Properties

Label 54.14.a.f
Level $54$
Weight $14$
Character orbit 54.a
Self dual yes
Analytic conductor $57.905$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,14,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,128,0,8192,30720] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.9047016340\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{96041}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 24010 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 27\sqrt{96041}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 64 q^{2} + 4096 q^{4} + ( - 5 \beta + 15360) q^{5} + (31 \beta - 96400) q^{7} + 262144 q^{8} + ( - 320 \beta + 983040) q^{10} + (616 \beta - 5619075) q^{11} + ( - 1180 \beta - 5503000) q^{13} + (1984 \beta - 6169600) q^{14}+ \cdots + ( - 382515200 \beta - 1300012996992) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 128 q^{2} + 8192 q^{4} + 30720 q^{5} - 192800 q^{7} + 524288 q^{8} + 1966080 q^{10} - 11238150 q^{11} - 11006000 q^{13} - 12339200 q^{14} + 33554432 q^{16} - 20725848 q^{17} - 394280888 q^{19} + 125829120 q^{20}+ \cdots - 2600025993984 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
155.452
−154.452
64.0000 0 4096.00 −26477.2 0 162990. 262144. 0 −1.69454e6
1.2 64.0000 0 4096.00 57197.2 0 −355790. 262144. 0 3.66062e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.14.a.f yes 2
3.b odd 2 1 54.14.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.14.a.a 2 3.b odd 2 1
54.14.a.f yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 30720T_{5} - 1514417625 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(54))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 64)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 1514417625 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 57990387329 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 5006813591241 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 67204330043600 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 14\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 23\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 22\!\cdots\!81 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 54\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 77\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 41\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 26\!\cdots\!81 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 49\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 58\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 40\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 79\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 38\!\cdots\!99 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 80\!\cdots\!75 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 55\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 80\!\cdots\!81 \) Copy content Toggle raw display
show more
show less