gp: [N,k,chi] = [5376,2,Mod(1,5376)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5376.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5376, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [2,0,-2,0,0,0,2,0,2,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 6 \beta = \sqrt{6} β = 6 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 5376 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(5376)) S 2 n e w ( Γ 0 ( 5 3 7 6 ) ) :
T 5 2 − 6 T_{5}^{2} - 6 T 5 2 − 6
T5^2 - 6
T 11 2 + 4 T 11 − 2 T_{11}^{2} + 4T_{11} - 2 T 1 1 2 + 4 T 1 1 − 2
T11^2 + 4*T11 - 2
T 13 2 + 4 T 13 − 20 T_{13}^{2} + 4T_{13} - 20 T 1 3 2 + 4 T 1 3 − 2 0
T13^2 + 4*T13 - 20
T 19 2 − 4 T 19 − 20 T_{19}^{2} - 4T_{19} - 20 T 1 9 2 − 4 T 1 9 − 2 0
T19^2 - 4*T19 - 20
T 29 2 + 4 T 29 − 20 T_{29}^{2} + 4T_{29} - 20 T 2 9 2 + 4 T 2 9 − 2 0
T29^2 + 4*T29 - 20
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
5 5 5
T 2 − 6 T^{2} - 6 T 2 − 6
T^2 - 6
7 7 7
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
11 11 1 1
T 2 + 4 T − 2 T^{2} + 4T - 2 T 2 + 4 T − 2
T^2 + 4*T - 2
13 13 1 3
T 2 + 4 T − 20 T^{2} + 4T - 20 T 2 + 4 T − 2 0
T^2 + 4*T - 20
17 17 1 7
T 2 − 8 T + 10 T^{2} - 8T + 10 T 2 − 8 T + 1 0
T^2 - 8*T + 10
19 19 1 9
T 2 − 4 T − 20 T^{2} - 4T - 20 T 2 − 4 T − 2 0
T^2 - 4*T - 20
23 23 2 3
T 2 + 4 T − 2 T^{2} + 4T - 2 T 2 + 4 T − 2
T^2 + 4*T - 2
29 29 2 9
T 2 + 4 T − 20 T^{2} + 4T - 20 T 2 + 4 T − 2 0
T^2 + 4*T - 20
31 31 3 1
T 2 − 4 T − 20 T^{2} - 4T - 20 T 2 − 4 T − 2 0
T^2 - 4*T - 20
37 37 3 7
( T − 2 ) 2 (T - 2)^{2} ( T − 2 ) 2
(T - 2)^2
41 41 4 1
T 2 − 54 T^{2} - 54 T 2 − 5 4
T^2 - 54
43 43 4 3
T 2 + 16 T + 40 T^{2} + 16T + 40 T 2 + 1 6 T + 4 0
T^2 + 16*T + 40
47 47 4 7
T 2 − 8 T − 8 T^{2} - 8T - 8 T 2 − 8 T − 8
T^2 - 8*T - 8
53 53 5 3
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
59 59 5 9
T 2 − 24 T^{2} - 24 T 2 − 2 4
T^2 - 24
61 61 6 1
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
67 67 6 7
T 2 − 96 T^{2} - 96 T 2 − 9 6
T^2 - 96
71 71 7 1
T 2 − 4 T − 50 T^{2} - 4T - 50 T 2 − 4 T − 5 0
T^2 - 4*T - 50
73 73 7 3
T 2 + 12 T + 12 T^{2} + 12T + 12 T 2 + 1 2 T + 1 2
T^2 + 12*T + 12
79 79 7 9
T 2 − 16 T + 40 T^{2} - 16T + 40 T 2 − 1 6 T + 4 0
T^2 - 16*T + 40
83 83 8 3
T 2 + 8 T − 80 T^{2} + 8T - 80 T 2 + 8 T − 8 0
T^2 + 8*T - 80
89 89 8 9
T 2 − 54 T^{2} - 54 T 2 − 5 4
T^2 - 54
97 97 9 7
T 2 − 20 T + 76 T^{2} - 20T + 76 T 2 − 2 0 T + 7 6
T^2 - 20*T + 76
show more
show less