Properties

Label 54.12.a.e
Level $54$
Weight $12$
Character orbit 54.a
Self dual yes
Analytic conductor $41.491$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,12,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-64,0,2048,4908] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.4905317502\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{32641}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8160 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 54\sqrt{32641}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 32 q^{2} + 1024 q^{4} + ( - \beta + 2454) q^{5} + (2 \beta + 5621) q^{7} - 32768 q^{8} + (32 \beta - 78528) q^{10} + (11 \beta - 225906) q^{11} + (142 \beta - 452251) q^{13} + ( - 64 \beta - 179872) q^{14}+ \cdots + ( - 719488 \beta + 50080207296) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 64 q^{2} + 2048 q^{4} + 4908 q^{5} + 11242 q^{7} - 65536 q^{8} - 157056 q^{10} - 451812 q^{11} - 904502 q^{13} - 359744 q^{14} + 2097152 q^{16} - 6491916 q^{17} + 12001558 q^{19} + 5025792 q^{20}+ \cdots + 100160414592 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
90.8341
−89.8341
−32.0000 0 1024.00 −7302.08 0 25133.2 −32768.0 0 233667.
1.2 −32.0000 0 1024.00 12210.1 0 −13891.2 −32768.0 0 −390723.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.12.a.e 2
3.b odd 2 1 54.12.a.f yes 2
9.c even 3 2 162.12.c.p 4
9.d odd 6 2 162.12.c.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.12.a.e 2 1.a even 1 1 trivial
54.12.a.f yes 2 3.b odd 2 1
162.12.c.m 4 9.d odd 6 2
162.12.c.p 4 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 4908T_{5} - 89159040 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(54))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 32)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4908 T - 89159040 \) Copy content Toggle raw display
$7$ \( T^{2} - 11242 T - 349128983 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 39516600960 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 1714701862583 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 1867860093312 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 14435141174663 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 399149560050048 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 14\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 76\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 86\!\cdots\!09 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 87\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 11\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 16\!\cdots\!08 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 70\!\cdots\!15 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 16\!\cdots\!91 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 19\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 34\!\cdots\!09 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12\!\cdots\!79 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 19\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 67\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 50\!\cdots\!35 \) Copy content Toggle raw display
show more
show less