Properties

Label 5376.2.c.t
Level $5376$
Weight $2$
Character orbit 5376.c
Analytic conductor $42.928$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5376,2,Mod(2689,5376)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5376.2689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5376, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5376 = 2^{8} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5376.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,2,0,-2,0,0,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.9275761266\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2688)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + 2 i q^{5} + q^{7} - q^{9} - 2 q^{15} + 4 i q^{19} + i q^{21} + 6 q^{23} + q^{25} - i q^{27} + 2 i q^{29} + 2 i q^{35} + 2 i q^{37} + 4 q^{41} + 2 i q^{43} - 2 i q^{45} - 8 q^{47} + q^{49} + \cdots - 14 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7} - 2 q^{9} - 4 q^{15} + 12 q^{23} + 2 q^{25} + 8 q^{41} - 16 q^{47} + 2 q^{49} - 8 q^{57} - 2 q^{63} + 12 q^{71} + 20 q^{73} + 2 q^{81} - 4 q^{87} - 16 q^{95} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times\).

\(n\) \(1793\) \(2815\) \(4609\) \(5125\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2689.1
1.00000i
1.00000i
0 1.00000i 0 2.00000i 0 1.00000 0 −1.00000 0
2689.2 0 1.00000i 0 2.00000i 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5376.2.c.t 2
4.b odd 2 1 5376.2.c.n 2
8.b even 2 1 inner 5376.2.c.t 2
8.d odd 2 1 5376.2.c.n 2
16.e even 4 1 2688.2.a.j yes 1
16.e even 4 1 2688.2.a.n yes 1
16.f odd 4 1 2688.2.a.c 1
16.f odd 4 1 2688.2.a.w yes 1
48.i odd 4 1 8064.2.a.c 1
48.i odd 4 1 8064.2.a.x 1
48.k even 4 1 8064.2.a.f 1
48.k even 4 1 8064.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2688.2.a.c 1 16.f odd 4 1
2688.2.a.j yes 1 16.e even 4 1
2688.2.a.n yes 1 16.e even 4 1
2688.2.a.w yes 1 16.f odd 4 1
5376.2.c.n 2 4.b odd 2 1
5376.2.c.n 2 8.d odd 2 1
5376.2.c.t 2 1.a even 1 1 trivial
5376.2.c.t 2 8.b even 2 1 inner
8064.2.a.c 1 48.i odd 4 1
8064.2.a.f 1 48.k even 4 1
8064.2.a.x 1 48.i odd 4 1
8064.2.a.y 1 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5376, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{23} - 6 \) Copy content Toggle raw display
\( T_{31} \) Copy content Toggle raw display
\( T_{47} + 8 \) Copy content Toggle raw display
\( T_{71} - 6 \) Copy content Toggle raw display
\( T_{79} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T - 4)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4 \) Copy content Toggle raw display
$47$ \( (T + 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 100 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T + 14)^{2} \) Copy content Toggle raw display
show more
show less