Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [538,4,Mod(537,538)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("538.537");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(31.7430275831\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
537.1 | − | 2.00000i | − | 9.88791i | −4.00000 | 9.87298 | −19.7758 | − | 5.28763i | 8.00000i | −70.7708 | − | 19.7460i | ||||||||||||||
537.2 | − | 2.00000i | − | 9.56359i | −4.00000 | −14.2576 | −19.1272 | − | 26.9416i | 8.00000i | −64.4623 | 28.5153i | |||||||||||||||
537.3 | − | 2.00000i | − | 9.28480i | −4.00000 | 8.94524 | −18.5696 | 16.2739i | 8.00000i | −59.2075 | − | 17.8905i | |||||||||||||||
537.4 | − | 2.00000i | − | 8.17841i | −4.00000 | 10.4648 | −16.3568 | 14.5901i | 8.00000i | −39.8864 | − | 20.9295i | |||||||||||||||
537.5 | − | 2.00000i | − | 7.77553i | −4.00000 | −14.6725 | −15.5511 | 24.2023i | 8.00000i | −33.4588 | 29.3451i | ||||||||||||||||
537.6 | − | 2.00000i | − | 7.25003i | −4.00000 | −10.7929 | −14.5001 | 6.91932i | 8.00000i | −25.5630 | 21.5858i | ||||||||||||||||
537.7 | − | 2.00000i | − | 5.56172i | −4.00000 | 10.6999 | −11.1234 | − | 28.6762i | 8.00000i | −3.93276 | − | 21.3998i | ||||||||||||||
537.8 | − | 2.00000i | − | 5.50515i | −4.00000 | −2.58904 | −11.0103 | 31.4556i | 8.00000i | −3.30666 | 5.17808i | ||||||||||||||||
537.9 | − | 2.00000i | − | 5.25034i | −4.00000 | 11.3357 | −10.5007 | − | 15.7937i | 8.00000i | −0.566075 | − | 22.6713i | ||||||||||||||
537.10 | − | 2.00000i | − | 4.97105i | −4.00000 | 0.491173 | −9.94210 | − | 17.1942i | 8.00000i | 2.28866 | − | 0.982346i | ||||||||||||||
537.11 | − | 2.00000i | − | 4.55526i | −4.00000 | −7.10991 | −9.11052 | − | 12.2116i | 8.00000i | 6.24961 | 14.2198i | |||||||||||||||
537.12 | − | 2.00000i | − | 3.80249i | −4.00000 | 21.0758 | −7.60499 | 19.4523i | 8.00000i | 12.5410 | − | 42.1517i | |||||||||||||||
537.13 | − | 2.00000i | − | 2.90912i | −4.00000 | −14.2265 | −5.81824 | − | 12.8404i | 8.00000i | 18.5370 | 28.4531i | |||||||||||||||
537.14 | − | 2.00000i | − | 2.52250i | −4.00000 | −0.152611 | −5.04499 | 7.33691i | 8.00000i | 20.6370 | 0.305221i | ||||||||||||||||
537.15 | − | 2.00000i | − | 1.31750i | −4.00000 | −18.2850 | −2.63499 | 19.3161i | 8.00000i | 25.2642 | 36.5699i | ||||||||||||||||
537.16 | − | 2.00000i | − | 1.13081i | −4.00000 | −16.2280 | −2.26163 | − | 31.7390i | 8.00000i | 25.7213 | 32.4561i | |||||||||||||||
537.17 | − | 2.00000i | − | 0.122336i | −4.00000 | 7.26358 | −0.244671 | 31.0626i | 8.00000i | 26.9850 | − | 14.5272i | |||||||||||||||
537.18 | − | 2.00000i | 0.374041i | −4.00000 | 15.5232 | 0.748083 | − | 10.9338i | 8.00000i | 26.8601 | − | 31.0464i | |||||||||||||||
537.19 | − | 2.00000i | 0.568496i | −4.00000 | 5.35960 | 1.13699 | − | 6.64699i | 8.00000i | 26.6768 | − | 10.7192i | |||||||||||||||
537.20 | − | 2.00000i | 2.32411i | −4.00000 | −7.44884 | 4.64822 | 10.6572i | 8.00000i | 21.5985 | 14.8977i | |||||||||||||||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
269.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 538.4.b.a | ✓ | 68 |
269.b | even | 2 | 1 | inner | 538.4.b.a | ✓ | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
538.4.b.a | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
538.4.b.a | ✓ | 68 | 269.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(538, [\chi])\).