Newspace parameters
| Level: | \( N \) | \(=\) | \( 531 = 3^{2} \cdot 59 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 531.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(31.3300142130\) |
| Analytic rank: | \(0\) |
| Dimension: | \(60\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 530.1 | −5.38598 | 0 | 21.0088 | − | 8.70296i | 0 | 19.2691 | −70.0651 | 0 | 46.8740i | |||||||||||||||||
| 530.2 | −5.38598 | 0 | 21.0088 | 8.70296i | 0 | 19.2691 | −70.0651 | 0 | − | 46.8740i | |||||||||||||||||
| 530.3 | −5.10709 | 0 | 18.0823 | − | 11.0008i | 0 | −35.1570 | −51.4913 | 0 | 56.1819i | |||||||||||||||||
| 530.4 | −5.10709 | 0 | 18.0823 | 11.0008i | 0 | −35.1570 | −51.4913 | 0 | − | 56.1819i | |||||||||||||||||
| 530.5 | −4.87972 | 0 | 15.8116 | − | 2.08030i | 0 | −9.27371 | −38.1185 | 0 | 10.1513i | |||||||||||||||||
| 530.6 | −4.87972 | 0 | 15.8116 | 2.08030i | 0 | −9.27371 | −38.1185 | 0 | − | 10.1513i | |||||||||||||||||
| 530.7 | −4.82853 | 0 | 15.3147 | − | 20.4999i | 0 | 27.0026 | −35.3195 | 0 | 98.9847i | |||||||||||||||||
| 530.8 | −4.82853 | 0 | 15.3147 | 20.4999i | 0 | 27.0026 | −35.3195 | 0 | − | 98.9847i | |||||||||||||||||
| 530.9 | −4.19390 | 0 | 9.58884 | − | 9.04091i | 0 | −1.21513 | −6.66343 | 0 | 37.9167i | |||||||||||||||||
| 530.10 | −4.19390 | 0 | 9.58884 | 9.04091i | 0 | −1.21513 | −6.66343 | 0 | − | 37.9167i | |||||||||||||||||
| 530.11 | −3.94706 | 0 | 7.57932 | 21.2511i | 0 | −20.5183 | 1.66045 | 0 | − | 83.8794i | |||||||||||||||||
| 530.12 | −3.94706 | 0 | 7.57932 | − | 21.2511i | 0 | −20.5183 | 1.66045 | 0 | 83.8794i | |||||||||||||||||
| 530.13 | −3.35507 | 0 | 3.25649 | 5.32423i | 0 | 4.49346 | 15.9148 | 0 | − | 17.8632i | |||||||||||||||||
| 530.14 | −3.35507 | 0 | 3.25649 | − | 5.32423i | 0 | 4.49346 | 15.9148 | 0 | 17.8632i | |||||||||||||||||
| 530.15 | −3.26742 | 0 | 2.67606 | 14.5237i | 0 | −9.44552 | 17.3956 | 0 | − | 47.4550i | |||||||||||||||||
| 530.16 | −3.26742 | 0 | 2.67606 | − | 14.5237i | 0 | −9.44552 | 17.3956 | 0 | 47.4550i | |||||||||||||||||
| 530.17 | −3.16009 | 0 | 1.98619 | − | 1.99616i | 0 | 22.5873 | 19.0042 | 0 | 6.30804i | |||||||||||||||||
| 530.18 | −3.16009 | 0 | 1.98619 | 1.99616i | 0 | 22.5873 | 19.0042 | 0 | − | 6.30804i | |||||||||||||||||
| 530.19 | −2.05755 | 0 | −3.76647 | 20.7416i | 0 | 26.5362 | 24.2101 | 0 | − | 42.6769i | |||||||||||||||||
| 530.20 | −2.05755 | 0 | −3.76647 | − | 20.7416i | 0 | 26.5362 | 24.2101 | 0 | 42.6769i | |||||||||||||||||
| See all 60 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 59.b | odd | 2 | 1 | inner |
| 177.d | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 531.4.d.a | ✓ | 60 |
| 3.b | odd | 2 | 1 | inner | 531.4.d.a | ✓ | 60 |
| 59.b | odd | 2 | 1 | inner | 531.4.d.a | ✓ | 60 |
| 177.d | even | 2 | 1 | inner | 531.4.d.a | ✓ | 60 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 531.4.d.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
| 531.4.d.a | ✓ | 60 | 3.b | odd | 2 | 1 | inner |
| 531.4.d.a | ✓ | 60 | 59.b | odd | 2 | 1 | inner |
| 531.4.d.a | ✓ | 60 | 177.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(531, [\chi])\).