Properties

Label 531.5.c.a
Level $531$
Weight $5$
Character orbit 531.c
Self dual yes
Analytic conductor $54.889$
Analytic rank $0$
Dimension $3$
CM discriminant -59
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,5,Mod(235,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.235"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 531.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,48,0,0,0,0,0,0,0,0,0,0,0,768] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.8894503975\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1593.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 9x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 59)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16 q^{4} + (9 \beta_{2} + 2 \beta_1) q^{5} + (15 \beta_{2} + 7 \beta_1) q^{7} + 256 q^{16} - 47 q^{17} + (95 \beta_{2} + 62 \beta_1) q^{19} + (144 \beta_{2} + 32 \beta_1) q^{20} + (34 \beta_{2} - 141 \beta_1 + 625) q^{25}+ \cdots + ( - 1154 \beta_{2} - 1979 \beta_1 + 15934) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{4} + 768 q^{16} - 141 q^{17} + 1875 q^{25} + 6987 q^{35} + 7203 q^{49} - 10443 q^{59} + 12288 q^{64} - 2256 q^{68} + 9579 q^{71} + 47802 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 9x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 18 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
235.1
−0.844760
3.33181
−2.48705
0 0 16.0000 −44.6340 0 −96.8709 0 0 0
235.2 0 0 16.0000 2.80159 0 35.5895 0 0 0
235.3 0 0 16.0000 41.8324 0 61.2814 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
59.b odd 2 1 CM by \(\Q(\sqrt{-59}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 531.5.c.a 3
3.b odd 2 1 59.5.b.a 3
59.b odd 2 1 CM 531.5.c.a 3
177.d even 2 1 59.5.b.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
59.5.b.a 3 3.b odd 2 1
59.5.b.a 3 177.d even 2 1
531.5.c.a 3 1.a even 1 1 trivial
531.5.c.a 3 59.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{5}^{\mathrm{new}}(531, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 1875T + 5231 \) Copy content Toggle raw display
$7$ \( T^{3} - 7203 T + 211273 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( (T + 47)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 390963 T + 93895513 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 2121843 T - 637537633 \) Copy content Toggle raw display
$31$ \( T^{3} \) Copy content Toggle raw display
$37$ \( T^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 9483946607 \) Copy content Toggle raw display
$43$ \( T^{3} \) Copy content Toggle raw display
$47$ \( T^{3} \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 7914541633 \) Copy content Toggle raw display
$59$ \( (T + 3481)^{3} \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( T^{3} \) Copy content Toggle raw display
$71$ \( (T - 3193)^{3} \) Copy content Toggle raw display
$73$ \( T^{3} \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 402738855433 \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less