Properties

Label 532.2.l.b.429.11
Level $532$
Weight $2$
Character 532.429
Analytic conductor $4.248$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [532,2,Mod(429,532)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("532.429"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(532, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.l (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 429.11
Character \(\chi\) \(=\) 532.429
Dual form 532.2.l.b.501.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.98364 q^{3} +(-0.223039 - 0.386315i) q^{5} +(1.18643 + 2.36482i) q^{7} +5.90209 q^{9} +(2.04785 + 3.54698i) q^{11} +(-2.40524 - 4.16600i) q^{13} +(-0.665468 - 1.15262i) q^{15} -5.31563 q^{17} +(-3.73139 + 2.25316i) q^{19} +(3.53989 + 7.05576i) q^{21} +4.90255 q^{23} +(2.40051 - 4.15780i) q^{25} +8.65879 q^{27} +(-1.24190 - 2.15103i) q^{29} +(-1.90744 - 3.30379i) q^{31} +(6.11005 + 10.5829i) q^{33} +(0.648944 - 0.985784i) q^{35} +(3.07344 - 5.32335i) q^{37} +(-7.17637 - 12.4298i) q^{39} +(2.73014 - 4.72874i) q^{41} +(-5.79221 + 10.0324i) q^{43} +(-1.31640 - 2.28007i) q^{45} -6.71365 q^{47} +(-4.18475 + 5.61141i) q^{49} -15.8599 q^{51} +(3.83682 - 6.64557i) q^{53} +(0.913501 - 1.58223i) q^{55} +(-11.1331 + 6.72263i) q^{57} +9.29294 q^{59} -6.96595 q^{61} +(7.00245 + 13.9574i) q^{63} +(-1.07293 + 1.85836i) q^{65} +(-2.53937 + 4.39833i) q^{67} +14.6274 q^{69} +(3.79529 - 6.57364i) q^{71} -2.96434 q^{73} +(7.16224 - 12.4054i) q^{75} +(-5.95833 + 9.05106i) q^{77} +(-6.48566 - 11.2335i) q^{79} +8.12841 q^{81} +14.5111 q^{83} +(1.18559 + 2.05351i) q^{85} +(-3.70537 - 6.41788i) q^{87} -3.69090 q^{89} +(6.99818 - 10.6306i) q^{91} +(-5.69111 - 9.85730i) q^{93} +(1.70268 + 0.938947i) q^{95} +(-5.62889 + 9.74952i) q^{97} +(12.0866 + 20.9346i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} - 6 q^{7} + 30 q^{9} + q^{11} - 7 q^{13} - 2 q^{15} - 6 q^{17} + 17 q^{19} - 18 q^{21} - 16 q^{23} - 8 q^{25} + 20 q^{27} - 22 q^{29} - 7 q^{31} + 7 q^{33} - 21 q^{35} + 9 q^{37}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.98364 1.72260 0.861302 0.508094i \(-0.169650\pi\)
0.861302 + 0.508094i \(0.169650\pi\)
\(4\) 0 0
\(5\) −0.223039 0.386315i −0.0997461 0.172765i 0.811833 0.583889i \(-0.198470\pi\)
−0.911580 + 0.411124i \(0.865136\pi\)
\(6\) 0 0
\(7\) 1.18643 + 2.36482i 0.448430 + 0.893818i
\(8\) 0 0
\(9\) 5.90209 1.96736
\(10\) 0 0
\(11\) 2.04785 + 3.54698i 0.617450 + 1.06946i 0.989949 + 0.141423i \(0.0451677\pi\)
−0.372499 + 0.928033i \(0.621499\pi\)
\(12\) 0 0
\(13\) −2.40524 4.16600i −0.667094 1.15544i −0.978713 0.205233i \(-0.934205\pi\)
0.311619 0.950207i \(-0.399129\pi\)
\(14\) 0 0
\(15\) −0.665468 1.15262i −0.171823 0.297606i
\(16\) 0 0
\(17\) −5.31563 −1.28923 −0.644615 0.764508i \(-0.722982\pi\)
−0.644615 + 0.764508i \(0.722982\pi\)
\(18\) 0 0
\(19\) −3.73139 + 2.25316i −0.856039 + 0.516911i
\(20\) 0 0
\(21\) 3.53989 + 7.05576i 0.772467 + 1.53969i
\(22\) 0 0
\(23\) 4.90255 1.02225 0.511126 0.859506i \(-0.329229\pi\)
0.511126 + 0.859506i \(0.329229\pi\)
\(24\) 0 0
\(25\) 2.40051 4.15780i 0.480101 0.831560i
\(26\) 0 0
\(27\) 8.65879 1.66638
\(28\) 0 0
\(29\) −1.24190 2.15103i −0.230614 0.399436i 0.727375 0.686240i \(-0.240740\pi\)
−0.957989 + 0.286805i \(0.907407\pi\)
\(30\) 0 0
\(31\) −1.90744 3.30379i −0.342587 0.593378i 0.642326 0.766432i \(-0.277970\pi\)
−0.984912 + 0.173054i \(0.944636\pi\)
\(32\) 0 0
\(33\) 6.11005 + 10.5829i 1.06362 + 1.84225i
\(34\) 0 0
\(35\) 0.648944 0.985784i 0.109692 0.166628i
\(36\) 0 0
\(37\) 3.07344 5.32335i 0.505270 0.875153i −0.494711 0.869057i \(-0.664726\pi\)
0.999981 0.00609591i \(-0.00194040\pi\)
\(38\) 0 0
\(39\) −7.17637 12.4298i −1.14914 1.99037i
\(40\) 0 0
\(41\) 2.73014 4.72874i 0.426376 0.738506i −0.570171 0.821526i \(-0.693123\pi\)
0.996548 + 0.0830200i \(0.0264565\pi\)
\(42\) 0 0
\(43\) −5.79221 + 10.0324i −0.883303 + 1.52993i −0.0356574 + 0.999364i \(0.511353\pi\)
−0.847646 + 0.530562i \(0.821981\pi\)
\(44\) 0 0
\(45\) −1.31640 2.28007i −0.196237 0.339892i
\(46\) 0 0
\(47\) −6.71365 −0.979286 −0.489643 0.871923i \(-0.662873\pi\)
−0.489643 + 0.871923i \(0.662873\pi\)
\(48\) 0 0
\(49\) −4.18475 + 5.61141i −0.597821 + 0.801630i
\(50\) 0 0
\(51\) −15.8599 −2.22083
\(52\) 0 0
\(53\) 3.83682 6.64557i 0.527028 0.912839i −0.472476 0.881344i \(-0.656640\pi\)
0.999504 0.0314955i \(-0.0100270\pi\)
\(54\) 0 0
\(55\) 0.913501 1.58223i 0.123177 0.213348i
\(56\) 0 0
\(57\) −11.1331 + 6.72263i −1.47462 + 0.890434i
\(58\) 0 0
\(59\) 9.29294 1.20984 0.604919 0.796287i \(-0.293205\pi\)
0.604919 + 0.796287i \(0.293205\pi\)
\(60\) 0 0
\(61\) −6.96595 −0.891899 −0.445950 0.895058i \(-0.647134\pi\)
−0.445950 + 0.895058i \(0.647134\pi\)
\(62\) 0 0
\(63\) 7.00245 + 13.9574i 0.882225 + 1.75847i
\(64\) 0 0
\(65\) −1.07293 + 1.85836i −0.133080 + 0.230501i
\(66\) 0 0
\(67\) −2.53937 + 4.39833i −0.310234 + 0.537341i −0.978413 0.206660i \(-0.933741\pi\)
0.668179 + 0.744001i \(0.267074\pi\)
\(68\) 0 0
\(69\) 14.6274 1.76094
\(70\) 0 0
\(71\) 3.79529 6.57364i 0.450419 0.780148i −0.547993 0.836483i \(-0.684608\pi\)
0.998412 + 0.0563348i \(0.0179414\pi\)
\(72\) 0 0
\(73\) −2.96434 −0.346950 −0.173475 0.984838i \(-0.555500\pi\)
−0.173475 + 0.984838i \(0.555500\pi\)
\(74\) 0 0
\(75\) 7.16224 12.4054i 0.827025 1.43245i
\(76\) 0 0
\(77\) −5.95833 + 9.05106i −0.679015 + 1.03146i
\(78\) 0 0
\(79\) −6.48566 11.2335i −0.729694 1.26387i −0.957013 0.290046i \(-0.906329\pi\)
0.227319 0.973820i \(-0.427004\pi\)
\(80\) 0 0
\(81\) 8.12841 0.903157
\(82\) 0 0
\(83\) 14.5111 1.59280 0.796400 0.604770i \(-0.206735\pi\)
0.796400 + 0.604770i \(0.206735\pi\)
\(84\) 0 0
\(85\) 1.18559 + 2.05351i 0.128596 + 0.222734i
\(86\) 0 0
\(87\) −3.70537 6.41788i −0.397257 0.688069i
\(88\) 0 0
\(89\) −3.69090 −0.391234 −0.195617 0.980680i \(-0.562671\pi\)
−0.195617 + 0.980680i \(0.562671\pi\)
\(90\) 0 0
\(91\) 6.99818 10.6306i 0.733608 1.11439i
\(92\) 0 0
\(93\) −5.69111 9.85730i −0.590141 1.02215i
\(94\) 0 0
\(95\) 1.70268 + 0.938947i 0.174691 + 0.0963339i
\(96\) 0 0
\(97\) −5.62889 + 9.74952i −0.571527 + 0.989914i 0.424882 + 0.905249i \(0.360316\pi\)
−0.996409 + 0.0846656i \(0.973018\pi\)
\(98\) 0 0
\(99\) 12.0866 + 20.9346i 1.21475 + 2.10401i
\(100\) 0 0
\(101\) −7.30193 + 12.6473i −0.726569 + 1.25846i 0.231755 + 0.972774i \(0.425553\pi\)
−0.958325 + 0.285681i \(0.907780\pi\)
\(102\) 0 0
\(103\) −8.42694 + 14.5959i −0.830331 + 1.43818i 0.0674443 + 0.997723i \(0.478516\pi\)
−0.897776 + 0.440453i \(0.854818\pi\)
\(104\) 0 0
\(105\) 1.93621 2.94122i 0.188955 0.287034i
\(106\) 0 0
\(107\) −5.03741 + 8.72505i −0.486985 + 0.843482i −0.999888 0.0149640i \(-0.995237\pi\)
0.512903 + 0.858446i \(0.328570\pi\)
\(108\) 0 0
\(109\) 1.05871 0.101406 0.0507030 0.998714i \(-0.483854\pi\)
0.0507030 + 0.998714i \(0.483854\pi\)
\(110\) 0 0
\(111\) 9.17002 15.8829i 0.870380 1.50754i
\(112\) 0 0
\(113\) 9.24954 0.870124 0.435062 0.900401i \(-0.356726\pi\)
0.435062 + 0.900401i \(0.356726\pi\)
\(114\) 0 0
\(115\) −1.09346 1.89393i −0.101966 0.176610i
\(116\) 0 0
\(117\) −14.1960 24.5881i −1.31242 2.27317i
\(118\) 0 0
\(119\) −6.30664 12.5705i −0.578129 1.15234i
\(120\) 0 0
\(121\) −2.88739 + 5.00110i −0.262490 + 0.454646i
\(122\) 0 0
\(123\) 8.14575 14.1089i 0.734478 1.27215i
\(124\) 0 0
\(125\) −4.37202 −0.391045
\(126\) 0 0
\(127\) −2.70638 4.68759i −0.240153 0.415957i 0.720605 0.693346i \(-0.243864\pi\)
−0.960758 + 0.277389i \(0.910531\pi\)
\(128\) 0 0
\(129\) −17.2818 + 29.9330i −1.52158 + 2.63546i
\(130\) 0 0
\(131\) −1.16548 2.01867i −0.101828 0.176372i 0.810610 0.585587i \(-0.199136\pi\)
−0.912438 + 0.409215i \(0.865803\pi\)
\(132\) 0 0
\(133\) −9.75537 6.15083i −0.845898 0.533344i
\(134\) 0 0
\(135\) −1.93125 3.34502i −0.166215 0.287893i
\(136\) 0 0
\(137\) −0.713078 + 1.23509i −0.0609223 + 0.105521i −0.894878 0.446311i \(-0.852738\pi\)
0.833956 + 0.551832i \(0.186071\pi\)
\(138\) 0 0
\(139\) −5.35101 9.26821i −0.453866 0.786120i 0.544756 0.838595i \(-0.316622\pi\)
−0.998622 + 0.0524751i \(0.983289\pi\)
\(140\) 0 0
\(141\) −20.0311 −1.68692
\(142\) 0 0
\(143\) 9.85115 17.0627i 0.823795 1.42685i
\(144\) 0 0
\(145\) −0.553982 + 0.959525i −0.0460057 + 0.0796843i
\(146\) 0 0
\(147\) −12.4858 + 16.7424i −1.02981 + 1.38089i
\(148\) 0 0
\(149\) 3.73021 + 6.46091i 0.305590 + 0.529298i 0.977393 0.211433i \(-0.0678129\pi\)
−0.671802 + 0.740731i \(0.734480\pi\)
\(150\) 0 0
\(151\) 4.31419 + 7.47240i 0.351084 + 0.608095i 0.986440 0.164124i \(-0.0524798\pi\)
−0.635356 + 0.772220i \(0.719146\pi\)
\(152\) 0 0
\(153\) −31.3733 −2.53638
\(154\) 0 0
\(155\) −0.850868 + 1.47375i −0.0683434 + 0.118374i
\(156\) 0 0
\(157\) −5.81573 −0.464145 −0.232073 0.972698i \(-0.574551\pi\)
−0.232073 + 0.972698i \(0.574551\pi\)
\(158\) 0 0
\(159\) 11.4477 19.8280i 0.907860 1.57246i
\(160\) 0 0
\(161\) 5.81655 + 11.5936i 0.458409 + 0.913707i
\(162\) 0 0
\(163\) 10.9228 18.9188i 0.855539 1.48184i −0.0206055 0.999788i \(-0.506559\pi\)
0.876144 0.482049i \(-0.160107\pi\)
\(164\) 0 0
\(165\) 2.72556 4.72080i 0.212184 0.367514i
\(166\) 0 0
\(167\) 4.28434 + 7.42070i 0.331533 + 0.574231i 0.982813 0.184606i \(-0.0591010\pi\)
−0.651280 + 0.758837i \(0.725768\pi\)
\(168\) 0 0
\(169\) −5.07037 + 8.78214i −0.390029 + 0.675549i
\(170\) 0 0
\(171\) −22.0230 + 13.2984i −1.68414 + 1.01695i
\(172\) 0 0
\(173\) −3.10119 5.37141i −0.235779 0.408381i 0.723720 0.690094i \(-0.242431\pi\)
−0.959499 + 0.281713i \(0.909097\pi\)
\(174\) 0 0
\(175\) 12.6805 + 0.743809i 0.958555 + 0.0562267i
\(176\) 0 0
\(177\) 27.7268 2.08407
\(178\) 0 0
\(179\) −0.902405 1.56301i −0.0674489 0.116825i 0.830329 0.557274i \(-0.188153\pi\)
−0.897778 + 0.440449i \(0.854819\pi\)
\(180\) 0 0
\(181\) 0.803537 + 1.39177i 0.0597264 + 0.103449i 0.894343 0.447383i \(-0.147644\pi\)
−0.834616 + 0.550832i \(0.814311\pi\)
\(182\) 0 0
\(183\) −20.7839 −1.53639
\(184\) 0 0
\(185\) −2.74199 −0.201595
\(186\) 0 0
\(187\) −10.8856 18.8544i −0.796035 1.37877i
\(188\) 0 0
\(189\) 10.2731 + 20.4765i 0.747257 + 1.48944i
\(190\) 0 0
\(191\) −12.6875 + 21.9754i −0.918035 + 1.59008i −0.115639 + 0.993291i \(0.536891\pi\)
−0.802396 + 0.596792i \(0.796442\pi\)
\(192\) 0 0
\(193\) −15.0283 −1.08176 −0.540880 0.841100i \(-0.681909\pi\)
−0.540880 + 0.841100i \(0.681909\pi\)
\(194\) 0 0
\(195\) −3.20122 + 5.54468i −0.229244 + 0.397062i
\(196\) 0 0
\(197\) 16.3688 1.16623 0.583114 0.812390i \(-0.301834\pi\)
0.583114 + 0.812390i \(0.301834\pi\)
\(198\) 0 0
\(199\) 4.25409 7.36831i 0.301565 0.522325i −0.674926 0.737886i \(-0.735824\pi\)
0.976491 + 0.215560i \(0.0691577\pi\)
\(200\) 0 0
\(201\) −7.57657 + 13.1230i −0.534410 + 0.925626i
\(202\) 0 0
\(203\) 3.61336 5.48891i 0.253608 0.385246i
\(204\) 0 0
\(205\) −2.43571 −0.170118
\(206\) 0 0
\(207\) 28.9353 2.01114
\(208\) 0 0
\(209\) −15.6333 8.62102i −1.08138 0.596328i
\(210\) 0 0
\(211\) 4.64083 8.03815i 0.319488 0.553369i −0.660893 0.750480i \(-0.729823\pi\)
0.980381 + 0.197111i \(0.0631558\pi\)
\(212\) 0 0
\(213\) 11.3238 19.6134i 0.775893 1.34389i
\(214\) 0 0
\(215\) 5.16755 0.352424
\(216\) 0 0
\(217\) 5.54980 8.43048i 0.376745 0.572298i
\(218\) 0 0
\(219\) −8.84452 −0.597658
\(220\) 0 0
\(221\) 12.7854 + 22.1449i 0.860037 + 1.48963i
\(222\) 0 0
\(223\) −1.01709 + 1.76165i −0.0681095 + 0.117969i −0.898069 0.439854i \(-0.855030\pi\)
0.829960 + 0.557823i \(0.188363\pi\)
\(224\) 0 0
\(225\) 14.1680 24.5397i 0.944534 1.63598i
\(226\) 0 0
\(227\) 2.71486 + 4.70227i 0.180191 + 0.312101i 0.941946 0.335766i \(-0.108995\pi\)
−0.761754 + 0.647866i \(0.775662\pi\)
\(228\) 0 0
\(229\) 0.406958 0.704872i 0.0268926 0.0465793i −0.852266 0.523109i \(-0.824772\pi\)
0.879158 + 0.476530i \(0.158105\pi\)
\(230\) 0 0
\(231\) −17.7775 + 27.0051i −1.16967 + 1.77680i
\(232\) 0 0
\(233\) −1.43338 2.48269i −0.0939039 0.162646i 0.815247 0.579114i \(-0.196601\pi\)
−0.909151 + 0.416467i \(0.863268\pi\)
\(234\) 0 0
\(235\) 1.49741 + 2.59358i 0.0976799 + 0.169187i
\(236\) 0 0
\(237\) −19.3509 33.5167i −1.25697 2.17714i
\(238\) 0 0
\(239\) 11.2031 0.724668 0.362334 0.932048i \(-0.381980\pi\)
0.362334 + 0.932048i \(0.381980\pi\)
\(240\) 0 0
\(241\) 10.7191 18.5661i 0.690480 1.19595i −0.281200 0.959649i \(-0.590733\pi\)
0.971681 0.236298i \(-0.0759341\pi\)
\(242\) 0 0
\(243\) −1.72413 −0.110603
\(244\) 0 0
\(245\) 3.10113 + 0.365067i 0.198124 + 0.0233233i
\(246\) 0 0
\(247\) 18.3616 + 10.1256i 1.16832 + 0.644274i
\(248\) 0 0
\(249\) 43.2958 2.74376
\(250\) 0 0
\(251\) 13.3601 + 23.1403i 0.843281 + 1.46061i 0.887106 + 0.461566i \(0.152712\pi\)
−0.0438250 + 0.999039i \(0.513954\pi\)
\(252\) 0 0
\(253\) 10.0397 + 17.3893i 0.631190 + 1.09325i
\(254\) 0 0
\(255\) 3.53738 + 6.12692i 0.221519 + 0.383682i
\(256\) 0 0
\(257\) −12.3086 −0.767791 −0.383896 0.923377i \(-0.625418\pi\)
−0.383896 + 0.923377i \(0.625418\pi\)
\(258\) 0 0
\(259\) 16.2352 + 0.952320i 1.00881 + 0.0591743i
\(260\) 0 0
\(261\) −7.32978 12.6956i −0.453702 0.785835i
\(262\) 0 0
\(263\) 13.7384 0.847146 0.423573 0.905862i \(-0.360776\pi\)
0.423573 + 0.905862i \(0.360776\pi\)
\(264\) 0 0
\(265\) −3.42304 −0.210276
\(266\) 0 0
\(267\) −11.0123 −0.673942
\(268\) 0 0
\(269\) 25.0299 1.52610 0.763050 0.646339i \(-0.223701\pi\)
0.763050 + 0.646339i \(0.223701\pi\)
\(270\) 0 0
\(271\) 3.52930 + 6.11293i 0.214390 + 0.371334i 0.953084 0.302707i \(-0.0978904\pi\)
−0.738694 + 0.674041i \(0.764557\pi\)
\(272\) 0 0
\(273\) 20.8800 31.7180i 1.26372 1.91966i
\(274\) 0 0
\(275\) 19.6635 1.18576
\(276\) 0 0
\(277\) 9.56431 + 16.5659i 0.574664 + 0.995346i 0.996078 + 0.0884783i \(0.0282004\pi\)
−0.421415 + 0.906868i \(0.638466\pi\)
\(278\) 0 0
\(279\) −11.2579 19.4992i −0.673993 1.16739i
\(280\) 0 0
\(281\) 15.2351 + 26.3880i 0.908850 + 1.57417i 0.815664 + 0.578526i \(0.196372\pi\)
0.0931859 + 0.995649i \(0.470295\pi\)
\(282\) 0 0
\(283\) 8.46324 0.503087 0.251544 0.967846i \(-0.419062\pi\)
0.251544 + 0.967846i \(0.419062\pi\)
\(284\) 0 0
\(285\) 5.08017 + 2.80148i 0.300923 + 0.165945i
\(286\) 0 0
\(287\) 14.4218 + 0.845948i 0.851290 + 0.0499347i
\(288\) 0 0
\(289\) 11.2559 0.662112
\(290\) 0 0
\(291\) −16.7946 + 29.0890i −0.984515 + 1.70523i
\(292\) 0 0
\(293\) 5.50012 0.321321 0.160660 0.987010i \(-0.448638\pi\)
0.160660 + 0.987010i \(0.448638\pi\)
\(294\) 0 0
\(295\) −2.07269 3.59000i −0.120677 0.209018i
\(296\) 0 0
\(297\) 17.7319 + 30.7126i 1.02891 + 1.78212i
\(298\) 0 0
\(299\) −11.7918 20.4240i −0.681938 1.18115i
\(300\) 0 0
\(301\) −30.5969 1.79474i −1.76358 0.103447i
\(302\) 0 0
\(303\) −21.7863 + 37.7350i −1.25159 + 2.16782i
\(304\) 0 0
\(305\) 1.55368 + 2.69105i 0.0889634 + 0.154089i
\(306\) 0 0
\(307\) −2.80966 + 4.86648i −0.160356 + 0.277745i −0.934996 0.354657i \(-0.884598\pi\)
0.774640 + 0.632402i \(0.217931\pi\)
\(308\) 0 0
\(309\) −25.1429 + 43.5489i −1.43033 + 2.47741i
\(310\) 0 0
\(311\) −15.8006 27.3675i −0.895971 1.55187i −0.832598 0.553877i \(-0.813148\pi\)
−0.0633727 0.997990i \(-0.520186\pi\)
\(312\) 0 0
\(313\) 27.1943 1.53711 0.768557 0.639781i \(-0.220975\pi\)
0.768557 + 0.639781i \(0.220975\pi\)
\(314\) 0 0
\(315\) 3.83013 5.81819i 0.215803 0.327818i
\(316\) 0 0
\(317\) 3.17458 0.178302 0.0891512 0.996018i \(-0.471585\pi\)
0.0891512 + 0.996018i \(0.471585\pi\)
\(318\) 0 0
\(319\) 5.08643 8.80996i 0.284786 0.493263i
\(320\) 0 0
\(321\) −15.0298 + 26.0324i −0.838882 + 1.45299i
\(322\) 0 0
\(323\) 19.8347 11.9770i 1.10363 0.666417i
\(324\) 0 0
\(325\) −23.0952 −1.28109
\(326\) 0 0
\(327\) 3.15881 0.174682
\(328\) 0 0
\(329\) −7.96530 15.8766i −0.439141 0.875303i
\(330\) 0 0
\(331\) −15.7716 + 27.3172i −0.866885 + 1.50149i −0.00172246 + 0.999999i \(0.500548\pi\)
−0.865163 + 0.501491i \(0.832785\pi\)
\(332\) 0 0
\(333\) 18.1397 31.4189i 0.994050 1.72174i
\(334\) 0 0
\(335\) 2.26552 0.123779
\(336\) 0 0
\(337\) 0.252791 0.437848i 0.0137704 0.0238511i −0.859058 0.511878i \(-0.828950\pi\)
0.872829 + 0.488027i \(0.162283\pi\)
\(338\) 0 0
\(339\) 27.5973 1.49888
\(340\) 0 0
\(341\) 7.81231 13.5313i 0.423061 0.732762i
\(342\) 0 0
\(343\) −18.2349 3.23860i −0.984592 0.174868i
\(344\) 0 0
\(345\) −3.26249 5.65079i −0.175646 0.304228i
\(346\) 0 0
\(347\) 18.3650 0.985884 0.492942 0.870062i \(-0.335921\pi\)
0.492942 + 0.870062i \(0.335921\pi\)
\(348\) 0 0
\(349\) 13.1178 0.702178 0.351089 0.936342i \(-0.385811\pi\)
0.351089 + 0.936342i \(0.385811\pi\)
\(350\) 0 0
\(351\) −20.8265 36.0725i −1.11164 1.92541i
\(352\) 0 0
\(353\) 4.06185 + 7.03533i 0.216190 + 0.374453i 0.953640 0.300949i \(-0.0973035\pi\)
−0.737450 + 0.675402i \(0.763970\pi\)
\(354\) 0 0
\(355\) −3.38599 −0.179710
\(356\) 0 0
\(357\) −18.8167 37.5058i −0.995887 1.98502i
\(358\) 0 0
\(359\) −18.2269 31.5700i −0.961981 1.66620i −0.717515 0.696543i \(-0.754721\pi\)
−0.244466 0.969658i \(-0.578613\pi\)
\(360\) 0 0
\(361\) 8.84650 16.8149i 0.465605 0.884993i
\(362\) 0 0
\(363\) −8.61492 + 14.9215i −0.452166 + 0.783175i
\(364\) 0 0
\(365\) 0.661164 + 1.14517i 0.0346069 + 0.0599409i
\(366\) 0 0
\(367\) −15.6431 + 27.0946i −0.816562 + 1.41433i 0.0916389 + 0.995792i \(0.470789\pi\)
−0.908201 + 0.418535i \(0.862544\pi\)
\(368\) 0 0
\(369\) 16.1135 27.9095i 0.838838 1.45291i
\(370\) 0 0
\(371\) 20.2677 + 1.18886i 1.05225 + 0.0617224i
\(372\) 0 0
\(373\) −1.37440 + 2.38053i −0.0711638 + 0.123259i −0.899412 0.437103i \(-0.856005\pi\)
0.828248 + 0.560362i \(0.189338\pi\)
\(374\) 0 0
\(375\) −13.0445 −0.673616
\(376\) 0 0
\(377\) −5.97412 + 10.3475i −0.307683 + 0.532922i
\(378\) 0 0
\(379\) −4.80918 −0.247031 −0.123515 0.992343i \(-0.539417\pi\)
−0.123515 + 0.992343i \(0.539417\pi\)
\(380\) 0 0
\(381\) −8.07487 13.9861i −0.413688 0.716528i
\(382\) 0 0
\(383\) −1.11911 1.93835i −0.0571837 0.0990450i 0.836016 0.548704i \(-0.184879\pi\)
−0.893200 + 0.449659i \(0.851545\pi\)
\(384\) 0 0
\(385\) 4.82550 + 0.283053i 0.245930 + 0.0144257i
\(386\) 0 0
\(387\) −34.1861 + 59.2121i −1.73778 + 3.00992i
\(388\) 0 0
\(389\) −2.14684 + 3.71844i −0.108849 + 0.188532i −0.915304 0.402763i \(-0.868050\pi\)
0.806455 + 0.591295i \(0.201383\pi\)
\(390\) 0 0
\(391\) −26.0601 −1.31792
\(392\) 0 0
\(393\) −3.47737 6.02298i −0.175410 0.303819i
\(394\) 0 0
\(395\) −2.89311 + 5.01101i −0.145568 + 0.252132i
\(396\) 0 0
\(397\) 2.47300 + 4.28335i 0.124116 + 0.214975i 0.921387 0.388646i \(-0.127057\pi\)
−0.797271 + 0.603622i \(0.793724\pi\)
\(398\) 0 0
\(399\) −29.1065 18.3518i −1.45715 0.918741i
\(400\) 0 0
\(401\) −15.6678 27.1375i −0.782414 1.35518i −0.930532 0.366212i \(-0.880655\pi\)
0.148117 0.988970i \(-0.452679\pi\)
\(402\) 0 0
\(403\) −9.17572 + 15.8928i −0.457075 + 0.791677i
\(404\) 0 0
\(405\) −1.81295 3.14013i −0.0900864 0.156034i
\(406\) 0 0
\(407\) 25.1758 1.24792
\(408\) 0 0
\(409\) 3.76470 6.52065i 0.186152 0.322425i −0.757812 0.652473i \(-0.773732\pi\)
0.943964 + 0.330048i \(0.107065\pi\)
\(410\) 0 0
\(411\) −2.12757 + 3.68505i −0.104945 + 0.181770i
\(412\) 0 0
\(413\) 11.0255 + 21.9761i 0.542528 + 1.08137i
\(414\) 0 0
\(415\) −3.23654 5.60585i −0.158876 0.275180i
\(416\) 0 0
\(417\) −15.9655 27.6530i −0.781832 1.35417i
\(418\) 0 0
\(419\) 20.0188 0.977982 0.488991 0.872289i \(-0.337365\pi\)
0.488991 + 0.872289i \(0.337365\pi\)
\(420\) 0 0
\(421\) −8.84394 + 15.3181i −0.431027 + 0.746561i −0.996962 0.0778891i \(-0.975182\pi\)
0.565935 + 0.824450i \(0.308515\pi\)
\(422\) 0 0
\(423\) −39.6246 −1.92661
\(424\) 0 0
\(425\) −12.7602 + 22.1013i −0.618961 + 1.07207i
\(426\) 0 0
\(427\) −8.26465 16.4732i −0.399954 0.797195i
\(428\) 0 0
\(429\) 29.3923 50.9089i 1.41907 2.45790i
\(430\) 0 0
\(431\) 1.96614 3.40546i 0.0947057 0.164035i −0.814780 0.579770i \(-0.803142\pi\)
0.909486 + 0.415735i \(0.136476\pi\)
\(432\) 0 0
\(433\) 7.61657 + 13.1923i 0.366029 + 0.633981i 0.988941 0.148311i \(-0.0473838\pi\)
−0.622912 + 0.782292i \(0.714050\pi\)
\(434\) 0 0
\(435\) −1.65288 + 2.86288i −0.0792496 + 0.137264i
\(436\) 0 0
\(437\) −18.2933 + 11.0462i −0.875087 + 0.528414i
\(438\) 0 0
\(439\) 6.32590 + 10.9568i 0.301919 + 0.522939i 0.976571 0.215197i \(-0.0690395\pi\)
−0.674652 + 0.738136i \(0.735706\pi\)
\(440\) 0 0
\(441\) −24.6988 + 33.1190i −1.17613 + 1.57710i
\(442\) 0 0
\(443\) 23.9279 1.13685 0.568424 0.822735i \(-0.307553\pi\)
0.568424 + 0.822735i \(0.307553\pi\)
\(444\) 0 0
\(445\) 0.823214 + 1.42585i 0.0390241 + 0.0675917i
\(446\) 0 0
\(447\) 11.1296 + 19.2770i 0.526411 + 0.911771i
\(448\) 0 0
\(449\) 34.3080 1.61909 0.809547 0.587055i \(-0.199713\pi\)
0.809547 + 0.587055i \(0.199713\pi\)
\(450\) 0 0
\(451\) 22.3637 1.05307
\(452\) 0 0
\(453\) 12.8720 + 22.2949i 0.604779 + 1.04751i
\(454\) 0 0
\(455\) −5.66765 0.332451i −0.265703 0.0155856i
\(456\) 0 0
\(457\) 15.4671 26.7899i 0.723522 1.25318i −0.236057 0.971739i \(-0.575855\pi\)
0.959579 0.281438i \(-0.0908115\pi\)
\(458\) 0 0
\(459\) −46.0269 −2.14835
\(460\) 0 0
\(461\) 6.34056 10.9822i 0.295309 0.511491i −0.679748 0.733446i \(-0.737911\pi\)
0.975057 + 0.221956i \(0.0712440\pi\)
\(462\) 0 0
\(463\) −9.58072 −0.445254 −0.222627 0.974904i \(-0.571463\pi\)
−0.222627 + 0.974904i \(0.571463\pi\)
\(464\) 0 0
\(465\) −2.53868 + 4.39713i −0.117729 + 0.203912i
\(466\) 0 0
\(467\) −6.72199 + 11.6428i −0.311057 + 0.538766i −0.978591 0.205813i \(-0.934016\pi\)
0.667535 + 0.744579i \(0.267350\pi\)
\(468\) 0 0
\(469\) −13.4141 0.786838i −0.619403 0.0363328i
\(470\) 0 0
\(471\) −17.3520 −0.799539
\(472\) 0 0
\(473\) −47.4463 −2.18158
\(474\) 0 0
\(475\) 0.410987 + 20.9231i 0.0188574 + 0.960018i
\(476\) 0 0
\(477\) 22.6453 39.2228i 1.03686 1.79589i
\(478\) 0 0
\(479\) 7.99069 13.8403i 0.365104 0.632379i −0.623689 0.781673i \(-0.714367\pi\)
0.988793 + 0.149294i \(0.0477001\pi\)
\(480\) 0 0
\(481\) −29.5694 −1.34825
\(482\) 0 0
\(483\) 17.3545 + 34.5912i 0.789656 + 1.57396i
\(484\) 0 0
\(485\) 5.02185 0.228030
\(486\) 0 0
\(487\) −11.9653 20.7245i −0.542200 0.939119i −0.998777 0.0494347i \(-0.984258\pi\)
0.456577 0.889684i \(-0.349075\pi\)
\(488\) 0 0
\(489\) 32.5896 56.4469i 1.47375 2.55262i
\(490\) 0 0
\(491\) −14.2944 + 24.7586i −0.645097 + 1.11734i 0.339182 + 0.940721i \(0.389850\pi\)
−0.984279 + 0.176621i \(0.943483\pi\)
\(492\) 0 0
\(493\) 6.60145 + 11.4341i 0.297315 + 0.514964i
\(494\) 0 0
\(495\) 5.39157 9.33847i 0.242333 0.419733i
\(496\) 0 0
\(497\) 20.0483 + 1.17599i 0.899291 + 0.0527504i
\(498\) 0 0
\(499\) 3.09614 + 5.36268i 0.138602 + 0.240066i 0.926968 0.375141i \(-0.122406\pi\)
−0.788365 + 0.615207i \(0.789072\pi\)
\(500\) 0 0
\(501\) 12.7829 + 22.1407i 0.571099 + 0.989173i
\(502\) 0 0
\(503\) −21.5797 37.3771i −0.962190 1.66656i −0.716983 0.697090i \(-0.754478\pi\)
−0.245206 0.969471i \(-0.578856\pi\)
\(504\) 0 0
\(505\) 6.51446 0.289890
\(506\) 0 0
\(507\) −15.1281 + 26.2027i −0.671865 + 1.16370i
\(508\) 0 0
\(509\) 33.2599 1.47422 0.737110 0.675773i \(-0.236190\pi\)
0.737110 + 0.675773i \(0.236190\pi\)
\(510\) 0 0
\(511\) −3.51700 7.01014i −0.155583 0.310110i
\(512\) 0 0
\(513\) −32.3093 + 19.5097i −1.42649 + 0.861373i
\(514\) 0 0
\(515\) 7.51815 0.331289
\(516\) 0 0
\(517\) −13.7485 23.8132i −0.604660 1.04730i
\(518\) 0 0
\(519\) −9.25281 16.0263i −0.406153 0.703478i
\(520\) 0 0
\(521\) −1.82562 3.16206i −0.0799818 0.138533i 0.823260 0.567664i \(-0.192153\pi\)
−0.903242 + 0.429132i \(0.858820\pi\)
\(522\) 0 0
\(523\) −31.5693 −1.38043 −0.690214 0.723605i \(-0.742484\pi\)
−0.690214 + 0.723605i \(0.742484\pi\)
\(524\) 0 0
\(525\) 37.8340 + 2.21926i 1.65121 + 0.0968563i
\(526\) 0 0
\(527\) 10.1393 + 17.5617i 0.441673 + 0.765000i
\(528\) 0 0
\(529\) 1.03498 0.0449992
\(530\) 0 0
\(531\) 54.8478 2.38019
\(532\) 0 0
\(533\) −26.2666 −1.13773
\(534\) 0 0
\(535\) 4.49416 0.194299
\(536\) 0 0
\(537\) −2.69245 4.66346i −0.116188 0.201243i
\(538\) 0 0
\(539\) −28.4733 3.35189i −1.22643 0.144376i
\(540\) 0 0
\(541\) 13.2634 0.570238 0.285119 0.958492i \(-0.407967\pi\)
0.285119 + 0.958492i \(0.407967\pi\)
\(542\) 0 0
\(543\) 2.39746 + 4.15253i 0.102885 + 0.178202i
\(544\) 0 0
\(545\) −0.236134 0.408996i −0.0101149 0.0175194i
\(546\) 0 0
\(547\) 9.82026 + 17.0092i 0.419884 + 0.727260i 0.995927 0.0901589i \(-0.0287375\pi\)
−0.576044 + 0.817419i \(0.695404\pi\)
\(548\) 0 0
\(549\) −41.1137 −1.75469
\(550\) 0 0
\(551\) 9.48061 + 5.22812i 0.403887 + 0.222725i
\(552\) 0 0
\(553\) 18.8704 28.6652i 0.802450 1.21897i
\(554\) 0 0
\(555\) −8.18109 −0.347268
\(556\) 0 0
\(557\) −16.5501 + 28.6657i −0.701252 + 1.21460i 0.266775 + 0.963759i \(0.414042\pi\)
−0.968027 + 0.250845i \(0.919292\pi\)
\(558\) 0 0
\(559\) 55.7266 2.35699
\(560\) 0 0
\(561\) −32.4787 56.2548i −1.37125 2.37508i
\(562\) 0 0
\(563\) −16.6164 28.7804i −0.700297 1.21295i −0.968362 0.249549i \(-0.919717\pi\)
0.268065 0.963401i \(-0.413616\pi\)
\(564\) 0 0
\(565\) −2.06301 3.57324i −0.0867914 0.150327i
\(566\) 0 0
\(567\) 9.64383 + 19.2222i 0.405003 + 0.807258i
\(568\) 0 0
\(569\) 13.9270 24.1223i 0.583850 1.01126i −0.411167 0.911560i \(-0.634879\pi\)
0.995018 0.0996985i \(-0.0317878\pi\)
\(570\) 0 0
\(571\) −10.2213 17.7037i −0.427746 0.740878i 0.568926 0.822388i \(-0.307359\pi\)
−0.996672 + 0.0815105i \(0.974026\pi\)
\(572\) 0 0
\(573\) −37.8549 + 65.5666i −1.58141 + 2.73908i
\(574\) 0 0
\(575\) 11.7686 20.3838i 0.490785 0.850064i
\(576\) 0 0
\(577\) 1.06635 + 1.84697i 0.0443927 + 0.0768904i 0.887368 0.461062i \(-0.152531\pi\)
−0.842975 + 0.537952i \(0.819198\pi\)
\(578\) 0 0
\(579\) −44.8390 −1.86344
\(580\) 0 0
\(581\) 17.2165 + 34.3161i 0.714259 + 1.42367i
\(582\) 0 0
\(583\) 31.4290 1.30165
\(584\) 0 0
\(585\) −6.33250 + 10.9682i −0.261817 + 0.453480i
\(586\) 0 0
\(587\) −8.56695 + 14.8384i −0.353596 + 0.612446i −0.986877 0.161476i \(-0.948374\pi\)
0.633281 + 0.773922i \(0.281708\pi\)
\(588\) 0 0
\(589\) 14.5614 + 8.02992i 0.599991 + 0.330867i
\(590\) 0 0
\(591\) 48.8386 2.00895
\(592\) 0 0
\(593\) −45.3910 −1.86398 −0.931992 0.362479i \(-0.881931\pi\)
−0.931992 + 0.362479i \(0.881931\pi\)
\(594\) 0 0
\(595\) −3.44954 + 5.24006i −0.141418 + 0.214822i
\(596\) 0 0
\(597\) 12.6927 21.9844i 0.519477 0.899760i
\(598\) 0 0
\(599\) −16.5039 + 28.5856i −0.674331 + 1.16798i 0.302333 + 0.953202i \(0.402235\pi\)
−0.976664 + 0.214773i \(0.931099\pi\)
\(600\) 0 0
\(601\) 30.5198 1.24493 0.622465 0.782648i \(-0.286131\pi\)
0.622465 + 0.782648i \(0.286131\pi\)
\(602\) 0 0
\(603\) −14.9876 + 25.9593i −0.610343 + 1.05715i
\(604\) 0 0
\(605\) 2.57600 0.104729
\(606\) 0 0
\(607\) 1.89631 3.28450i 0.0769688 0.133314i −0.824972 0.565174i \(-0.808809\pi\)
0.901941 + 0.431860i \(0.142142\pi\)
\(608\) 0 0
\(609\) 10.7810 16.3769i 0.436867 0.663626i
\(610\) 0 0
\(611\) 16.1479 + 27.9690i 0.653276 + 1.13151i
\(612\) 0 0
\(613\) −6.10037 −0.246392 −0.123196 0.992382i \(-0.539314\pi\)
−0.123196 + 0.992382i \(0.539314\pi\)
\(614\) 0 0
\(615\) −7.26728 −0.293045
\(616\) 0 0
\(617\) −6.65647 11.5294i −0.267980 0.464154i 0.700360 0.713789i \(-0.253023\pi\)
−0.968340 + 0.249635i \(0.919689\pi\)
\(618\) 0 0
\(619\) 8.97040 + 15.5372i 0.360551 + 0.624492i 0.988052 0.154124i \(-0.0492554\pi\)
−0.627501 + 0.778616i \(0.715922\pi\)
\(620\) 0 0
\(621\) 42.4501 1.70347
\(622\) 0 0
\(623\) −4.37901 8.72831i −0.175441 0.349692i
\(624\) 0 0
\(625\) −11.0274 19.1000i −0.441096 0.764001i
\(626\) 0 0
\(627\) −46.6440 25.7220i −1.86278 1.02724i
\(628\) 0 0
\(629\) −16.3372 + 28.2969i −0.651409 + 1.12827i
\(630\) 0 0
\(631\) −12.0857 20.9330i −0.481123 0.833329i 0.518643 0.854991i \(-0.326438\pi\)
−0.999765 + 0.0216621i \(0.993104\pi\)
\(632\) 0 0
\(633\) 13.8465 23.9829i 0.550351 0.953236i
\(634\) 0 0
\(635\) −1.20726 + 2.09103i −0.0479086 + 0.0829801i
\(636\) 0 0
\(637\) 33.4425 + 3.93686i 1.32504 + 0.155984i
\(638\) 0 0
\(639\) 22.4002 38.7982i 0.886137 1.53483i
\(640\) 0 0
\(641\) −26.3479 −1.04068 −0.520340 0.853959i \(-0.674195\pi\)
−0.520340 + 0.853959i \(0.674195\pi\)
\(642\) 0 0
\(643\) 12.6746 21.9531i 0.499839 0.865747i −0.500161 0.865933i \(-0.666726\pi\)
1.00000 0.000185699i \(5.91099e-5\pi\)
\(644\) 0 0
\(645\) 15.4181 0.607087
\(646\) 0 0
\(647\) −15.8823 27.5090i −0.624399 1.08149i −0.988657 0.150192i \(-0.952011\pi\)
0.364258 0.931298i \(-0.381323\pi\)
\(648\) 0 0
\(649\) 19.0306 + 32.9619i 0.747015 + 1.29387i
\(650\) 0 0
\(651\) 16.5586 25.1535i 0.648983 0.985843i
\(652\) 0 0
\(653\) −16.9097 + 29.2885i −0.661730 + 1.14615i 0.318431 + 0.947946i \(0.396844\pi\)
−0.980161 + 0.198203i \(0.936489\pi\)
\(654\) 0 0
\(655\) −0.519895 + 0.900485i −0.0203140 + 0.0351849i
\(656\) 0 0
\(657\) −17.4958 −0.682577
\(658\) 0 0
\(659\) 11.0517 + 19.1421i 0.430513 + 0.745670i 0.996917 0.0784575i \(-0.0249995\pi\)
−0.566405 + 0.824127i \(0.691666\pi\)
\(660\) 0 0
\(661\) 20.9063 36.2108i 0.813161 1.40844i −0.0974793 0.995238i \(-0.531078\pi\)
0.910641 0.413199i \(-0.135589\pi\)
\(662\) 0 0
\(663\) 38.1469 + 66.0724i 1.48150 + 2.56604i
\(664\) 0 0
\(665\) −0.200327 + 5.14052i −0.00776833 + 0.199341i
\(666\) 0 0
\(667\) −6.08845 10.5455i −0.235746 0.408324i
\(668\) 0 0
\(669\) −3.03463 + 5.25613i −0.117326 + 0.203214i
\(670\) 0 0
\(671\) −14.2652 24.7081i −0.550703 0.953846i
\(672\) 0 0
\(673\) −24.8724 −0.958761 −0.479381 0.877607i \(-0.659139\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(674\) 0 0
\(675\) 20.7855 36.0015i 0.800034 1.38570i
\(676\) 0 0
\(677\) −16.1566 + 27.9840i −0.620947 + 1.07551i 0.368363 + 0.929682i \(0.379919\pi\)
−0.989310 + 0.145830i \(0.953415\pi\)
\(678\) 0 0
\(679\) −29.7342 1.74414i −1.14109 0.0669339i
\(680\) 0 0
\(681\) 8.10015 + 14.0299i 0.310398 + 0.537626i
\(682\) 0 0
\(683\) −9.51782 16.4854i −0.364189 0.630794i 0.624456 0.781060i \(-0.285321\pi\)
−0.988646 + 0.150265i \(0.951987\pi\)
\(684\) 0 0
\(685\) 0.636177 0.0243071
\(686\) 0 0
\(687\) 1.21422 2.10308i 0.0463252 0.0802376i
\(688\) 0 0
\(689\) −36.9139 −1.40631
\(690\) 0 0
\(691\) 7.98499 13.8304i 0.303763 0.526134i −0.673222 0.739441i \(-0.735090\pi\)
0.976985 + 0.213307i \(0.0684234\pi\)
\(692\) 0 0
\(693\) −35.1666 + 53.4202i −1.33587 + 2.02927i
\(694\) 0 0
\(695\) −2.38697 + 4.13435i −0.0905428 + 0.156825i
\(696\) 0 0
\(697\) −14.5124 + 25.1362i −0.549697 + 0.952103i
\(698\) 0 0
\(699\) −4.27669 7.40744i −0.161759 0.280175i
\(700\) 0 0
\(701\) 3.15311 5.46134i 0.119091 0.206272i −0.800317 0.599578i \(-0.795335\pi\)
0.919408 + 0.393306i \(0.128669\pi\)
\(702\) 0 0
\(703\) 0.526199 + 26.7884i 0.0198460 + 1.01034i
\(704\) 0 0
\(705\) 4.46771 + 7.73831i 0.168264 + 0.291441i
\(706\) 0 0
\(707\) −38.5719 2.26254i −1.45065 0.0850916i
\(708\) 0 0
\(709\) −35.3475 −1.32750 −0.663751 0.747953i \(-0.731037\pi\)
−0.663751 + 0.747953i \(0.731037\pi\)
\(710\) 0 0
\(711\) −38.2790 66.3011i −1.43557 2.48649i
\(712\) 0 0
\(713\) −9.35133 16.1970i −0.350210 0.606581i
\(714\) 0 0
\(715\) −8.78877 −0.328681
\(716\) 0 0
\(717\) 33.4260 1.24832
\(718\) 0 0
\(719\) 13.0258 + 22.5614i 0.485780 + 0.841396i 0.999866 0.0163422i \(-0.00520211\pi\)
−0.514086 + 0.857739i \(0.671869\pi\)
\(720\) 0 0
\(721\) −44.5147 2.61113i −1.65781 0.0972436i
\(722\) 0 0
\(723\) 31.9820 55.3945i 1.18942 2.06014i
\(724\) 0 0
\(725\) −11.9247 −0.442873
\(726\) 0 0
\(727\) −5.81912 + 10.0790i −0.215819 + 0.373810i −0.953526 0.301312i \(-0.902576\pi\)
0.737706 + 0.675122i \(0.235909\pi\)
\(728\) 0 0
\(729\) −29.5294 −1.09368
\(730\) 0 0
\(731\) 30.7892 53.3285i 1.13878 1.97243i
\(732\) 0 0
\(733\) −13.7782 + 23.8645i −0.508909 + 0.881456i 0.491038 + 0.871138i \(0.336618\pi\)
−0.999947 + 0.0103179i \(0.996716\pi\)
\(734\) 0 0
\(735\) 9.25265 + 1.08923i 0.341289 + 0.0401768i
\(736\) 0 0
\(737\) −20.8010 −0.766216
\(738\) 0 0
\(739\) 22.6077 0.831636 0.415818 0.909448i \(-0.363495\pi\)
0.415818 + 0.909448i \(0.363495\pi\)
\(740\) 0 0
\(741\) 54.7843 + 30.2110i 2.01255 + 1.10983i
\(742\) 0 0
\(743\) 0.867573 1.50268i 0.0318282 0.0551280i −0.849673 0.527311i \(-0.823200\pi\)
0.881501 + 0.472183i \(0.156534\pi\)
\(744\) 0 0
\(745\) 1.66396 2.88207i 0.0609629 0.105591i
\(746\) 0 0
\(747\) 85.6458 3.13362
\(748\) 0 0
\(749\) −26.6097 1.56087i −0.972298 0.0570328i
\(750\) 0 0
\(751\) −40.4676 −1.47669 −0.738343 0.674426i \(-0.764391\pi\)
−0.738343 + 0.674426i \(0.764391\pi\)
\(752\) 0 0
\(753\) 39.8616 + 69.0424i 1.45264 + 2.51604i
\(754\) 0 0
\(755\) 1.92447 3.33327i 0.0700385 0.121310i
\(756\) 0 0
\(757\) −3.56111 + 6.16803i −0.129431 + 0.224181i −0.923456 0.383704i \(-0.874648\pi\)
0.794025 + 0.607885i \(0.207982\pi\)
\(758\) 0 0
\(759\) 29.9548 + 51.8832i 1.08729 + 1.88324i
\(760\) 0 0
\(761\) 1.46387 2.53549i 0.0530652 0.0919116i −0.838273 0.545251i \(-0.816434\pi\)
0.891338 + 0.453340i \(0.149768\pi\)
\(762\) 0 0
\(763\) 1.25609 + 2.50366i 0.0454735 + 0.0906386i
\(764\) 0 0
\(765\) 6.99747 + 12.1200i 0.252994 + 0.438199i
\(766\) 0 0
\(767\) −22.3518 38.7144i −0.807076 1.39790i
\(768\) 0 0
\(769\) −9.11561 15.7887i −0.328717 0.569355i 0.653540 0.756892i \(-0.273283\pi\)
−0.982258 + 0.187537i \(0.939950\pi\)
\(770\) 0 0
\(771\) −36.7245 −1.32260
\(772\) 0 0
\(773\) 5.35847 9.28114i 0.192731 0.333819i −0.753424 0.657536i \(-0.771599\pi\)
0.946154 + 0.323716i \(0.104932\pi\)
\(774\) 0 0
\(775\) −18.3153 −0.657905
\(776\) 0 0
\(777\) 48.4399 + 2.84138i 1.73777 + 0.101934i
\(778\) 0 0
\(779\) 0.467423 + 23.7962i 0.0167472 + 0.852589i
\(780\) 0 0
\(781\) 31.0888 1.11244
\(782\) 0 0
\(783\) −10.7533 18.6253i −0.384292 0.665613i
\(784\) 0 0
\(785\) 1.29713 + 2.24670i 0.0462967 + 0.0801882i
\(786\) 0 0
\(787\) 9.50413 + 16.4616i 0.338786 + 0.586794i 0.984205 0.177035i \(-0.0566506\pi\)
−0.645419 + 0.763829i \(0.723317\pi\)
\(788\) 0 0
\(789\) 40.9904 1.45930
\(790\) 0 0
\(791\) 10.9740 + 21.8735i 0.390190 + 0.777732i
\(792\) 0 0
\(793\) 16.7548 + 29.0202i 0.594980 + 1.03054i
\(794\) 0 0
\(795\) −10.2131 −0.362222
\(796\) 0 0
\(797\) −7.67070 −0.271710 −0.135855 0.990729i \(-0.543378\pi\)
−0.135855 + 0.990729i \(0.543378\pi\)
\(798\) 0 0
\(799\) 35.6872 1.26252
\(800\) 0 0
\(801\) −21.7840 −0.769700
\(802\) 0 0
\(803\) −6.07053 10.5145i −0.214224 0.371048i
\(804\) 0 0
\(805\) 3.18148 4.83286i 0.112132 0.170336i
\(806\) 0 0
\(807\) 74.6802 2.62887
\(808\) 0 0
\(809\) −9.63335 16.6854i −0.338690 0.586629i 0.645496 0.763763i \(-0.276651\pi\)
−0.984187 + 0.177134i \(0.943317\pi\)
\(810\) 0 0
\(811\) 11.6463 + 20.1720i 0.408957 + 0.708334i 0.994773 0.102110i \(-0.0325594\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(812\) 0 0
\(813\) 10.5302 + 18.2388i 0.369309 + 0.639662i
\(814\) 0 0
\(815\) −9.74483 −0.341347
\(816\) 0 0
\(817\) −0.991675 50.4856i −0.0346943 1.76627i
\(818\) 0 0
\(819\) 41.3039 62.7431i 1.44327 2.19242i
\(820\) 0 0
\(821\) −2.41760 −0.0843749 −0.0421874 0.999110i \(-0.513433\pi\)
−0.0421874 + 0.999110i \(0.513433\pi\)
\(822\) 0 0
\(823\) −6.65953 + 11.5346i −0.232137 + 0.402073i −0.958437 0.285305i \(-0.907905\pi\)
0.726300 + 0.687378i \(0.241238\pi\)
\(824\) 0 0
\(825\) 58.6688 2.04259
\(826\) 0 0
\(827\) 9.38209 + 16.2503i 0.326247 + 0.565077i 0.981764 0.190104i \(-0.0608824\pi\)
−0.655517 + 0.755181i \(0.727549\pi\)
\(828\) 0 0
\(829\) −16.6185 28.7842i −0.577186 0.999715i −0.995800 0.0915510i \(-0.970818\pi\)
0.418615 0.908164i \(-0.362516\pi\)
\(830\) 0 0
\(831\) 28.5364 + 49.4265i 0.989918 + 1.71459i
\(832\) 0 0
\(833\) 22.2446 29.8282i 0.770728 1.03348i
\(834\) 0 0
\(835\) 1.91115 3.31021i 0.0661381 0.114555i
\(836\) 0 0
\(837\) −16.5161 28.6068i −0.570881 0.988795i
\(838\) 0 0
\(839\) 5.45416 9.44689i 0.188299 0.326143i −0.756384 0.654127i \(-0.773036\pi\)
0.944683 + 0.327984i \(0.106369\pi\)
\(840\) 0 0
\(841\) 11.4154 19.7720i 0.393634 0.681794i
\(842\) 0 0
\(843\) 45.4560 + 78.7321i 1.56559 + 2.71168i
\(844\) 0 0
\(845\) 4.52356 0.155615
\(846\) 0 0
\(847\) −15.2524 0.894672i −0.524079 0.0307413i
\(848\) 0 0
\(849\) 25.2512 0.866620
\(850\) 0 0
\(851\) 15.0677 26.0980i 0.516513 0.894627i
\(852\) 0 0
\(853\) 1.56947 2.71841i 0.0537378 0.0930766i −0.837905 0.545816i \(-0.816220\pi\)
0.891643 + 0.452739i \(0.149553\pi\)
\(854\) 0 0
\(855\) 10.0494 + 5.54175i 0.343681 + 0.189524i
\(856\) 0 0
\(857\) −39.5202 −1.34999 −0.674993 0.737824i \(-0.735853\pi\)
−0.674993 + 0.737824i \(0.735853\pi\)
\(858\) 0 0
\(859\) −9.08434 −0.309954 −0.154977 0.987918i \(-0.549530\pi\)
−0.154977 + 0.987918i \(0.549530\pi\)
\(860\) 0 0
\(861\) 43.0293 + 2.52400i 1.46643 + 0.0860178i
\(862\) 0 0
\(863\) −11.5365 + 19.9818i −0.392706 + 0.680187i −0.992805 0.119738i \(-0.961794\pi\)
0.600099 + 0.799926i \(0.295128\pi\)
\(864\) 0 0
\(865\) −1.38337 + 2.39607i −0.0470360 + 0.0814688i
\(866\) 0 0
\(867\) 33.5835 1.14056
\(868\) 0 0
\(869\) 26.5633 46.0090i 0.901099 1.56075i
\(870\) 0 0
\(871\) 24.4312 0.827821
\(872\) 0 0
\(873\) −33.2222 + 57.5426i −1.12440 + 1.94752i
\(874\) 0 0
\(875\) −5.18711 10.3390i −0.175356 0.349523i
\(876\) 0 0
\(877\) 14.9654 + 25.9209i 0.505347 + 0.875287i 0.999981 + 0.00618527i \(0.00196884\pi\)
−0.494634 + 0.869101i \(0.664698\pi\)
\(878\) 0 0
\(879\) 16.4104 0.553508
\(880\) 0 0
\(881\) 20.3891 0.686925 0.343462 0.939166i \(-0.388400\pi\)
0.343462 + 0.939166i \(0.388400\pi\)
\(882\) 0 0
\(883\) 1.68307 + 2.91517i 0.0566399 + 0.0981032i 0.892955 0.450146i \(-0.148628\pi\)
−0.836315 + 0.548249i \(0.815295\pi\)
\(884\) 0 0
\(885\) −6.18415 10.7113i −0.207878 0.360055i
\(886\) 0 0
\(887\) 46.6068 1.56490 0.782452 0.622711i \(-0.213969\pi\)
0.782452 + 0.622711i \(0.213969\pi\)
\(888\) 0 0
\(889\) 7.87437 11.9616i 0.264098 0.401180i
\(890\) 0 0
\(891\) 16.6458 + 28.8313i 0.557655 + 0.965886i
\(892\) 0 0
\(893\) 25.0512 15.1269i 0.838307 0.506204i
\(894\) 0 0
\(895\) −0.402543 + 0.697225i −0.0134555 + 0.0233057i
\(896\) 0 0
\(897\) −35.1825 60.9379i −1.17471 2.03466i
\(898\) 0 0
\(899\) −4.73769 + 8.20591i −0.158011 + 0.273683i
\(900\) 0 0
\(901\) −20.3951 + 35.3254i −0.679460 + 1.17686i
\(902\) 0 0
\(903\) −91.2900 5.35487i −3.03794 0.178199i
\(904\) 0 0
\(905\) 0.358440 0.620837i 0.0119150 0.0206373i
\(906\) 0 0
\(907\) −45.5901 −1.51379 −0.756897 0.653534i \(-0.773286\pi\)
−0.756897 + 0.653534i \(0.773286\pi\)
\(908\) 0 0
\(909\) −43.0967 + 74.6456i −1.42943 + 2.47584i
\(910\) 0 0
\(911\) 18.7178 0.620147 0.310073 0.950713i \(-0.399646\pi\)
0.310073 + 0.950713i \(0.399646\pi\)
\(912\) 0 0
\(913\) 29.7166 + 51.4706i 0.983475 + 1.70343i
\(914\) 0 0
\(915\) 4.63562 + 8.02912i 0.153249 + 0.265435i
\(916\) 0 0
\(917\) 3.39103 5.15117i 0.111982 0.170107i
\(918\) 0 0
\(919\) −13.2959 + 23.0292i −0.438592 + 0.759664i −0.997581 0.0695113i \(-0.977856\pi\)
0.558989 + 0.829175i \(0.311189\pi\)
\(920\) 0 0
\(921\) −8.38301 + 14.5198i −0.276230 + 0.478444i
\(922\) 0 0
\(923\) −36.5144 −1.20189
\(924\) 0 0
\(925\) −14.7556 25.5575i −0.485162 0.840325i
\(926\) 0 0
\(927\) −49.7366 + 86.1463i −1.63356 + 2.82942i
\(928\) 0 0
\(929\) −2.46225 4.26474i −0.0807838 0.139922i 0.822803 0.568327i \(-0.192409\pi\)
−0.903587 + 0.428405i \(0.859076\pi\)
\(930\) 0 0
\(931\) 2.97148 30.3673i 0.0973864 0.995247i
\(932\) 0 0
\(933\) −47.1433 81.6546i −1.54340 2.67325i
\(934\) 0 0
\(935\) −4.85583 + 8.41055i −0.158803 + 0.275054i
\(936\) 0 0
\(937\) −2.34076 4.05431i −0.0764692 0.132449i 0.825255 0.564760i \(-0.191031\pi\)
−0.901724 + 0.432312i \(0.857698\pi\)
\(938\) 0 0
\(939\) 81.1380 2.64784
\(940\) 0 0
\(941\) 13.2507 22.9510i 0.431962 0.748180i −0.565080 0.825036i \(-0.691155\pi\)
0.997042 + 0.0768561i \(0.0244882\pi\)
\(942\) 0 0
\(943\) 13.3847 23.1829i 0.435864 0.754939i
\(944\) 0 0
\(945\) 5.61907 8.53570i 0.182788 0.277666i
\(946\) 0 0
\(947\) 2.87681 + 4.98278i 0.0934838 + 0.161919i 0.908975 0.416851i \(-0.136866\pi\)
−0.815491 + 0.578770i \(0.803533\pi\)
\(948\) 0 0
\(949\) 7.12996 + 12.3495i 0.231448 + 0.400880i
\(950\) 0 0
\(951\) 9.47181 0.307144
\(952\) 0 0
\(953\) −17.3933 + 30.1261i −0.563425 + 0.975881i 0.433769 + 0.901024i \(0.357183\pi\)
−0.997194 + 0.0748568i \(0.976150\pi\)
\(954\) 0 0
\(955\) 11.3192 0.366282
\(956\) 0 0
\(957\) 15.1761 26.2857i 0.490573 0.849697i
\(958\) 0 0
\(959\) −3.76678 0.220951i −0.121636 0.00713487i
\(960\) 0 0
\(961\) 8.22333 14.2432i 0.265269 0.459459i
\(962\) 0 0
\(963\) −29.7313 + 51.4960i −0.958076 + 1.65944i
\(964\) 0 0
\(965\) 3.35190 + 5.80565i 0.107901 + 0.186891i
\(966\) 0 0
\(967\) −12.2583 + 21.2320i −0.394201 + 0.682776i −0.992999 0.118124i \(-0.962312\pi\)
0.598798 + 0.800900i \(0.295645\pi\)
\(968\) 0 0
\(969\) 59.1794 35.7350i 1.90112 1.14797i
\(970\) 0 0
\(971\) −22.1600 38.3822i −0.711148 1.23174i −0.964426 0.264351i \(-0.914842\pi\)
0.253278 0.967393i \(-0.418491\pi\)
\(972\) 0 0
\(973\) 15.5690 23.6503i 0.499120 0.758194i
\(974\) 0 0
\(975\) −68.9077 −2.20681
\(976\) 0 0
\(977\) 6.95397 + 12.0446i 0.222477 + 0.385342i 0.955560 0.294798i \(-0.0952524\pi\)
−0.733082 + 0.680140i \(0.761919\pi\)
\(978\) 0 0
\(979\) −7.55841 13.0915i −0.241568 0.418408i
\(980\) 0 0
\(981\) 6.24861 0.199503
\(982\) 0 0
\(983\) −35.1549 −1.12127 −0.560633 0.828065i \(-0.689442\pi\)
−0.560633 + 0.828065i \(0.689442\pi\)
\(984\) 0 0
\(985\) −3.65088 6.32351i −0.116327 0.201484i
\(986\) 0 0
\(987\) −23.7656 47.3699i −0.756466 1.50780i
\(988\) 0 0
\(989\) −28.3966 + 49.1843i −0.902959 + 1.56397i
\(990\) 0 0
\(991\) 26.8434 0.852710 0.426355 0.904556i \(-0.359797\pi\)
0.426355 + 0.904556i \(0.359797\pi\)
\(992\) 0 0
\(993\) −47.0567 + 81.5046i −1.49330 + 2.58647i
\(994\) 0 0
\(995\) −3.79532 −0.120320
\(996\) 0 0
\(997\) 24.6954 42.7736i 0.782110 1.35465i −0.148601 0.988897i \(-0.547477\pi\)
0.930711 0.365756i \(-0.119190\pi\)
\(998\) 0 0
\(999\) 26.6122 46.0938i 0.841974 1.45834i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.l.b.429.11 yes 24
7.4 even 3 532.2.k.b.277.2 yes 24
19.7 even 3 532.2.k.b.121.2 24
133.102 even 3 inner 532.2.l.b.501.11 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.k.b.121.2 24 19.7 even 3
532.2.k.b.277.2 yes 24 7.4 even 3
532.2.l.b.429.11 yes 24 1.1 even 1 trivial
532.2.l.b.501.11 yes 24 133.102 even 3 inner