Properties

Label 5292.2.bm.a.2285.4
Level $5292$
Weight $2$
Character 5292.2285
Analytic conductor $42.257$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(2285,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.2285"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2285.4
Root \(1.08696 - 1.34852i\) of defining polynomial
Character \(\chi\) \(=\) 5292.2285
Dual form 5292.2.bm.a.4625.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0764245 q^{5} +5.38437i q^{11} +(4.60313 + 2.65762i) q^{13} +(-1.89092 + 3.27516i) q^{17} +(4.33939 - 2.50535i) q^{19} +2.33784i q^{23} -4.99416 q^{25} +(-8.84430 + 5.10626i) q^{29} +(-4.97636 + 2.87310i) q^{31} +(0.354486 + 0.613988i) q^{37} +(3.29910 - 5.71422i) q^{41} +(0.716520 + 1.24105i) q^{43} +(-1.46192 + 2.53213i) q^{47} +(-10.4835 - 6.05264i) q^{53} +0.411498i q^{55} +(-0.289951 - 0.502210i) q^{59} +(2.40641 + 1.38934i) q^{61} +(0.351792 + 0.203107i) q^{65} +(-2.63593 - 4.56556i) q^{67} -3.32103i q^{71} +(6.17326 + 3.56413i) q^{73} +(-0.469123 + 0.812544i) q^{79} +(-6.49790 - 11.2547i) q^{83} +(-0.144512 + 0.250303i) q^{85} +(-1.51794 - 2.62915i) q^{89} +(0.331636 - 0.191470i) q^{95} +(-6.18183 + 3.56908i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{13} - 9 q^{17} + 16 q^{25} - 6 q^{29} - 6 q^{31} + q^{37} + 6 q^{41} - 2 q^{43} - 18 q^{47} - 15 q^{59} - 3 q^{61} + 39 q^{65} - 7 q^{67} - q^{79} + 6 q^{85} - 21 q^{89} - 6 q^{95} - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.0764245 0.0341781 0.0170890 0.999854i \(-0.494560\pi\)
0.0170890 + 0.999854i \(0.494560\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.38437i 1.62345i 0.584040 + 0.811725i \(0.301471\pi\)
−0.584040 + 0.811725i \(0.698529\pi\)
\(12\) 0 0
\(13\) 4.60313 + 2.65762i 1.27668 + 0.737091i 0.976236 0.216709i \(-0.0695324\pi\)
0.300442 + 0.953800i \(0.402866\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.89092 + 3.27516i −0.458615 + 0.794344i −0.998888 0.0471458i \(-0.984987\pi\)
0.540273 + 0.841490i \(0.318321\pi\)
\(18\) 0 0
\(19\) 4.33939 2.50535i 0.995525 0.574767i 0.0886040 0.996067i \(-0.471759\pi\)
0.906921 + 0.421300i \(0.138426\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.33784i 0.487473i 0.969841 + 0.243737i \(0.0783732\pi\)
−0.969841 + 0.243737i \(0.921627\pi\)
\(24\) 0 0
\(25\) −4.99416 −0.998832
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.84430 + 5.10626i −1.64235 + 0.948209i −0.662349 + 0.749196i \(0.730440\pi\)
−0.979997 + 0.199013i \(0.936226\pi\)
\(30\) 0 0
\(31\) −4.97636 + 2.87310i −0.893780 + 0.516024i −0.875177 0.483803i \(-0.839255\pi\)
−0.0186031 + 0.999827i \(0.505922\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.354486 + 0.613988i 0.0582771 + 0.100939i 0.893692 0.448681i \(-0.148106\pi\)
−0.835415 + 0.549620i \(0.814773\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.29910 5.71422i 0.515234 0.892411i −0.484610 0.874730i \(-0.661039\pi\)
0.999844 0.0176805i \(-0.00562816\pi\)
\(42\) 0 0
\(43\) 0.716520 + 1.24105i 0.109268 + 0.189258i 0.915474 0.402377i \(-0.131816\pi\)
−0.806206 + 0.591635i \(0.798483\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.46192 + 2.53213i −0.213244 + 0.369349i −0.952728 0.303825i \(-0.901736\pi\)
0.739484 + 0.673174i \(0.235069\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.4835 6.05264i −1.44002 0.831394i −0.442167 0.896933i \(-0.645790\pi\)
−0.997850 + 0.0655390i \(0.979123\pi\)
\(54\) 0 0
\(55\) 0.411498i 0.0554863i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.289951 0.502210i −0.0377484 0.0653822i 0.846534 0.532335i \(-0.178685\pi\)
−0.884282 + 0.466953i \(0.845352\pi\)
\(60\) 0 0
\(61\) 2.40641 + 1.38934i 0.308109 + 0.177887i 0.646080 0.763270i \(-0.276407\pi\)
−0.337971 + 0.941156i \(0.609741\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.351792 + 0.203107i 0.0436344 + 0.0251923i
\(66\) 0 0
\(67\) −2.63593 4.56556i −0.322030 0.557771i 0.658877 0.752251i \(-0.271032\pi\)
−0.980907 + 0.194479i \(0.937698\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.32103i 0.394134i −0.980390 0.197067i \(-0.936858\pi\)
0.980390 0.197067i \(-0.0631416\pi\)
\(72\) 0 0
\(73\) 6.17326 + 3.56413i 0.722525 + 0.417150i 0.815681 0.578502i \(-0.196362\pi\)
−0.0931564 + 0.995651i \(0.529696\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.469123 + 0.812544i −0.0527804 + 0.0914184i −0.891208 0.453594i \(-0.850142\pi\)
0.838428 + 0.545012i \(0.183475\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.49790 11.2547i −0.713238 1.23536i −0.963635 0.267221i \(-0.913895\pi\)
0.250398 0.968143i \(-0.419439\pi\)
\(84\) 0 0
\(85\) −0.144512 + 0.250303i −0.0156746 + 0.0271491i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.51794 2.62915i −0.160901 0.278689i 0.774291 0.632830i \(-0.218107\pi\)
−0.935192 + 0.354141i \(0.884773\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.331636 0.191470i 0.0340251 0.0196444i
\(96\) 0 0
\(97\) −6.18183 + 3.56908i −0.627670 + 0.362385i −0.779849 0.625967i \(-0.784704\pi\)
0.152179 + 0.988353i \(0.451371\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.17257 0.813201 0.406600 0.913606i \(-0.366714\pi\)
0.406600 + 0.913606i \(0.366714\pi\)
\(102\) 0 0
\(103\) 7.46628i 0.735675i −0.929890 0.367837i \(-0.880098\pi\)
0.929890 0.367837i \(-0.119902\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.99991 + 2.30935i −0.386686 + 0.223253i −0.680723 0.732541i \(-0.738334\pi\)
0.294037 + 0.955794i \(0.405001\pi\)
\(108\) 0 0
\(109\) 5.22792 9.05503i 0.500744 0.867314i −0.499256 0.866455i \(-0.666393\pi\)
1.00000 0.000859385i \(-0.000273551\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.6379 + 9.60591i 1.56516 + 0.903648i 0.996720 + 0.0809270i \(0.0257881\pi\)
0.568445 + 0.822721i \(0.307545\pi\)
\(114\) 0 0
\(115\) 0.178668i 0.0166609i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −17.9915 −1.63559
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.763798 −0.0683162
\(126\) 0 0
\(127\) 1.26488 0.112240 0.0561198 0.998424i \(-0.482127\pi\)
0.0561198 + 0.998424i \(0.482127\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.4879 −1.26581 −0.632906 0.774229i \(-0.718138\pi\)
−0.632906 + 0.774229i \(0.718138\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.4053i 1.31616i −0.752947 0.658081i \(-0.771368\pi\)
0.752947 0.658081i \(-0.228632\pi\)
\(138\) 0 0
\(139\) 0.374701 + 0.216333i 0.0317817 + 0.0183492i 0.515807 0.856705i \(-0.327492\pi\)
−0.484025 + 0.875054i \(0.660826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.3096 + 24.7850i −1.19663 + 2.07262i
\(144\) 0 0
\(145\) −0.675921 + 0.390243i −0.0561322 + 0.0324079i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.67117i 0.382677i 0.981524 + 0.191338i \(0.0612828\pi\)
−0.981524 + 0.191338i \(0.938717\pi\)
\(150\) 0 0
\(151\) −8.24552 −0.671011 −0.335506 0.942038i \(-0.608907\pi\)
−0.335506 + 0.942038i \(0.608907\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.380316 + 0.219575i −0.0305477 + 0.0176367i
\(156\) 0 0
\(157\) −15.2334 + 8.79500i −1.21576 + 0.701917i −0.964007 0.265875i \(-0.914339\pi\)
−0.251749 + 0.967793i \(0.581006\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.27097 9.12959i −0.412854 0.715085i 0.582346 0.812941i \(-0.302135\pi\)
−0.995201 + 0.0978563i \(0.968801\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.59146 + 7.95265i −0.355298 + 0.615395i −0.987169 0.159679i \(-0.948954\pi\)
0.631871 + 0.775074i \(0.282287\pi\)
\(168\) 0 0
\(169\) 7.62587 + 13.2084i 0.586605 + 1.01603i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.22358 + 2.11931i −0.0930274 + 0.161128i −0.908784 0.417268i \(-0.862988\pi\)
0.815756 + 0.578396i \(0.196321\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.05509 2.91856i −0.377835 0.218143i 0.299041 0.954240i \(-0.403333\pi\)
−0.676876 + 0.736097i \(0.736667\pi\)
\(180\) 0 0
\(181\) 16.0704i 1.19451i 0.802053 + 0.597253i \(0.203741\pi\)
−0.802053 + 0.597253i \(0.796259\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.0270914 + 0.0469237i 0.00199180 + 0.00344990i
\(186\) 0 0
\(187\) −17.6347 10.1814i −1.28958 0.744537i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.90415 + 3.98611i 0.499567 + 0.288425i 0.728535 0.685009i \(-0.240202\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(192\) 0 0
\(193\) −0.359027 0.621853i −0.0258433 0.0447620i 0.852814 0.522214i \(-0.174894\pi\)
−0.878658 + 0.477452i \(0.841560\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.5035i 0.962083i 0.876698 + 0.481042i \(0.159741\pi\)
−0.876698 + 0.481042i \(0.840259\pi\)
\(198\) 0 0
\(199\) −21.2568 12.2726i −1.50685 0.869983i −0.999968 0.00796947i \(-0.997463\pi\)
−0.506886 0.862013i \(-0.669203\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.252132 0.436706i 0.0176097 0.0305009i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 13.4897 + 23.3649i 0.933105 + 1.61618i
\(210\) 0 0
\(211\) −11.7838 + 20.4101i −0.811227 + 1.40509i 0.100778 + 0.994909i \(0.467867\pi\)
−0.912005 + 0.410178i \(0.865467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.0547597 + 0.0948465i 0.00373458 + 0.00646848i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17.4083 + 10.0507i −1.17101 + 0.676081i
\(222\) 0 0
\(223\) 6.47489 3.73828i 0.433590 0.250334i −0.267285 0.963618i \(-0.586126\pi\)
0.700875 + 0.713284i \(0.252793\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.637402 0.0423058 0.0211529 0.999776i \(-0.493266\pi\)
0.0211529 + 0.999776i \(0.493266\pi\)
\(228\) 0 0
\(229\) 1.82848i 0.120829i −0.998173 0.0604146i \(-0.980758\pi\)
0.998173 0.0604146i \(-0.0192423\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.4232 + 10.0593i −1.14143 + 0.659007i −0.946785 0.321866i \(-0.895690\pi\)
−0.194649 + 0.980873i \(0.562357\pi\)
\(234\) 0 0
\(235\) −0.111727 + 0.193516i −0.00728825 + 0.0126236i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.41455 + 1.39404i 0.156184 + 0.0901730i 0.576055 0.817411i \(-0.304591\pi\)
−0.419871 + 0.907584i \(0.637925\pi\)
\(240\) 0 0
\(241\) 23.1291i 1.48988i 0.667134 + 0.744938i \(0.267521\pi\)
−0.667134 + 0.744938i \(0.732479\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 26.6331 1.69462
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.6541 1.17743 0.588717 0.808339i \(-0.299633\pi\)
0.588717 + 0.808339i \(0.299633\pi\)
\(252\) 0 0
\(253\) −12.5878 −0.791388
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.8737 0.678286 0.339143 0.940735i \(-0.389863\pi\)
0.339143 + 0.940735i \(0.389863\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.9970i 1.17141i 0.810525 + 0.585704i \(0.199182\pi\)
−0.810525 + 0.585704i \(0.800818\pi\)
\(264\) 0 0
\(265\) −0.801194 0.462570i −0.0492170 0.0284154i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.29788 + 7.44415i −0.262046 + 0.453878i −0.966786 0.255589i \(-0.917731\pi\)
0.704739 + 0.709467i \(0.251064\pi\)
\(270\) 0 0
\(271\) −1.58706 + 0.916292i −0.0964073 + 0.0556608i −0.547429 0.836852i \(-0.684393\pi\)
0.451021 + 0.892513i \(0.351060\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 26.8904i 1.62155i
\(276\) 0 0
\(277\) 15.8186 0.950449 0.475224 0.879865i \(-0.342367\pi\)
0.475224 + 0.879865i \(0.342367\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.95916 5.74992i 0.594114 0.343012i −0.172609 0.984990i \(-0.555220\pi\)
0.766722 + 0.641979i \(0.221886\pi\)
\(282\) 0 0
\(283\) 8.59806 4.96409i 0.511101 0.295085i −0.222185 0.975005i \(-0.571319\pi\)
0.733286 + 0.679920i \(0.237986\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.34887 + 2.33631i 0.0793454 + 0.137430i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.63598 14.9580i 0.504520 0.873854i −0.495467 0.868627i \(-0.665003\pi\)
0.999986 0.00522664i \(-0.00166370\pi\)
\(294\) 0 0
\(295\) −0.0221594 0.0383812i −0.00129017 0.00223464i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.21308 + 10.7614i −0.359312 + 0.622346i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.183908 + 0.106180i 0.0105306 + 0.00607982i
\(306\) 0 0
\(307\) 21.6425i 1.23520i −0.786490 0.617602i \(-0.788104\pi\)
0.786490 0.617602i \(-0.211896\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.1016 + 17.4964i 0.572808 + 0.992133i 0.996276 + 0.0862215i \(0.0274793\pi\)
−0.423468 + 0.905911i \(0.639187\pi\)
\(312\) 0 0
\(313\) 18.9146 + 10.9203i 1.06911 + 0.617254i 0.927939 0.372731i \(-0.121579\pi\)
0.141175 + 0.989985i \(0.454912\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.5288 + 12.4297i 1.20918 + 0.698120i 0.962580 0.270997i \(-0.0873535\pi\)
0.246599 + 0.969117i \(0.420687\pi\)
\(318\) 0 0
\(319\) −27.4940 47.6210i −1.53937 2.66626i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 18.9496i 1.05439i
\(324\) 0 0
\(325\) −22.9888 13.2726i −1.27519 0.736230i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.07219 + 13.9814i −0.443688 + 0.768490i −0.997960 0.0638459i \(-0.979663\pi\)
0.554272 + 0.832336i \(0.312997\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.201449 0.348920i −0.0110063 0.0190635i
\(336\) 0 0
\(337\) −7.81522 + 13.5364i −0.425722 + 0.737372i −0.996488 0.0837408i \(-0.973313\pi\)
0.570765 + 0.821113i \(0.306647\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.4698 26.7946i −0.837739 1.45101i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −28.0445 + 16.1915i −1.50551 + 0.869206i −0.505529 + 0.862810i \(0.668703\pi\)
−0.999980 + 0.00639573i \(0.997964\pi\)
\(348\) 0 0
\(349\) 26.0421 15.0354i 1.39400 0.804827i 0.400246 0.916408i \(-0.368925\pi\)
0.993755 + 0.111581i \(0.0355915\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.0121 0.905465 0.452733 0.891646i \(-0.350449\pi\)
0.452733 + 0.891646i \(0.350449\pi\)
\(354\) 0 0
\(355\) 0.253808i 0.0134707i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.2692 + 14.5892i −1.33366 + 0.769987i −0.985858 0.167583i \(-0.946404\pi\)
−0.347798 + 0.937570i \(0.613070\pi\)
\(360\) 0 0
\(361\) 3.05356 5.28892i 0.160714 0.278364i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.471788 + 0.272387i 0.0246945 + 0.0142574i
\(366\) 0 0
\(367\) 18.1266i 0.946200i 0.881009 + 0.473100i \(0.156865\pi\)
−0.881009 + 0.473100i \(0.843135\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.3646 −1.05444 −0.527219 0.849730i \(-0.676765\pi\)
−0.527219 + 0.849730i \(0.676765\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −54.2820 −2.79566
\(378\) 0 0
\(379\) −21.9961 −1.12986 −0.564931 0.825138i \(-0.691097\pi\)
−0.564931 + 0.825138i \(0.691097\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.6253 1.66708 0.833538 0.552462i \(-0.186312\pi\)
0.833538 + 0.552462i \(0.186312\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.7501i 0.798560i −0.916829 0.399280i \(-0.869260\pi\)
0.916829 0.399280i \(-0.130740\pi\)
\(390\) 0 0
\(391\) −7.65680 4.42066i −0.387221 0.223562i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.0358524 + 0.0620983i −0.00180393 + 0.00312450i
\(396\) 0 0
\(397\) 2.95864 1.70817i 0.148490 0.0857308i −0.423914 0.905702i \(-0.639344\pi\)
0.572404 + 0.819972i \(0.306011\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.983052i 0.0490913i 0.999699 + 0.0245456i \(0.00781390\pi\)
−0.999699 + 0.0245456i \(0.992186\pi\)
\(402\) 0 0
\(403\) −30.5424 −1.52143
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.30594 + 1.90868i −0.163869 + 0.0946099i
\(408\) 0 0
\(409\) −25.0195 + 14.4450i −1.23714 + 0.714260i −0.968508 0.248984i \(-0.919903\pi\)
−0.268627 + 0.963244i \(0.586570\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.496599 0.860135i −0.0243771 0.0422223i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.28926 10.8933i 0.307251 0.532174i −0.670509 0.741901i \(-0.733924\pi\)
0.977760 + 0.209727i \(0.0672577\pi\)
\(420\) 0 0
\(421\) −13.0232 22.5568i −0.634710 1.09935i −0.986576 0.163300i \(-0.947786\pi\)
0.351866 0.936050i \(-0.385547\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.44354 16.3567i 0.458079 0.793416i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.28454 3.62838i −0.302716 0.174773i 0.340947 0.940083i \(-0.389252\pi\)
−0.643662 + 0.765310i \(0.722586\pi\)
\(432\) 0 0
\(433\) 8.29113i 0.398446i −0.979954 0.199223i \(-0.936158\pi\)
0.979954 0.199223i \(-0.0638419\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.85710 + 10.1448i 0.280183 + 0.485292i
\(438\) 0 0
\(439\) 2.83357 + 1.63596i 0.135239 + 0.0780802i 0.566093 0.824341i \(-0.308454\pi\)
−0.430854 + 0.902422i \(0.641788\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.46737 1.42454i −0.117228 0.0676817i 0.440239 0.897880i \(-0.354894\pi\)
−0.557468 + 0.830199i \(0.688227\pi\)
\(444\) 0 0
\(445\) −0.116008 0.200931i −0.00549929 0.00952505i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.9802i 0.942925i −0.881886 0.471463i \(-0.843726\pi\)
0.881886 0.471463i \(-0.156274\pi\)
\(450\) 0 0
\(451\) 30.7675 + 17.7636i 1.44878 + 0.836455i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.15008 + 15.8484i −0.428023 + 0.741357i −0.996697 0.0812053i \(-0.974123\pi\)
0.568675 + 0.822563i \(0.307456\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.52954 + 7.84539i 0.210962 + 0.365396i 0.952016 0.306049i \(-0.0990071\pi\)
−0.741054 + 0.671445i \(0.765674\pi\)
\(462\) 0 0
\(463\) 10.8227 18.7455i 0.502974 0.871176i −0.497021 0.867739i \(-0.665573\pi\)
0.999994 0.00343694i \(-0.00109401\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.7761 23.8610i −0.637484 1.10415i −0.985983 0.166845i \(-0.946642\pi\)
0.348500 0.937309i \(-0.386691\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.68227 + 3.85801i −0.307251 + 0.177392i
\(474\) 0 0
\(475\) −21.6716 + 12.5121i −0.994362 + 0.574095i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.94651 0.226012 0.113006 0.993594i \(-0.463952\pi\)
0.113006 + 0.993594i \(0.463952\pi\)
\(480\) 0 0
\(481\) 3.76835i 0.171822i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.472443 + 0.272765i −0.0214525 + 0.0123856i
\(486\) 0 0
\(487\) −4.78573 + 8.28913i −0.216862 + 0.375616i −0.953847 0.300293i \(-0.902916\pi\)
0.736985 + 0.675909i \(0.236249\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 33.0010 + 19.0531i 1.48931 + 0.859855i 0.999925 0.0122119i \(-0.00388725\pi\)
0.489387 + 0.872067i \(0.337221\pi\)
\(492\) 0 0
\(493\) 38.6220i 1.73945i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −24.8384 −1.11192 −0.555960 0.831209i \(-0.687649\pi\)
−0.555960 + 0.831209i \(0.687649\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 27.2820 1.21645 0.608223 0.793766i \(-0.291883\pi\)
0.608223 + 0.793766i \(0.291883\pi\)
\(504\) 0 0
\(505\) 0.624584 0.0277936
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 41.7721 1.85152 0.925758 0.378117i \(-0.123428\pi\)
0.925758 + 0.378117i \(0.123428\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.570607i 0.0251439i
\(516\) 0 0
\(517\) −13.6339 7.87154i −0.599619 0.346190i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.02629 + 3.50963i −0.0887732 + 0.153760i −0.906993 0.421146i \(-0.861628\pi\)
0.818220 + 0.574906i \(0.194961\pi\)
\(522\) 0 0
\(523\) −26.2429 + 15.1514i −1.14752 + 0.662523i −0.948282 0.317428i \(-0.897181\pi\)
−0.199241 + 0.979951i \(0.563848\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.7312i 0.946625i
\(528\) 0 0
\(529\) 17.5345 0.762370
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.3724 17.5355i 1.31558 0.759548i
\(534\) 0 0
\(535\) −0.305691 + 0.176491i −0.0132162 + 0.00763037i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.82681 + 15.2885i 0.379494 + 0.657303i 0.990989 0.133946i \(-0.0427647\pi\)
−0.611495 + 0.791249i \(0.709431\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.399541 0.692026i 0.0171145 0.0296431i
\(546\) 0 0
\(547\) −2.18319 3.78140i −0.0933466 0.161681i 0.815571 0.578657i \(-0.196423\pi\)
−0.908917 + 0.416976i \(0.863090\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −25.5859 + 44.3161i −1.09000 + 1.88793i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.7527 + 8.51750i 0.625094 + 0.360898i 0.778849 0.627211i \(-0.215804\pi\)
−0.153756 + 0.988109i \(0.549137\pi\)
\(558\) 0 0
\(559\) 7.61695i 0.322163i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.45992 11.1889i −0.272253 0.471556i 0.697185 0.716891i \(-0.254436\pi\)
−0.969438 + 0.245335i \(0.921102\pi\)
\(564\) 0 0
\(565\) 1.27155 + 0.734127i 0.0534943 + 0.0308850i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.8280 + 10.8704i 0.789313 + 0.455710i 0.839720 0.543019i \(-0.182719\pi\)
−0.0504079 + 0.998729i \(0.516052\pi\)
\(570\) 0 0
\(571\) 16.8254 + 29.1425i 0.704122 + 1.21958i 0.967007 + 0.254748i \(0.0819925\pi\)
−0.262885 + 0.964827i \(0.584674\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.6755i 0.486904i
\(576\) 0 0
\(577\) −12.5598 7.25141i −0.522871 0.301880i 0.215237 0.976562i \(-0.430948\pi\)
−0.738109 + 0.674682i \(0.764281\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 32.5897 56.4469i 1.34973 2.33779i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.8417 + 27.4386i 0.653857 + 1.13251i 0.982179 + 0.187948i \(0.0601837\pi\)
−0.328322 + 0.944566i \(0.606483\pi\)
\(588\) 0 0
\(589\) −14.3963 + 24.9350i −0.593187 + 1.02743i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.54101 6.13320i −0.145412 0.251860i 0.784115 0.620616i \(-0.213117\pi\)
−0.929526 + 0.368755i \(0.879784\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.20178 3.00325i 0.212539 0.122709i −0.389952 0.920835i \(-0.627508\pi\)
0.602491 + 0.798126i \(0.294175\pi\)
\(600\) 0 0
\(601\) 0.530083 0.306043i 0.0216225 0.0124838i −0.489150 0.872200i \(-0.662693\pi\)
0.510772 + 0.859716i \(0.329360\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.37499 −0.0559012
\(606\) 0 0
\(607\) 2.04959i 0.0831904i 0.999135 + 0.0415952i \(0.0132440\pi\)
−0.999135 + 0.0415952i \(0.986756\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.4588 + 7.77047i −0.544487 + 0.314360i
\(612\) 0 0
\(613\) −4.93166 + 8.54189i −0.199188 + 0.345003i −0.948265 0.317479i \(-0.897164\pi\)
0.749077 + 0.662482i \(0.230497\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.2143 13.4028i −0.934571 0.539575i −0.0463170 0.998927i \(-0.514748\pi\)
−0.888254 + 0.459352i \(0.848082\pi\)
\(618\) 0 0
\(619\) 0.0696297i 0.00279865i −0.999999 0.00139933i \(-0.999555\pi\)
0.999999 0.00139933i \(-0.000445420\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 24.9124 0.996497
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.68121 −0.106907
\(630\) 0 0
\(631\) 11.8214 0.470603 0.235301 0.971922i \(-0.424392\pi\)
0.235301 + 0.971922i \(0.424392\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.0966675 0.00383613
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.5159i 0.810330i −0.914244 0.405165i \(-0.867214\pi\)
0.914244 0.405165i \(-0.132786\pi\)
\(642\) 0 0
\(643\) 15.6081 + 9.01132i 0.615522 + 0.355372i 0.775123 0.631810i \(-0.217688\pi\)
−0.159602 + 0.987182i \(0.551021\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.11827 + 15.7933i −0.358476 + 0.620899i −0.987706 0.156320i \(-0.950037\pi\)
0.629230 + 0.777219i \(0.283370\pi\)
\(648\) 0 0
\(649\) 2.70409 1.56121i 0.106145 0.0612827i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00158i 0.352259i 0.984367 + 0.176129i \(0.0563577\pi\)
−0.984367 + 0.176129i \(0.943642\pi\)
\(654\) 0 0
\(655\) −1.10723 −0.0432630
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30.4806 + 17.5980i −1.18735 + 0.685519i −0.957704 0.287754i \(-0.907091\pi\)
−0.229650 + 0.973273i \(0.573758\pi\)
\(660\) 0 0
\(661\) 10.8797 6.28141i 0.423172 0.244318i −0.273262 0.961940i \(-0.588102\pi\)
0.696433 + 0.717621i \(0.254769\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −11.9376 20.6765i −0.462226 0.800599i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.48072 + 12.9570i −0.288790 + 0.500199i
\(672\) 0 0
\(673\) 23.8913 + 41.3810i 0.920942 + 1.59512i 0.797960 + 0.602710i \(0.205913\pi\)
0.122982 + 0.992409i \(0.460754\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.5235 + 32.0837i −0.711918 + 1.23308i 0.252219 + 0.967670i \(0.418840\pi\)
−0.964136 + 0.265407i \(0.914494\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.6844 + 12.5195i 0.829732 + 0.479046i 0.853761 0.520665i \(-0.174316\pi\)
−0.0240289 + 0.999711i \(0.507649\pi\)
\(684\) 0 0
\(685\) 1.17734i 0.0449839i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −32.1712 55.7222i −1.22563 2.12285i
\(690\) 0 0
\(691\) −40.2655 23.2473i −1.53177 0.884370i −0.999280 0.0379352i \(-0.987922\pi\)
−0.532493 0.846434i \(-0.678745\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.0286363 + 0.0165332i 0.00108624 + 0.000627139i
\(696\) 0 0
\(697\) 12.4767 + 21.6102i 0.472587 + 0.818545i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.0041i 1.35986i 0.733279 + 0.679928i \(0.237989\pi\)
−0.733279 + 0.679928i \(0.762011\pi\)
\(702\) 0 0
\(703\) 3.07651 + 1.77622i 0.116033 + 0.0669915i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.9158 + 27.5670i −0.597731 + 1.03530i 0.395424 + 0.918499i \(0.370598\pi\)
−0.993155 + 0.116802i \(0.962736\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.71685 11.6339i −0.251548 0.435694i
\(714\) 0 0
\(715\) −1.09360 + 1.89418i −0.0408985 + 0.0708382i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.0271 34.6879i −0.746883 1.29364i −0.949310 0.314342i \(-0.898216\pi\)
0.202427 0.979297i \(-0.435117\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 44.1699 25.5015i 1.64043 0.947101i
\(726\) 0 0
\(727\) 3.39242 1.95862i 0.125818 0.0726411i −0.435770 0.900058i \(-0.643524\pi\)
0.561588 + 0.827417i \(0.310191\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.41952 −0.200448
\(732\) 0 0
\(733\) 23.5835i 0.871078i 0.900170 + 0.435539i \(0.143442\pi\)
−0.900170 + 0.435539i \(0.856558\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.5827 14.1928i 0.905514 0.522798i
\(738\) 0 0
\(739\) 16.8641 29.2094i 0.620355 1.07449i −0.369065 0.929404i \(-0.620322\pi\)
0.989420 0.145083i \(-0.0463448\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.4003 16.9743i −1.07859 0.622725i −0.148076 0.988976i \(-0.547308\pi\)
−0.930516 + 0.366251i \(0.880641\pi\)
\(744\) 0 0
\(745\) 0.356991i 0.0130792i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.39663 0.123945 0.0619724 0.998078i \(-0.480261\pi\)
0.0619724 + 0.998078i \(0.480261\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.630160 −0.0229339
\(756\) 0 0
\(757\) 29.1344 1.05891 0.529454 0.848339i \(-0.322397\pi\)
0.529454 + 0.848339i \(0.322397\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.7258 0.606309 0.303154 0.952941i \(-0.401960\pi\)
0.303154 + 0.952941i \(0.401960\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.08232i 0.111296i
\(768\) 0 0
\(769\) 24.0816 + 13.9035i 0.868404 + 0.501373i 0.866818 0.498625i \(-0.166162\pi\)
0.00158643 + 0.999999i \(0.499495\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.42238 + 11.1239i −0.230997 + 0.400098i −0.958102 0.286428i \(-0.907532\pi\)
0.727105 + 0.686526i \(0.240865\pi\)
\(774\) 0 0
\(775\) 24.8527 14.3487i 0.892736 0.515421i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 33.0617i 1.18456i
\(780\) 0 0
\(781\) 17.8817 0.639856
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.16420 + 0.672153i −0.0415522 + 0.0239902i
\(786\) 0 0
\(787\) −6.55243 + 3.78305i −0.233569 + 0.134851i −0.612217 0.790689i \(-0.709722\pi\)
0.378648 + 0.925541i \(0.376389\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.38467 + 12.7906i 0.262237 + 0.454208i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.03362 + 6.98643i −0.142878 + 0.247472i −0.928579 0.371134i \(-0.878969\pi\)
0.785701 + 0.618606i \(0.212302\pi\)
\(798\) 0 0
\(799\) −5.52875 9.57608i −0.195593 0.338777i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.1906 + 33.2391i −0.677222 + 1.17298i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.0849492 + 0.0490454i 0.00298665 + 0.00172435i 0.501493 0.865162i \(-0.332784\pi\)
−0.498506 + 0.866886i \(0.666118\pi\)
\(810\) 0 0
\(811\) 30.3085i 1.06428i 0.846658 + 0.532138i \(0.178611\pi\)
−0.846658 + 0.532138i \(0.821389\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.402831 0.697724i −0.0141106 0.0244402i
\(816\) 0 0
\(817\) 6.21853 + 3.59027i 0.217559 + 0.125608i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.5499 + 11.2871i 0.682295 + 0.393923i 0.800719 0.599040i \(-0.204451\pi\)
−0.118424 + 0.992963i \(0.537784\pi\)
\(822\) 0 0
\(823\) 12.2655 + 21.2445i 0.427549 + 0.740536i 0.996655 0.0817282i \(-0.0260439\pi\)
−0.569106 + 0.822264i \(0.692711\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 40.3057i 1.40157i −0.713375 0.700783i \(-0.752834\pi\)
0.713375 0.700783i \(-0.247166\pi\)
\(828\) 0 0
\(829\) 46.8081 + 27.0247i 1.62571 + 0.938605i 0.985353 + 0.170529i \(0.0545478\pi\)
0.640359 + 0.768076i \(0.278786\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.350900 + 0.607777i −0.0121434 + 0.0210330i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.8650 20.5507i −0.409624 0.709489i 0.585224 0.810872i \(-0.301007\pi\)
−0.994847 + 0.101383i \(0.967673\pi\)
\(840\) 0 0
\(841\) 37.6478 65.2079i 1.29820 2.24855i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.582803 + 1.00944i 0.0200490 + 0.0347259i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.43540 + 0.828731i −0.0492050 + 0.0284085i
\(852\) 0 0
\(853\) −48.0748 + 27.7560i −1.64605 + 0.950347i −0.667429 + 0.744673i \(0.732605\pi\)
−0.978621 + 0.205674i \(0.934061\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.6097 1.04561 0.522803 0.852453i \(-0.324886\pi\)
0.522803 + 0.852453i \(0.324886\pi\)
\(858\) 0 0
\(859\) 42.1401i 1.43780i −0.695113 0.718900i \(-0.744646\pi\)
0.695113 0.718900i \(-0.255354\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.7782 + 13.1510i −0.775379 + 0.447665i −0.834790 0.550568i \(-0.814411\pi\)
0.0594112 + 0.998234i \(0.481078\pi\)
\(864\) 0 0
\(865\) −0.0935118 + 0.161967i −0.00317950 + 0.00550705i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.37504 2.52593i −0.148413 0.0856863i
\(870\) 0 0
\(871\) 28.0211i 0.949460i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 35.7066 1.20573 0.602863 0.797845i \(-0.294027\pi\)
0.602863 + 0.797845i \(0.294027\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.4482 −0.419392 −0.209696 0.977767i \(-0.567247\pi\)
−0.209696 + 0.977767i \(0.567247\pi\)
\(882\) 0 0
\(883\) 2.35637 0.0792982 0.0396491 0.999214i \(-0.487376\pi\)
0.0396491 + 0.999214i \(0.487376\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.4597 −1.12347 −0.561734 0.827318i \(-0.689866\pi\)
−0.561734 + 0.827318i \(0.689866\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 14.6505i 0.490261i
\(894\) 0 0
\(895\) −0.386333 0.223049i −0.0129137 0.00745572i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.3416 50.8212i 0.978597 1.69498i
\(900\) 0 0
\(901\) 39.6468 22.8901i 1.32083 0.762579i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.22817i 0.0408259i
\(906\) 0 0
\(907\) −0.935925 −0.0310769 −0.0155384 0.999879i \(-0.504946\pi\)
−0.0155384 + 0.999879i \(0.504946\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.8739 + 16.6703i −0.956634 + 0.552313i −0.895136 0.445794i \(-0.852921\pi\)
−0.0614988 + 0.998107i \(0.519588\pi\)
\(912\) 0 0
\(913\) 60.5995 34.9871i 2.00555 1.15791i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.73484 3.00483i −0.0572270 0.0991200i 0.835993 0.548741i \(-0.184893\pi\)
−0.893220 + 0.449621i \(0.851559\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.82603 15.2871i 0.290512 0.503182i
\(924\) 0 0
\(925\) −1.77036 3.06635i −0.0582090 0.100821i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.57680 13.1234i 0.248587 0.430565i −0.714547 0.699587i \(-0.753367\pi\)
0.963134 + 0.269022i \(0.0867005\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.34772 0.778108i −0.0440752 0.0254468i
\(936\) 0 0
\(937\) 33.6651i 1.09979i −0.835233 0.549896i \(-0.814667\pi\)
0.835233 0.549896i \(-0.185333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −18.8980 32.7323i −0.616058 1.06704i −0.990198 0.139671i \(-0.955395\pi\)
0.374140 0.927372i \(-0.377938\pi\)
\(942\) 0 0
\(943\) 13.3589 + 7.71277i 0.435026 + 0.251162i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.47426 5.46997i −0.307872 0.177750i 0.338102 0.941110i \(-0.390215\pi\)
−0.645974 + 0.763360i \(0.723548\pi\)
\(948\) 0 0
\(949\) 18.9442 + 32.8123i 0.614955 + 1.06513i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.0914i 0.359284i −0.983732 0.179642i \(-0.942506\pi\)
0.983732 0.179642i \(-0.0574939\pi\)
\(954\) 0 0
\(955\) 0.527646 + 0.304637i 0.0170742 + 0.00985781i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00942 1.74838i 0.0325621 0.0563992i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.0274384 0.0475248i −0.000883275 0.00152988i
\(966\) 0 0
\(967\) 20.1446 34.8915i 0.647807 1.12203i −0.335839 0.941920i \(-0.609020\pi\)
0.983646 0.180115i \(-0.0576470\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.8458 + 41.3021i 0.765248 + 1.32545i 0.940115 + 0.340856i \(0.110717\pi\)
−0.174867 + 0.984592i \(0.555950\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.4540 8.34504i 0.462426 0.266982i −0.250638 0.968081i \(-0.580640\pi\)
0.713064 + 0.701099i \(0.247307\pi\)
\(978\) 0 0
\(979\) 14.1563 8.17314i 0.452437 0.261215i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33.8509 1.07968 0.539838 0.841769i \(-0.318485\pi\)
0.539838 + 0.841769i \(0.318485\pi\)
\(984\) 0 0
\(985\) 1.03200i 0.0328821i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.90137 + 1.67511i −0.0922583 + 0.0532653i
\(990\) 0 0
\(991\) −4.09775 + 7.09751i −0.130169 + 0.225460i −0.923742 0.383016i \(-0.874885\pi\)
0.793572 + 0.608476i \(0.208219\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.62454 0.937928i −0.0515014 0.0297343i
\(996\) 0 0
\(997\) 21.6380i 0.685282i 0.939466 + 0.342641i \(0.111321\pi\)
−0.939466 + 0.342641i \(0.888679\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.bm.a.2285.4 16
3.2 odd 2 1764.2.bm.a.1697.6 16
7.2 even 3 756.2.w.a.341.5 16
7.3 odd 6 5292.2.x.b.881.4 16
7.4 even 3 5292.2.x.a.881.5 16
7.5 odd 6 5292.2.w.b.1097.4 16
7.6 odd 2 756.2.bm.a.17.5 16
9.2 odd 6 5292.2.w.b.521.4 16
9.7 even 3 1764.2.w.b.1109.8 16
21.2 odd 6 252.2.w.a.5.1 16
21.5 even 6 1764.2.w.b.509.8 16
21.11 odd 6 1764.2.x.a.293.5 16
21.17 even 6 1764.2.x.b.293.4 16
21.20 even 2 252.2.bm.a.185.3 yes 16
28.23 odd 6 3024.2.ca.d.2609.5 16
28.27 even 2 3024.2.df.d.17.5 16
63.2 odd 6 756.2.bm.a.89.5 16
63.11 odd 6 5292.2.x.b.4409.4 16
63.13 odd 6 2268.2.t.b.1781.4 16
63.16 even 3 252.2.bm.a.173.3 yes 16
63.20 even 6 756.2.w.a.521.5 16
63.23 odd 6 2268.2.t.b.2105.4 16
63.25 even 3 1764.2.x.b.1469.4 16
63.34 odd 6 252.2.w.a.101.1 yes 16
63.38 even 6 5292.2.x.a.4409.5 16
63.41 even 6 2268.2.t.a.1781.5 16
63.47 even 6 inner 5292.2.bm.a.4625.4 16
63.52 odd 6 1764.2.x.a.1469.5 16
63.58 even 3 2268.2.t.a.2105.5 16
63.61 odd 6 1764.2.bm.a.1685.6 16
84.23 even 6 1008.2.ca.d.257.8 16
84.83 odd 2 1008.2.df.d.689.6 16
252.79 odd 6 1008.2.df.d.929.6 16
252.83 odd 6 3024.2.ca.d.2033.5 16
252.191 even 6 3024.2.df.d.1601.5 16
252.223 even 6 1008.2.ca.d.353.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.1 16 21.2 odd 6
252.2.w.a.101.1 yes 16 63.34 odd 6
252.2.bm.a.173.3 yes 16 63.16 even 3
252.2.bm.a.185.3 yes 16 21.20 even 2
756.2.w.a.341.5 16 7.2 even 3
756.2.w.a.521.5 16 63.20 even 6
756.2.bm.a.17.5 16 7.6 odd 2
756.2.bm.a.89.5 16 63.2 odd 6
1008.2.ca.d.257.8 16 84.23 even 6
1008.2.ca.d.353.8 16 252.223 even 6
1008.2.df.d.689.6 16 84.83 odd 2
1008.2.df.d.929.6 16 252.79 odd 6
1764.2.w.b.509.8 16 21.5 even 6
1764.2.w.b.1109.8 16 9.7 even 3
1764.2.x.a.293.5 16 21.11 odd 6
1764.2.x.a.1469.5 16 63.52 odd 6
1764.2.x.b.293.4 16 21.17 even 6
1764.2.x.b.1469.4 16 63.25 even 3
1764.2.bm.a.1685.6 16 63.61 odd 6
1764.2.bm.a.1697.6 16 3.2 odd 2
2268.2.t.a.1781.5 16 63.41 even 6
2268.2.t.a.2105.5 16 63.58 even 3
2268.2.t.b.1781.4 16 63.13 odd 6
2268.2.t.b.2105.4 16 63.23 odd 6
3024.2.ca.d.2033.5 16 252.83 odd 6
3024.2.ca.d.2609.5 16 28.23 odd 6
3024.2.df.d.17.5 16 28.27 even 2
3024.2.df.d.1601.5 16 252.191 even 6
5292.2.w.b.521.4 16 9.2 odd 6
5292.2.w.b.1097.4 16 7.5 odd 6
5292.2.x.a.881.5 16 7.4 even 3
5292.2.x.a.4409.5 16 63.38 even 6
5292.2.x.b.881.4 16 7.3 odd 6
5292.2.x.b.4409.4 16 63.11 odd 6
5292.2.bm.a.2285.4 16 1.1 even 1 trivial
5292.2.bm.a.4625.4 16 63.47 even 6 inner