 + 0.931042i \(0.618901\pi\)
\(524\) −1.80209e20 −0.725756
\(525\) 0 0
\(526\) 1.03938e20 0.406800
\(527\) −8.53840e17 −0.00329456
\(528\) 0 0
\(529\) 3.50396e20 1.31414
\(530\) −4.05454e19 −0.149925
\(531\) 0 0
\(532\) 5.17405e19 0.185992
\(533\) −4.65579e20 −1.65021
\(534\) 0 0
\(535\) −3.72488e20 −1.28368
\(536\) 1.04283e20 0.354388
\(537\) 0 0
\(538\) −2.47418e20 −0.817645
\(539\) 5.25010e19 0.171101
\(540\) 0 0
\(541\) 6.12863e20 1.94260 0.971302 0.237850i \(-0.0764428\pi\)
0.971302 + 0.237850i \(0.0764428\pi\)
\(542\) −1.17716e20 −0.367995
\(543\) 0 0
\(544\) 3.08600e19 0.0938436
\(545\) 1.54021e20 0.461962
\(546\) 0 0
\(547\) 2.38524e20 0.696030 0.348015 0.937489i \(-0.386856\pi\)
0.348015 + 0.937489i \(0.386856\pi\)
\(548\) 1.17430e20 0.338005
\(549\) 0 0
\(550\) 1.73085e19 0.0484774
\(551\) −3.02441e20 −0.835611
\(552\) 0 0
\(553\) −4.70676e19 −0.126556
\(554\) 1.63291e20 0.433150
\(555\) 0 0
\(556\) 2.12981e20 0.549894
\(557\) −3.10723e20 −0.791516 −0.395758 0.918355i \(-0.629518\pi\)
−0.395758 + 0.918355i \(0.629518\pi\)
\(558\) 0 0
\(559\) 5.03370e20 1.24824
\(560\) −3.37295e19 −0.0825277
\(561\) 0 0
\(562\) 4.48966e20 1.06953
\(563\) −7.74946e20 −1.82162 −0.910812 0.412822i \(-0.864543\pi\)
−0.910812 + 0.412822i \(0.864543\pi\)
\(564\) 0 0
\(565\) −1.01688e18 −0.00232758
\(566\) −3.59357e20 −0.811714
\(567\) 0 0
\(568\) −1.55584e20 −0.342256
\(569\) −5.95598e20 −1.29304 −0.646519 0.762898i \(-0.723776\pi\)
−0.646519 + 0.762898i \(0.723776\pi\)
\(570\) 0 0
\(571\) −7.01047e20 −1.48244 −0.741219 0.671263i \(-0.765752\pi\)
−0.741219 + 0.671263i \(0.765752\pi\)
\(572\) 6.86026e19 0.143176
\(573\) 0 0
\(574\) −1.66035e20 −0.337567
\(575\) 2.53967e20 0.509646
\(576\) 0 0
\(577\) −1.40957e20 −0.275592 −0.137796 0.990461i \(-0.544002\pi\)
−0.137796 + 0.990461i \(0.544002\pi\)
\(578\) −2.63137e20 −0.507836
\(579\) 0 0
\(580\) 1.97161e20 0.370775
\(581\) 1.96407e20 0.364615
\(582\) 0 0
\(583\) 2.94089e19 0.0532065
\(584\) −9.39307e19 −0.167769
\(585\) 0 0
\(586\) 8.95594e19 0.155912
\(587\) −2.73754e19 −0.0470516 −0.0235258 0.999723i \(-0.507489\pi\)
−0.0235258 + 0.999723i \(0.507489\pi\)
\(588\) 0 0
\(589\) 3.40369e18 0.00570276
\(590\) −1.11997e20 −0.185275
\(591\) 0 0
\(592\) −3.83277e19 −0.0618159
\(593\) 6.58066e20 1.04800 0.523998 0.851720i \(-0.324440\pi\)
0.523998 + 0.851720i \(0.324440\pi\)
\(594\) 0 0
\(595\) −1.12854e20 −0.175242
\(596\) 3.53372e20 0.541858
\(597\) 0 0
\(598\) 1.00661e21 1.50522
\(599\) −4.40604e20 −0.650650 −0.325325 0.945602i \(-0.605474\pi\)
−0.325325 + 0.945602i \(0.605474\pi\)
\(600\) 0 0
\(601\) −8.46415e20 −1.21906 −0.609530 0.792763i \(-0.708642\pi\)
−0.609530 + 0.792763i \(0.708642\pi\)
\(602\) 1.79512e20 0.255340
\(603\) 0 0
\(604\) −1.28833e20 −0.178752
\(605\) −5.70152e20 −0.781314
\(606\) 0 0
\(607\) −1.23203e21 −1.64704 −0.823522 0.567284i \(-0.807994\pi\)
−0.823522 + 0.567284i \(0.807994\pi\)
\(608\) −1.23018e20 −0.162440
\(609\) 0 0
\(610\) −4.99447e20 −0.643452
\(611\) −6.44821e19 −0.0820598
\(612\) 0 0
\(613\) 2.00993e20 0.249590 0.124795 0.992183i \(-0.460173\pi\)
0.124795 + 0.992183i \(0.460173\pi\)
\(614\) −3.99679e20 −0.490285
\(615\) 0 0
\(616\) 2.44651e19 0.0292881
\(617\) 9.83192e20 1.16279 0.581393 0.813623i \(-0.302508\pi\)
0.581393 + 0.813623i \(0.302508\pi\)
\(618\) 0 0
\(619\) 3.04341e20 0.351302 0.175651 0.984453i \(-0.443797\pi\)
0.175651 + 0.984453i \(0.443797\pi\)
\(620\) −2.21885e18 −0.00253041
\(621\) 0 0
\(622\) 1.04740e21 1.16596
\(623\) 3.33069e20 0.366331
\(624\) 0 0
\(625\) −5.14777e20 −0.552738
\(626\) −3.19894e20 −0.339389
\(627\) 0 0
\(628\) −2.03058e20 −0.210340
\(629\) −1.28239e20 −0.131262
\(630\) 0 0
\(631\) −5.73711e20 −0.573420 −0.286710 0.958017i \(-0.592562\pi\)
−0.286710 + 0.958017i \(0.592562\pi\)
\(632\) 1.11908e20 0.110531
\(633\) 0 0
\(634\) 7.82919e20 0.755174
\(635\) 6.48407e20 0.618081
\(636\) 0 0
\(637\) 1.25672e21 1.17002
\(638\) −1.43007e20 −0.131584
\(639\) 0 0
\(640\) 8.01952e19 0.0720773
\(641\) 1.90026e21 1.68802 0.844011 0.536326i \(-0.180188\pi\)
0.844011 + 0.536326i \(0.180188\pi\)
\(642\) 0 0
\(643\) −1.45547e21 −1.26305 −0.631526 0.775354i \(-0.717571\pi\)
−0.631526 + 0.775354i \(0.717571\pi\)
\(644\) 3.58976e20 0.307908
\(645\) 0 0
\(646\) −4.11600e20 −0.344931
\(647\) −1.36017e21 −1.12670 −0.563352 0.826217i \(-0.690489\pi\)
−0.563352 + 0.826217i \(0.690489\pi\)
\(648\) 0 0
\(649\) 8.12349e19 0.0657518
\(650\) 4.14314e20 0.331497
\(651\) 0 0
\(652\) 9.85274e20 0.770371
\(653\) −1.13573e21 −0.877863 −0.438932 0.898520i \(-0.644643\pi\)
−0.438932 + 0.898520i \(0.644643\pi\)
\(654\) 0 0
\(655\) −1.56687e21 −1.18365
\(656\) 3.94764e20 0.294822
\(657\) 0 0
\(658\) −2.29956e19 −0.0167861
\(659\) 1.43598e21 1.03635 0.518175 0.855274i \(-0.326611\pi\)
0.518175 + 0.855274i \(0.326611\pi\)
\(660\) 0 0
\(661\) −6.23697e20 −0.440010 −0.220005 0.975499i \(-0.570607\pi\)
−0.220005 + 0.975499i \(0.570607\pi\)
\(662\) 4.01828e20 0.280289
\(663\) 0 0
\(664\) −4.66976e20 −0.318445
\(665\) 4.49872e20 0.303338
\(666\) 0 0
\(667\) −2.09834e21 −1.38335
\(668\) 1.15903e21 0.755561
\(669\) 0 0
\(670\) 9.06722e20 0.577980
\(671\) 3.62265e20 0.228354
\(672\) 0 0
\(673\) 2.77612e21 1.71130 0.855648 0.517559i \(-0.173159\pi\)
0.855648 + 0.517559i \(0.173159\pi\)
\(674\) −3.34141e20 −0.203695
\(675\) 0 0
\(676\) 8.03513e20 0.479063
\(677\) 2.56725e21 1.51374 0.756872 0.653563i \(-0.226727\pi\)
0.756872 + 0.653563i \(0.226727\pi\)
\(678\) 0 0
\(679\) −1.10716e21 −0.638536
\(680\) 2.68321e20 0.153052
\(681\) 0 0
\(682\) 1.60941e18 0.000898013 0
\(683\) 6.84777e20 0.377915 0.188957 0.981985i \(-0.439489\pi\)
0.188957 + 0.981985i \(0.439489\pi\)
\(684\) 0 0
\(685\) 1.02102e21 0.551260
\(686\) 9.84179e20 0.525585
\(687\) 0 0
\(688\) −4.26807e20 −0.223007
\(689\) 7.03961e20 0.363835
\(690\) 0 0
\(691\) 1.87100e21 0.946214 0.473107 0.881005i \(-0.343132\pi\)
0.473107 + 0.881005i \(0.343132\pi\)
\(692\) 1.93149e21 0.966265
\(693\) 0 0
\(694\) −2.21262e21 −1.08321
\(695\) 1.85182e21 0.896835
\(696\) 0 0
\(697\) 1.32082e21 0.626035
\(698\) −1.70891e21 −0.801316
\(699\) 0 0
\(700\) 1.47753e20 0.0678109
\(701\) −3.19721e21 −1.45173 −0.725864 0.687838i \(-0.758560\pi\)
−0.725864 + 0.687838i \(0.758560\pi\)
\(702\) 0 0
\(703\) 5.11202e20 0.227210
\(704\) −5.81681e19 −0.0255794
\(705\) 0 0
\(706\) 2.77279e21 1.19366
\(707\) 1.13223e21 0.482267
\(708\) 0 0
\(709\) 3.11862e21 1.30052 0.650258 0.759714i \(-0.274661\pi\)
0.650258 + 0.759714i \(0.274661\pi\)
\(710\) −1.35276e21 −0.558193
\(711\) 0 0
\(712\) −7.91905e20 −0.319943
\(713\) 2.36148e19 0.00944087
\(714\) 0 0
\(715\) 5.96485e20 0.233509
\(716\) −4.84115e20 −0.187543
\(717\) 0 0
\(718\) −1.58886e21 −0.602771
\(719\) −2.86542e21 −1.07577 −0.537887 0.843017i \(-0.680777\pi\)
−0.537887 + 0.843017i \(0.680777\pi\)
\(720\) 0 0
\(721\) 1.50236e21 0.552406
\(722\) −3.02410e20 −0.110044
\(723\) 0 0
\(724\) 2.16954e21 0.773266
\(725\) −8.63665e20 −0.304656
\(726\) 0 0
\(727\) −4.40337e21 −1.52152 −0.760759 0.649035i \(-0.775173\pi\)
−0.760759 + 0.649035i \(0.775173\pi\)
\(728\) 5.85621e20 0.200277
\(729\) 0 0
\(730\) −8.16707e20 −0.273618
\(731\) −1.42803e21 −0.473542
\(732\) 0 0
\(733\) −1.38060e21 −0.448527 −0.224264 0.974529i \(-0.571998\pi\)
−0.224264 + 0.974529i \(0.571998\pi\)
\(734\) −4.34211e19 −0.0139630
\(735\) 0 0
\(736\) −8.53500e20 −0.268918
\(737\) −6.57674e20 −0.205118
\(738\) 0 0
\(739\) −1.81922e21 −0.555970 −0.277985 0.960585i \(-0.589667\pi\)
−0.277985 + 0.960585i \(0.589667\pi\)
\(740\) −3.33251e20 −0.100817
\(741\) 0 0
\(742\) 2.51047e20 0.0744261
\(743\) −5.98318e19 −0.0175597 −0.00877983 0.999961i \(-0.502795\pi\)
−0.00877983 + 0.999961i \(0.502795\pi\)
\(744\) 0 0
\(745\) 3.07250e21 0.883729
\(746\) −4.51636e21 −1.28602
\(747\) 0 0
\(748\) −1.94622e20 −0.0543163
\(749\) 2.30635e21 0.637251
\(750\) 0 0
\(751\) 1.33359e21 0.361178 0.180589 0.983559i \(-0.442200\pi\)
0.180589 + 0.983559i \(0.442200\pi\)
\(752\) 5.46744e19 0.0146605
\(753\) 0 0
\(754\) −3.42316e21 −0.899792
\(755\) −1.12017e21 −0.291530
\(756\) 0 0
\(757\) −1.97282e21 −0.503348 −0.251674 0.967812i \(-0.580981\pi\)
−0.251674 + 0.967812i \(0.580981\pi\)
\(758\) −1.02694e21 −0.259434
\(759\) 0 0
\(760\) −1.06962e21 −0.264927
\(761\) −3.75846e21 −0.921775 −0.460888 0.887458i \(-0.652469\pi\)
−0.460888 + 0.887458i \(0.652469\pi\)
\(762\) 0 0
\(763\) −9.53659e20 −0.229329
\(764\) −1.24296e21 −0.295977
\(765\) 0 0
\(766\) −4.13267e21 −0.964972
\(767\) 1.94452e21 0.449622
\(768\) 0 0
\(769\) 2.87302e21 0.651465 0.325733 0.945462i \(-0.394389\pi\)
0.325733 + 0.945462i \(0.394389\pi\)
\(770\) 2.12718e20 0.0477667
\(771\) 0 0
\(772\) −3.28478e21 −0.723398
\(773\) −6.42966e21 −1.40230 −0.701151 0.713012i \(-0.747330\pi\)
−0.701151 + 0.713012i \(0.747330\pi\)
\(774\) 0 0
\(775\) 9.71972e18 0.00207917
\(776\) 2.63237e21 0.557679
\(777\) 0 0
\(778\) −4.16053e21 −0.864573
\(779\) −5.26523e21 −1.08364
\(780\) 0 0
\(781\) 9.81204e20 0.198096
\(782\) −2.85568e21 −0.571031
\(783\) 0 0
\(784\) −1.06557e21 −0.209031
\(785\) −1.76554e21 −0.343048
\(786\) 0 0
\(787\) −1.15144e21 −0.219498 −0.109749 0.993959i \(-0.535005\pi\)
−0.109749 + 0.993959i \(0.535005\pi\)
\(788\) 2.63681e21 0.497889
\(789\) 0 0
\(790\) 9.73015e20 0.180267
\(791\) 6.29623e18 0.00115547
\(792\) 0 0
\(793\) 8.67155e21 1.56152
\(794\) 2.66874e21 0.476049
\(795\) 0 0
\(796\) −9.45561e20 −0.165517
\(797\) −3.96643e21 −0.687801 −0.343900 0.939006i \(-0.611748\pi\)
−0.343900 + 0.939006i \(0.611748\pi\)
\(798\) 0 0
\(799\) 1.82932e20 0.0311307
\(800\) −3.51296e20 −0.0592241
\(801\) 0 0
\(802\) 2.95223e21 0.488474
\(803\) 5.92384e20 0.0971039
\(804\) 0 0
\(805\) 3.12121e21 0.502174
\(806\) 3.85244e19 0.00614077
\(807\) 0 0
\(808\) −2.69198e21 −0.421198
\(809\) 1.77767e21 0.275573 0.137786 0.990462i \(-0.456001\pi\)
0.137786 + 0.990462i \(0.456001\pi\)
\(810\) 0 0
\(811\) −6.01666e21 −0.915587 −0.457793 0.889059i \(-0.651360\pi\)
−0.457793 + 0.889059i \(0.651360\pi\)
\(812\) −1.22077e21 −0.184061
\(813\) 0 0
\(814\) 2.41718e20 0.0357787
\(815\) 8.56674e21 1.25642
\(816\) 0 0
\(817\) 5.69261e21 0.819683
\(818\) 2.91415e21 0.415778
\(819\) 0 0
\(820\) 3.43239e21 0.480831
\(821\) −2.90625e21 −0.403422 −0.201711 0.979445i \(-0.564650\pi\)
−0.201711 + 0.979445i \(0.564650\pi\)
\(822\) 0 0
\(823\) −7.21810e21 −0.983839 −0.491920 0.870641i \(-0.663705\pi\)
−0.491920 + 0.870641i \(0.663705\pi\)
\(824\) −3.57200e21 −0.482455
\(825\) 0 0
\(826\) 6.93456e20 0.0919747
\(827\) −1.65170e21 −0.217090 −0.108545 0.994092i \(-0.534619\pi\)
−0.108545 + 0.994092i \(0.534619\pi\)
\(828\) 0 0
\(829\) 1.06355e22 1.37277 0.686384 0.727239i \(-0.259197\pi\)
0.686384 + 0.727239i \(0.259197\pi\)
\(830\) −4.06025e21 −0.519359
\(831\) 0 0
\(832\) −1.39237e21 −0.174916
\(833\) −3.56524e21 −0.443865
\(834\) 0 0
\(835\) 1.00775e22 1.23226
\(836\) 7.75827e20 0.0940194
\(837\) 0 0
\(838\) −4.93298e21 −0.587190
\(839\) −8.51705e21 −1.00479 −0.502394 0.864639i \(-0.667547\pi\)
−0.502394 + 0.864639i \(0.667547\pi\)
\(840\) 0 0
\(841\) −1.49337e21 −0.173061
\(842\) 5.63740e21 0.647497
\(843\) 0 0
\(844\) 5.96470e21 0.673009
\(845\) 6.98637e21 0.781315
\(846\) 0 0
\(847\) 3.53023e21 0.387863
\(848\) −5.96889e20 −0.0650016
\(849\) 0 0
\(850\) −1.17538e21 −0.125759
\(851\) 3.54672e21 0.376145
\(852\) 0 0
\(853\) 8.59532e20 0.0895662 0.0447831 0.998997i \(-0.485740\pi\)
0.0447831 + 0.998997i \(0.485740\pi\)
\(854\) 3.09245e21 0.319425
\(855\) 0 0
\(856\) −5.48357e21 −0.556557
\(857\) 1.58497e22 1.59465 0.797325 0.603551i \(-0.206248\pi\)
0.797325 + 0.603551i \(0.206248\pi\)
\(858\) 0 0
\(859\) −1.85041e22 −1.82945 −0.914725 0.404078i \(-0.867593\pi\)
−0.914725 + 0.404078i \(0.867593\pi\)
\(860\) −3.71100e21 −0.363707
\(861\) 0 0
\(862\) −5.15555e21 −0.496559
\(863\) 1.11276e22 1.06248 0.531240 0.847221i \(-0.321726\pi\)
0.531240 + 0.847221i \(0.321726\pi\)
\(864\) 0 0
\(865\) 1.67939e22 1.57590
\(866\) 7.75752e21 0.721670
\(867\) 0 0
\(868\) 1.37386e19 0.00125616
\(869\) −7.05759e20 −0.0639747
\(870\) 0 0
\(871\) −1.57428e22 −1.40264
\(872\) 2.26742e21 0.200289
\(873\) 0 0
\(874\) 1.13837e22 0.988433
\(875\) 5.11927e21 0.440705
\(876\) 0 0
\(877\) 1.92958e22 1.63293 0.816463 0.577398i \(-0.195932\pi\)
0.816463 + 0.577398i \(0.195932\pi\)
\(878\) −6.90675e20 −0.0579516
\(879\) 0 0
\(880\) −5.05759e20 −0.0417180
\(881\) 2.00911e22 1.64318 0.821589 0.570081i \(-0.193088\pi\)
0.821589 + 0.570081i \(0.193088\pi\)
\(882\) 0 0
\(883\) −1.28025e22 −1.02941 −0.514705 0.857367i \(-0.672099\pi\)
−0.514705 + 0.857367i \(0.672099\pi\)
\(884\) −4.65867e21 −0.371424
\(885\) 0 0
\(886\) 3.88100e21 0.304222
\(887\) −6.34248e20 −0.0492983 −0.0246492 0.999696i \(-0.507847\pi\)
−0.0246492 + 0.999696i \(0.507847\pi\)
\(888\) 0 0
\(889\) −4.01477e21 −0.306830
\(890\) −6.88544e21 −0.521803
\(891\) 0 0
\(892\) 5.07762e21 0.378376
\(893\) −7.29228e20 −0.0538862
\(894\) 0 0
\(895\) −4.20928e21 −0.305868
\(896\) −4.96548e20 −0.0357809
\(897\) 0 0
\(898\) 3.28979e21 0.233129
\(899\) −8.03067e19 −0.00564357
\(900\) 0 0
\(901\) −1.99710e21 −0.138027
\(902\) −2.48962e21 −0.170641
\(903\) 0 0
\(904\) −1.49699e19 −0.00100915
\(905\) 1.88637e22 1.26114
\(906\) 0 0
\(907\) −1.10108e22 −0.724043 −0.362021 0.932170i \(-0.617913\pi\)
−0.362021 + 0.932170i \(0.617913\pi\)
\(908\) 1.40877e22 0.918750
\(909\) 0 0
\(910\) 5.09185e21 0.326637
\(911\) −2.11226e22 −1.34388 −0.671939 0.740606i \(-0.734538\pi\)
−0.671939 + 0.740606i \(0.734538\pi\)
\(912\) 0 0
\(913\) 2.94503e21 0.184314
\(914\) 1.44394e22 0.896300
\(915\) 0 0
\(916\) 1.14332e22 0.698155
\(917\) 9.70167e21 0.587593
\(918\) 0 0
\(919\) −1.49884e22 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(920\) −7.42100e21 −0.438585
\(921\) 0 0
\(922\) −2.06694e22 −1.20184
\(923\) 2.34871e22 1.35462
\(924\) 0 0
\(925\) 1.45981e21 0.0828387
\(926\) 2.06718e22 1.16358
\(927\) 0 0
\(928\) 2.90250e21 0.160754
\(929\) −1.69245e22 −0.929818 −0.464909 0.885359i \(-0.653913\pi\)
−0.464909 + 0.885359i \(0.653913\pi\)
\(930\) 0 0
\(931\) 1.42122e22 0.768314
\(932\) −1.47037e22 −0.788511
\(933\) 0 0
\(934\) 1.61877e22 0.854246
\(935\) −1.69220e21 −0.0885856
\(936\) 0 0
\(937\) −2.63983e22 −1.35997 −0.679984 0.733227i \(-0.738013\pi\)
−0.679984 + 0.733227i \(0.738013\pi\)
\(938\) −5.61419e21 −0.286923
\(939\) 0 0
\(940\) 4.75382e20 0.0239102
\(941\) 1.16595e22 0.581780 0.290890 0.956757i \(-0.406049\pi\)
0.290890 + 0.956757i \(0.406049\pi\)
\(942\) 0 0
\(943\) −3.65302e22 −1.79397
\(944\) −1.64876e21 −0.0803281
\(945\) 0 0
\(946\) 2.69170e21 0.129076
\(947\) −3.30603e22 −1.57283 −0.786415 0.617699i \(-0.788065\pi\)
−0.786415 + 0.617699i \(0.788065\pi\)
\(948\) 0 0
\(949\) 1.41799e22 0.664013
\(950\) 4.68547e21 0.217684
\(951\) 0 0
\(952\) −1.66137e21 −0.0759785
\(953\) −2.65079e22 −1.20276 −0.601379 0.798964i \(-0.705382\pi\)
−0.601379 + 0.798964i \(0.705382\pi\)
\(954\) 0 0
\(955\) −1.08073e22 −0.482716
\(956\) −1.54998e22 −0.686895
\(957\) 0 0
\(958\) 9.83899e21 0.429249
\(959\) −6.32191e21 −0.273659
\(960\) 0 0
\(961\) −2.34644e22 −0.999961
\(962\) 5.78600e21 0.244661
\(963\) 0 0
\(964\) −2.94338e21 −0.122537
\(965\) −2.85605e22 −1.17981
\(966\) 0 0
\(967\) −9.03923e21 −0.367649 −0.183824 0.982959i \(-0.558848\pi\)
−0.183824 + 0.982959i \(0.558848\pi\)
\(968\) −8.39348e21 −0.338748
\(969\) 0 0
\(970\) 2.28879e22 0.909532
\(971\) 7.82937e21 0.308733 0.154366 0.988014i \(-0.450666\pi\)
0.154366 + 0.988014i \(0.450666\pi\)
\(972\) 0 0
\(973\) −1.14660e22 −0.445210
\(974\) 1.23202e22 0.474709
\(975\) 0 0
\(976\) −7.35260e21 −0.278976
\(977\) −5.07858e22 −1.91220 −0.956100 0.293041i \(-0.905333\pi\)
−0.956100 + 0.293041i \(0.905333\pi\)
\(978\) 0 0
\(979\) 4.99423e21 0.185182
\(980\) −9.26489e21 −0.340914
\(981\) 0 0
\(982\) 1.79070e22 0.648914
\(983\) 2.33198e21 0.0838637 0.0419318 0.999120i \(-0.486649\pi\)
0.0419318 + 0.999120i \(0.486649\pi\)
\(984\) 0 0
\(985\) 2.29265e22 0.812018
\(986\) 9.71132e21 0.341351
\(987\) 0 0
\(988\) 1.85710e22 0.642921
\(989\) 3.94953e22 1.35698
\(990\) 0 0
\(991\) 1.16356e22 0.393766 0.196883 0.980427i \(-0.436918\pi\)
0.196883 + 0.980427i \(0.436918\pi\)
\(992\) −3.26648e19 −0.00109709
\(993\) 0 0
\(994\) 8.37597e21 0.277100
\(995\) −8.22144e21 −0.269945
\(996\) 0 0
\(997\) 3.35334e22 1.08458 0.542292 0.840190i \(-0.317557\pi\)
0.542292 + 0.840190i \(0.317557\pi\)
\(998\) −2.50977e22 −0.805666
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.16.a.c.1.2 yes 2
3.2 odd 2 54.16.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.16.a.b.1.1 2 3.2 odd 2
54.16.a.c.1.2 yes 2 1.1 even 1 trivial