Properties

Label 538.8.a.c
Level 538538
Weight 88
Character orbit 538.a
Self dual yes
Analytic conductor 168.063168.063
Analytic rank 11
Dimension 4040
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,8,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 538=2269 538 = 2 \cdot 269
Weight: k k == 8 8
Character orbit: [χ][\chi] == 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 168.063143710168.063143710
Analytic rank: 11
Dimension: 4040
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 40q320q2109q3+2560q4751q5+872q6233q720480q8+29623q9+6008q1012977q116976q124870q13+1864q149068q15+163840q16++9909340q99+O(q100) 40 q - 320 q^{2} - 109 q^{3} + 2560 q^{4} - 751 q^{5} + 872 q^{6} - 233 q^{7} - 20480 q^{8} + 29623 q^{9} + 6008 q^{10} - 12977 q^{11} - 6976 q^{12} - 4870 q^{13} + 1864 q^{14} - 9068 q^{15} + 163840 q^{16}+ \cdots + 9909340 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −8.00000 −88.0215 64.0000 −492.867 704.172 1216.54 −512.000 5560.79 3942.93
1.2 −8.00000 −86.9213 64.0000 −78.3854 695.370 51.4362 −512.000 5368.31 627.083
1.3 −8.00000 −84.1165 64.0000 317.613 672.932 132.828 −512.000 4888.58 −2540.91
1.4 −8.00000 −82.6709 64.0000 −228.141 661.368 −449.827 −512.000 4647.48 1825.13
1.5 −8.00000 −78.7674 64.0000 294.812 630.140 89.8790 −512.000 4017.31 −2358.49
1.6 −8.00000 −72.1201 64.0000 −232.395 576.961 1331.71 −512.000 3014.30 1859.16
1.7 −8.00000 −66.3983 64.0000 433.449 531.186 −1762.13 −512.000 2221.73 −3467.59
1.8 −8.00000 −61.6300 64.0000 68.6323 493.040 353.255 −512.000 1611.25 −549.058
1.9 −8.00000 −57.3727 64.0000 −154.183 458.982 −1126.39 −512.000 1104.63 1233.46
1.10 −8.00000 −54.3544 64.0000 −133.374 434.836 −588.564 −512.000 767.405 1066.99
1.11 −8.00000 −38.6224 64.0000 27.7308 308.980 1156.53 −512.000 −695.307 −221.846
1.12 −8.00000 −33.0172 64.0000 26.6415 264.137 631.905 −512.000 −1096.87 −213.132
1.13 −8.00000 −29.8214 64.0000 183.000 238.571 −278.933 −512.000 −1297.69 −1464.00
1.14 −8.00000 −29.1710 64.0000 −496.219 233.368 −305.036 −512.000 −1336.05 3969.75
1.15 −8.00000 −27.3504 64.0000 −426.693 218.803 −434.276 −512.000 −1438.96 3413.55
1.16 −8.00000 −25.6095 64.0000 548.719 204.876 −21.1122 −512.000 −1531.15 −4389.75
1.17 −8.00000 −25.5264 64.0000 439.995 204.211 −363.962 −512.000 −1535.40 −3519.96
1.18 −8.00000 −19.6652 64.0000 −242.251 157.322 −1441.33 −512.000 −1800.28 1938.01
1.19 −8.00000 −15.6593 64.0000 356.182 125.275 −732.429 −512.000 −1941.78 −2849.46
1.20 −8.00000 −14.7346 64.0000 −379.054 117.877 1370.51 −512.000 −1969.89 3032.43
See all 40 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.40
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
269269 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 538.8.a.c 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
538.8.a.c 40 1.a even 1 1 trivial