Properties

Label 5355.2.a.bs
Level $5355$
Weight $2$
Character orbit 5355.a
Self dual yes
Analytic conductor $42.760$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5355,2,Mod(1,5355)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5355.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5355, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5355 = 3^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5355.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,0,11,5,0,5,3,0,1,-4,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.7598902824\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.674848.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + q^{5} + q^{7} + (\beta_{3} + 2 \beta_1) q^{8} + \beta_1 q^{10} + (\beta_{2} - 1) q^{11} + (\beta_{2} + 3) q^{13} + \beta_1 q^{14} + (\beta_{4} + 2 \beta_{2} + \beta_1 + 3) q^{16}+ \cdots + \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 11 q^{4} + 5 q^{5} + 5 q^{7} + 3 q^{8} + q^{10} - 4 q^{11} + 16 q^{13} + q^{14} + 19 q^{16} - 5 q^{17} - 2 q^{19} + 11 q^{20} + 2 q^{22} + 4 q^{23} + 5 q^{25} + 6 q^{26} + 11 q^{28} - 2 q^{29}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 10x^{3} + 8x^{2} + 21x - 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 8\nu^{2} - \nu + 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 8\beta_{2} + \beta _1 + 23 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.59638
−1.60618
0.489771
1.94778
2.76501
−2.59638 0 4.74118 1.00000 0 1.00000 −7.11714 0 −2.59638
1.2 −1.60618 0 0.579823 1.00000 0 1.00000 2.28106 0 −1.60618
1.3 0.489771 0 −1.76012 1.00000 0 1.00000 −1.84160 0 0.489771
1.4 1.94778 0 1.79385 1.00000 0 1.00000 −0.401533 0 1.94778
1.5 2.76501 0 5.64527 1.00000 0 1.00000 10.0792 0 2.76501
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5355.2.a.bs 5
3.b odd 2 1 1785.2.a.bc 5
15.d odd 2 1 8925.2.a.bz 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1785.2.a.bc 5 3.b odd 2 1
5355.2.a.bs 5 1.a even 1 1 trivial
8925.2.a.bz 5 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5355))\):

\( T_{2}^{5} - T_{2}^{4} - 10T_{2}^{3} + 8T_{2}^{2} + 21T_{2} - 11 \) Copy content Toggle raw display
\( T_{11}^{5} + 4T_{11}^{4} - 12T_{11}^{3} - 36T_{11}^{2} + 32T_{11} + 64 \) Copy content Toggle raw display
\( T_{13}^{5} - 16T_{13}^{4} + 84T_{13}^{3} - 148T_{13}^{2} + 128 \) Copy content Toggle raw display
\( T_{19}^{5} + 2T_{19}^{4} - 80T_{19}^{3} - 112T_{19}^{2} + 1520T_{19} + 800 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} + \cdots - 11 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( (T - 1)^{5} \) Copy content Toggle raw display
$7$ \( (T - 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 4 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{5} - 16 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + 2 T^{4} + \cdots + 800 \) Copy content Toggle raw display
$23$ \( T^{5} - 4 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$29$ \( T^{5} + 2 T^{4} + \cdots - 704 \) Copy content Toggle raw display
$31$ \( T^{5} - 4 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{5} - 2 T^{4} + \cdots - 1024 \) Copy content Toggle raw display
$41$ \( (T - 2)^{5} \) Copy content Toggle raw display
$43$ \( T^{5} - 6 T^{4} + \cdots - 6272 \) Copy content Toggle raw display
$47$ \( T^{5} + 22 T^{4} + \cdots + 1504 \) Copy content Toggle raw display
$53$ \( T^{5} - 8 T^{4} + \cdots + 13904 \) Copy content Toggle raw display
$59$ \( T^{5} + 12 T^{4} + \cdots + 2816 \) Copy content Toggle raw display
$61$ \( T^{5} - 14 T^{4} + \cdots + 176 \) Copy content Toggle raw display
$67$ \( T^{5} - 10 T^{4} + \cdots - 52864 \) Copy content Toggle raw display
$71$ \( T^{5} - 8 T^{4} + \cdots - 448 \) Copy content Toggle raw display
$73$ \( T^{5} - 24 T^{4} + \cdots + 6400 \) Copy content Toggle raw display
$79$ \( T^{5} - 6 T^{4} + \cdots - 35936 \) Copy content Toggle raw display
$83$ \( T^{5} + 14 T^{4} + \cdots + 6304 \) Copy content Toggle raw display
$89$ \( T^{5} + 6 T^{4} + \cdots + 7552 \) Copy content Toggle raw display
$97$ \( T^{5} - 268 T^{3} + \cdots - 3712 \) Copy content Toggle raw display
show more
show less