Properties

Label 538.4.b.a
Level $538$
Weight $4$
Character orbit 538.b
Analytic conductor $31.743$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(537,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.537");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.7430275831\)
Analytic rank: \(0\)
Dimension: \(68\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 68 q - 272 q^{4} + 38 q^{5} - 4 q^{6} - 594 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 68 q - 272 q^{4} + 38 q^{5} - 4 q^{6} - 594 q^{9} + 18 q^{11} - 114 q^{13} + 8 q^{14} + 1088 q^{16} - 152 q^{20} - 20 q^{21} - 224 q^{23} + 16 q^{24} + 1098 q^{25} + 384 q^{30} - 600 q^{34} + 2376 q^{36} - 302 q^{37} + 436 q^{38} - 624 q^{41} - 654 q^{43} - 72 q^{44} - 1074 q^{45} + 692 q^{47} - 3052 q^{49} + 596 q^{51} + 456 q^{52} + 326 q^{53} + 1504 q^{54} + 828 q^{55} - 32 q^{56} - 1024 q^{57} - 100 q^{58} + 226 q^{61} + 312 q^{62} - 4352 q^{64} + 316 q^{65} + 2480 q^{66} - 1318 q^{67} + 608 q^{70} - 2028 q^{73} - 1152 q^{78} - 1444 q^{79} + 608 q^{80} + 3204 q^{81} + 80 q^{84} - 5600 q^{87} - 1284 q^{89} + 896 q^{92} - 2528 q^{93} - 64 q^{96} - 288 q^{97} + 3370 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
537.1 2.00000i 9.88791i −4.00000 9.87298 −19.7758 5.28763i 8.00000i −70.7708 19.7460i
537.2 2.00000i 9.56359i −4.00000 −14.2576 −19.1272 26.9416i 8.00000i −64.4623 28.5153i
537.3 2.00000i 9.28480i −4.00000 8.94524 −18.5696 16.2739i 8.00000i −59.2075 17.8905i
537.4 2.00000i 8.17841i −4.00000 10.4648 −16.3568 14.5901i 8.00000i −39.8864 20.9295i
537.5 2.00000i 7.77553i −4.00000 −14.6725 −15.5511 24.2023i 8.00000i −33.4588 29.3451i
537.6 2.00000i 7.25003i −4.00000 −10.7929 −14.5001 6.91932i 8.00000i −25.5630 21.5858i
537.7 2.00000i 5.56172i −4.00000 10.6999 −11.1234 28.6762i 8.00000i −3.93276 21.3998i
537.8 2.00000i 5.50515i −4.00000 −2.58904 −11.0103 31.4556i 8.00000i −3.30666 5.17808i
537.9 2.00000i 5.25034i −4.00000 11.3357 −10.5007 15.7937i 8.00000i −0.566075 22.6713i
537.10 2.00000i 4.97105i −4.00000 0.491173 −9.94210 17.1942i 8.00000i 2.28866 0.982346i
537.11 2.00000i 4.55526i −4.00000 −7.10991 −9.11052 12.2116i 8.00000i 6.24961 14.2198i
537.12 2.00000i 3.80249i −4.00000 21.0758 −7.60499 19.4523i 8.00000i 12.5410 42.1517i
537.13 2.00000i 2.90912i −4.00000 −14.2265 −5.81824 12.8404i 8.00000i 18.5370 28.4531i
537.14 2.00000i 2.52250i −4.00000 −0.152611 −5.04499 7.33691i 8.00000i 20.6370 0.305221i
537.15 2.00000i 1.31750i −4.00000 −18.2850 −2.63499 19.3161i 8.00000i 25.2642 36.5699i
537.16 2.00000i 1.13081i −4.00000 −16.2280 −2.26163 31.7390i 8.00000i 25.7213 32.4561i
537.17 2.00000i 0.122336i −4.00000 7.26358 −0.244671 31.0626i 8.00000i 26.9850 14.5272i
537.18 2.00000i 0.374041i −4.00000 15.5232 0.748083 10.9338i 8.00000i 26.8601 31.0464i
537.19 2.00000i 0.568496i −4.00000 5.35960 1.13699 6.64699i 8.00000i 26.6768 10.7192i
537.20 2.00000i 2.32411i −4.00000 −7.44884 4.64822 10.6572i 8.00000i 21.5985 14.8977i
See all 68 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 537.68
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
269.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 538.4.b.a 68
269.b even 2 1 inner 538.4.b.a 68
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
538.4.b.a 68 1.a even 1 1 trivial
538.4.b.a 68 269.b even 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(538, [\chi])\).