Properties

Label 538.4.a.d
Level 538538
Weight 44
Character orbit 538.a
Self dual yes
Analytic conductor 31.74331.743
Analytic rank 00
Dimension 2121
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 538=2269 538 = 2 \cdot 269
Weight: k k == 4 4
Character orbit: [χ][\chi] == 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.743027583131.7430275831
Analytic rank: 00
Dimension: 2121
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 21q+42q2+6q3+84q4+54q5+12q6+52q7+168q8+309q9+108q10+99q11+24q12+81q13+104q14+277q15+336q16+228q17+618q18+4470q99+O(q100) 21 q + 42 q^{2} + 6 q^{3} + 84 q^{4} + 54 q^{5} + 12 q^{6} + 52 q^{7} + 168 q^{8} + 309 q^{9} + 108 q^{10} + 99 q^{11} + 24 q^{12} + 81 q^{13} + 104 q^{14} + 277 q^{15} + 336 q^{16} + 228 q^{17} + 618 q^{18}+ \cdots - 4470 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 2.00000 −10.0400 4.00000 −10.3142 −20.0800 30.9953 8.00000 73.8018 −20.6284
1.2 2.00000 −8.94694 4.00000 17.4912 −17.8939 −29.4022 8.00000 53.0478 34.9825
1.3 2.00000 −8.51755 4.00000 16.7909 −17.0351 25.1792 8.00000 45.5487 33.5818
1.4 2.00000 −6.54123 4.00000 −13.1398 −13.0825 −12.7222 8.00000 15.7877 −26.2795
1.5 2.00000 −6.41803 4.00000 6.01917 −12.8361 26.2838 8.00000 14.1911 12.0383
1.6 2.00000 −5.47352 4.00000 −17.6842 −10.9470 −34.0172 8.00000 2.95944 −35.3683
1.7 2.00000 −4.26201 4.00000 6.83518 −8.52401 −31.0166 8.00000 −8.83529 13.6704
1.8 2.00000 −3.71008 4.00000 −7.25350 −7.42015 0.635451 8.00000 −13.2353 −14.5070
1.9 2.00000 −1.64279 4.00000 −16.1874 −3.28558 5.23738 8.00000 −24.3012 −32.3748
1.10 2.00000 −1.07079 4.00000 3.57975 −2.14158 21.8456 8.00000 −25.8534 7.15950
1.11 2.00000 −0.0924306 4.00000 22.1534 −0.184861 −8.74881 8.00000 −26.9915 44.3068
1.12 2.00000 0.291894 4.00000 10.4463 0.583789 19.7604 8.00000 −26.9148 20.8926
1.13 2.00000 2.97379 4.00000 −18.4835 5.94759 −11.2005 8.00000 −18.1566 −36.9670
1.14 2.00000 5.07974 4.00000 10.3107 10.1595 24.1687 8.00000 −1.19626 20.6214
1.15 2.00000 5.22913 4.00000 19.5728 10.4583 −1.73635 8.00000 0.343768 39.1455
1.16 2.00000 6.73834 4.00000 5.62452 13.4767 −24.9667 8.00000 18.4053 11.2490
1.17 2.00000 6.96110 4.00000 11.9308 13.9222 13.1346 8.00000 21.4569 23.8617
1.18 2.00000 7.70804 4.00000 −10.8854 15.4161 35.5612 8.00000 32.4139 −21.7708
1.19 2.00000 8.48473 4.00000 −6.56280 16.9695 3.72047 8.00000 44.9906 −13.1256
1.20 2.00000 9.24827 4.00000 15.1406 18.4965 12.8672 8.00000 58.5304 30.2812
See all 21 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.21
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
269269 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 538.4.a.d 21
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
538.4.a.d 21 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3216T320420T319+2387T318+74643T317394163T316++2956968188160 T_{3}^{21} - 6 T_{3}^{20} - 420 T_{3}^{19} + 2387 T_{3}^{18} + 74643 T_{3}^{17} - 394163 T_{3}^{16} + \cdots + 2956968188160 acting on S4new(Γ0(538))S_{4}^{\mathrm{new}}(\Gamma_0(538)). Copy content Toggle raw display