Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [538,8,Mod(1,538)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("538.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(168.063143710\) |
Analytic rank: | \(0\) |
Dimension: | \(37\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −8.00000 | −86.3900 | 64.0000 | −4.83256 | 691.120 | −1234.41 | −512.000 | 5276.23 | 38.6605 | ||||||||||||||||||
1.2 | −8.00000 | −84.1077 | 64.0000 | 439.841 | 672.862 | 1264.47 | −512.000 | 4887.11 | −3518.73 | ||||||||||||||||||
1.3 | −8.00000 | −76.7774 | 64.0000 | −436.364 | 614.219 | −815.525 | −512.000 | 3707.77 | 3490.91 | ||||||||||||||||||
1.4 | −8.00000 | −67.8298 | 64.0000 | 289.818 | 542.639 | −87.4120 | −512.000 | 2413.89 | −2318.55 | ||||||||||||||||||
1.5 | −8.00000 | −66.6431 | 64.0000 | −38.8553 | 533.145 | 952.805 | −512.000 | 2254.30 | 310.843 | ||||||||||||||||||
1.6 | −8.00000 | −65.8915 | 64.0000 | −67.1672 | 527.132 | 1448.62 | −512.000 | 2154.68 | 537.337 | ||||||||||||||||||
1.7 | −8.00000 | −63.0323 | 64.0000 | −242.543 | 504.259 | −1045.70 | −512.000 | 1786.08 | 1940.34 | ||||||||||||||||||
1.8 | −8.00000 | −53.5974 | 64.0000 | 422.327 | 428.779 | 1358.76 | −512.000 | 685.680 | −3378.61 | ||||||||||||||||||
1.9 | −8.00000 | −52.3112 | 64.0000 | −409.466 | 418.490 | 440.021 | −512.000 | 549.463 | 3275.73 | ||||||||||||||||||
1.10 | −8.00000 | −48.7222 | 64.0000 | 165.782 | 389.778 | −1320.62 | −512.000 | 186.857 | −1326.26 | ||||||||||||||||||
1.11 | −8.00000 | −47.2845 | 64.0000 | 259.043 | 378.276 | −285.965 | −512.000 | 48.8225 | −2072.34 | ||||||||||||||||||
1.12 | −8.00000 | −37.8586 | 64.0000 | −407.058 | 302.869 | 521.075 | −512.000 | −753.728 | 3256.47 | ||||||||||||||||||
1.13 | −8.00000 | −25.6095 | 64.0000 | −255.788 | 204.876 | −1147.04 | −512.000 | −1531.16 | 2046.31 | ||||||||||||||||||
1.14 | −8.00000 | −24.3629 | 64.0000 | −116.636 | 194.903 | 1267.01 | −512.000 | −1593.45 | 933.090 | ||||||||||||||||||
1.15 | −8.00000 | −18.4868 | 64.0000 | 117.318 | 147.895 | −512.012 | −512.000 | −1845.24 | −938.543 | ||||||||||||||||||
1.16 | −8.00000 | −2.40564 | 64.0000 | 307.971 | 19.2451 | 1505.23 | −512.000 | −2181.21 | −2463.77 | ||||||||||||||||||
1.17 | −8.00000 | 1.29627 | 64.0000 | −505.522 | −10.3702 | 316.327 | −512.000 | −2185.32 | 4044.18 | ||||||||||||||||||
1.18 | −8.00000 | 1.56345 | 64.0000 | 206.112 | −12.5076 | −1184.30 | −512.000 | −2184.56 | −1648.90 | ||||||||||||||||||
1.19 | −8.00000 | 2.39663 | 64.0000 | −162.235 | −19.1730 | 677.883 | −512.000 | −2181.26 | 1297.88 | ||||||||||||||||||
1.20 | −8.00000 | 3.68486 | 64.0000 | −24.6615 | −29.4789 | 748.149 | −512.000 | −2173.42 | 197.292 | ||||||||||||||||||
See all 37 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( +1 \) |
\(269\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 538.8.a.b | ✓ | 37 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
538.8.a.b | ✓ | 37 | 1.a | even | 1 | 1 | trivial |