Properties

Label 5328.2.h.l
Level $5328$
Weight $2$
Character orbit 5328.h
Analytic conductor $42.544$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2737,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2737"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0, 0,0,0,0,0,0,4,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(41)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.27648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 111)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{5} + 2 q^{7} - \beta_{3} q^{11} - 2 \beta_{2} q^{13} + \beta_{2} q^{17} - \beta_1 q^{19} + (\beta_{2} + \beta_1) q^{23} + ( - \beta_{3} - 1) q^{25} + ( - \beta_{2} + 2 \beta_1) q^{29}+ \cdots + ( - 2 \beta_{2} - 2 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} - 4 q^{25} + 4 q^{37} + 24 q^{41} - 12 q^{49} - 24 q^{53} - 48 q^{65} + 8 q^{67} - 32 q^{73} + 24 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 6x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{2} - 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2737.1
0.741964i
2.33441i
2.33441i
0.741964i
0 0 0 3.30136i 0 2.00000 0 0 0
2737.2 0 0 0 1.04930i 0 2.00000 0 0 0
2737.3 0 0 0 1.04930i 0 2.00000 0 0 0
2737.4 0 0 0 3.30136i 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5328.2.h.l 4
3.b odd 2 1 1776.2.h.e 4
4.b odd 2 1 333.2.c.c 4
12.b even 2 1 111.2.c.b 4
37.b even 2 1 inner 5328.2.h.l 4
111.d odd 2 1 1776.2.h.e 4
148.b odd 2 1 333.2.c.c 4
444.g even 2 1 111.2.c.b 4
444.j odd 4 2 4107.2.a.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
111.2.c.b 4 12.b even 2 1
111.2.c.b 4 444.g even 2 1
333.2.c.c 4 4.b odd 2 1
333.2.c.c 4 148.b odd 2 1
1776.2.h.e 4 3.b odd 2 1
1776.2.h.e 4 111.d odd 2 1
4107.2.a.g 4 444.j odd 4 2
5328.2.h.l 4 1.a even 1 1 trivial
5328.2.h.l 4 37.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5328, [\chi])\):

\( T_{5}^{4} + 12T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{13}^{4} + 48T_{13}^{2} + 192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 12T^{2} + 12 \) Copy content Toggle raw display
$7$ \( (T - 2)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 48T^{2} + 192 \) Copy content Toggle raw display
$17$ \( T^{4} + 12T^{2} + 12 \) Copy content Toggle raw display
$19$ \( T^{4} + 24T^{2} + 48 \) Copy content Toggle raw display
$23$ \( T^{4} + 36T^{2} + 300 \) Copy content Toggle raw display
$29$ \( T^{4} + 108T^{2} + 12 \) Copy content Toggle raw display
$31$ \( T^{4} + 72T^{2} + 1200 \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 1369 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 264 T^{2} + 17328 \) Copy content Toggle raw display
$47$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 12 T + 12)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 36T^{2} + 300 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T - 2)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 16 T + 40)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 24T^{2} + 48 \) Copy content Toggle raw display
$83$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 108T^{2} + 12 \) Copy content Toggle raw display
$97$ \( T^{4} + 144T^{2} + 4800 \) Copy content Toggle raw display
show more
show less