Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [538,4,Mod(1,538)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("538.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(31.7430275831\) |
Analytic rank: | \(0\) |
Dimension: | \(21\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 2.00000 | −10.0400 | 4.00000 | −10.3142 | −20.0800 | 30.9953 | 8.00000 | 73.8018 | −20.6284 | ||||||||||||||||||
1.2 | 2.00000 | −8.94694 | 4.00000 | 17.4912 | −17.8939 | −29.4022 | 8.00000 | 53.0478 | 34.9825 | ||||||||||||||||||
1.3 | 2.00000 | −8.51755 | 4.00000 | 16.7909 | −17.0351 | 25.1792 | 8.00000 | 45.5487 | 33.5818 | ||||||||||||||||||
1.4 | 2.00000 | −6.54123 | 4.00000 | −13.1398 | −13.0825 | −12.7222 | 8.00000 | 15.7877 | −26.2795 | ||||||||||||||||||
1.5 | 2.00000 | −6.41803 | 4.00000 | 6.01917 | −12.8361 | 26.2838 | 8.00000 | 14.1911 | 12.0383 | ||||||||||||||||||
1.6 | 2.00000 | −5.47352 | 4.00000 | −17.6842 | −10.9470 | −34.0172 | 8.00000 | 2.95944 | −35.3683 | ||||||||||||||||||
1.7 | 2.00000 | −4.26201 | 4.00000 | 6.83518 | −8.52401 | −31.0166 | 8.00000 | −8.83529 | 13.6704 | ||||||||||||||||||
1.8 | 2.00000 | −3.71008 | 4.00000 | −7.25350 | −7.42015 | 0.635451 | 8.00000 | −13.2353 | −14.5070 | ||||||||||||||||||
1.9 | 2.00000 | −1.64279 | 4.00000 | −16.1874 | −3.28558 | 5.23738 | 8.00000 | −24.3012 | −32.3748 | ||||||||||||||||||
1.10 | 2.00000 | −1.07079 | 4.00000 | 3.57975 | −2.14158 | 21.8456 | 8.00000 | −25.8534 | 7.15950 | ||||||||||||||||||
1.11 | 2.00000 | −0.0924306 | 4.00000 | 22.1534 | −0.184861 | −8.74881 | 8.00000 | −26.9915 | 44.3068 | ||||||||||||||||||
1.12 | 2.00000 | 0.291894 | 4.00000 | 10.4463 | 0.583789 | 19.7604 | 8.00000 | −26.9148 | 20.8926 | ||||||||||||||||||
1.13 | 2.00000 | 2.97379 | 4.00000 | −18.4835 | 5.94759 | −11.2005 | 8.00000 | −18.1566 | −36.9670 | ||||||||||||||||||
1.14 | 2.00000 | 5.07974 | 4.00000 | 10.3107 | 10.1595 | 24.1687 | 8.00000 | −1.19626 | 20.6214 | ||||||||||||||||||
1.15 | 2.00000 | 5.22913 | 4.00000 | 19.5728 | 10.4583 | −1.73635 | 8.00000 | 0.343768 | 39.1455 | ||||||||||||||||||
1.16 | 2.00000 | 6.73834 | 4.00000 | 5.62452 | 13.4767 | −24.9667 | 8.00000 | 18.4053 | 11.2490 | ||||||||||||||||||
1.17 | 2.00000 | 6.96110 | 4.00000 | 11.9308 | 13.9222 | 13.1346 | 8.00000 | 21.4569 | 23.8617 | ||||||||||||||||||
1.18 | 2.00000 | 7.70804 | 4.00000 | −10.8854 | 15.4161 | 35.5612 | 8.00000 | 32.4139 | −21.7708 | ||||||||||||||||||
1.19 | 2.00000 | 8.48473 | 4.00000 | −6.56280 | 16.9695 | 3.72047 | 8.00000 | 44.9906 | −13.1256 | ||||||||||||||||||
1.20 | 2.00000 | 9.24827 | 4.00000 | 15.1406 | 18.4965 | 12.8672 | 8.00000 | 58.5304 | 30.2812 | ||||||||||||||||||
See all 21 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( -1 \) |
\(269\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 538.4.a.d | ✓ | 21 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
538.4.a.d | ✓ | 21 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{21} - 6 T_{3}^{20} - 420 T_{3}^{19} + 2387 T_{3}^{18} + 74643 T_{3}^{17} - 394163 T_{3}^{16} + \cdots + 2956968188160 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(538))\).