Properties

Label 538.8.a.b
Level 538538
Weight 88
Character orbit 538.a
Self dual yes
Analytic conductor 168.063168.063
Analytic rank 00
Dimension 3737
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,8,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 538=2269 538 = 2 \cdot 269
Weight: k k == 8 8
Character orbit: [χ][\chi] == 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 168.063143710168.063143710
Analytic rank: 00
Dimension: 3737
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 37q296q2+80q3+2368q4+624q5640q6+453q718944q8+26707q94992q10+12312q11+5120q122673q133624q14+38182q15+151552q16+31108161q99+O(q100) 37 q - 296 q^{2} + 80 q^{3} + 2368 q^{4} + 624 q^{5} - 640 q^{6} + 453 q^{7} - 18944 q^{8} + 26707 q^{9} - 4992 q^{10} + 12312 q^{11} + 5120 q^{12} - 2673 q^{13} - 3624 q^{14} + 38182 q^{15} + 151552 q^{16}+ \cdots - 31108161 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −8.00000 −86.3900 64.0000 −4.83256 691.120 −1234.41 −512.000 5276.23 38.6605
1.2 −8.00000 −84.1077 64.0000 439.841 672.862 1264.47 −512.000 4887.11 −3518.73
1.3 −8.00000 −76.7774 64.0000 −436.364 614.219 −815.525 −512.000 3707.77 3490.91
1.4 −8.00000 −67.8298 64.0000 289.818 542.639 −87.4120 −512.000 2413.89 −2318.55
1.5 −8.00000 −66.6431 64.0000 −38.8553 533.145 952.805 −512.000 2254.30 310.843
1.6 −8.00000 −65.8915 64.0000 −67.1672 527.132 1448.62 −512.000 2154.68 537.337
1.7 −8.00000 −63.0323 64.0000 −242.543 504.259 −1045.70 −512.000 1786.08 1940.34
1.8 −8.00000 −53.5974 64.0000 422.327 428.779 1358.76 −512.000 685.680 −3378.61
1.9 −8.00000 −52.3112 64.0000 −409.466 418.490 440.021 −512.000 549.463 3275.73
1.10 −8.00000 −48.7222 64.0000 165.782 389.778 −1320.62 −512.000 186.857 −1326.26
1.11 −8.00000 −47.2845 64.0000 259.043 378.276 −285.965 −512.000 48.8225 −2072.34
1.12 −8.00000 −37.8586 64.0000 −407.058 302.869 521.075 −512.000 −753.728 3256.47
1.13 −8.00000 −25.6095 64.0000 −255.788 204.876 −1147.04 −512.000 −1531.16 2046.31
1.14 −8.00000 −24.3629 64.0000 −116.636 194.903 1267.01 −512.000 −1593.45 933.090
1.15 −8.00000 −18.4868 64.0000 117.318 147.895 −512.012 −512.000 −1845.24 −938.543
1.16 −8.00000 −2.40564 64.0000 307.971 19.2451 1505.23 −512.000 −2181.21 −2463.77
1.17 −8.00000 1.29627 64.0000 −505.522 −10.3702 316.327 −512.000 −2185.32 4044.18
1.18 −8.00000 1.56345 64.0000 206.112 −12.5076 −1184.30 −512.000 −2184.56 −1648.90
1.19 −8.00000 2.39663 64.0000 −162.235 −19.1730 677.883 −512.000 −2181.26 1297.88
1.20 −8.00000 3.68486 64.0000 −24.6615 −29.4789 748.149 −512.000 −2173.42 197.292
See all 37 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.37
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
269269 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 538.8.a.b 37
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
538.8.a.b 37 1.a even 1 1 trivial