Properties

Label 5290.2.a.bb.1.3
Level $5290$
Weight $2$
Character 5290.1
Self dual yes
Analytic conductor $42.241$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5290,2,Mod(1,5290)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5290, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5290.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5290 = 2 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5290.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.2408626693\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4752.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 3x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.219687\) of defining polynomial
Character \(\chi\) \(=\) 5290.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.60020 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.60020 q^{6} +2.60020 q^{7} +1.00000 q^{8} -0.439374 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.60020 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.60020 q^{6} +2.60020 q^{7} +1.00000 q^{8} -0.439374 q^{9} +1.00000 q^{10} -0.439374 q^{11} +1.60020 q^{12} -1.20039 q^{13} +2.60020 q^{14} +1.60020 q^{15} +1.00000 q^{16} -2.33225 q^{17} -0.439374 q^{18} +2.97103 q^{19} +1.00000 q^{20} +4.16082 q^{21} -0.439374 q^{22} +1.60020 q^{24} +1.00000 q^{25} -1.20039 q^{26} -5.50367 q^{27} +2.60020 q^{28} +3.47894 q^{29} +1.60020 q^{30} -0.600196 q^{31} +1.00000 q^{32} -0.703084 q^{33} -2.33225 q^{34} +2.60020 q^{35} -0.439374 q^{36} +7.20039 q^{37} +2.97103 q^{38} -1.92086 q^{39} +1.00000 q^{40} +8.56797 q^{41} +4.16082 q^{42} +10.1971 q^{43} -0.439374 q^{44} -0.439374 q^{45} -0.960431 q^{47} +1.60020 q^{48} -0.238982 q^{49} +1.00000 q^{50} -3.73205 q^{51} -1.20039 q^{52} +8.60020 q^{53} -5.50367 q^{54} -0.439374 q^{55} +2.60020 q^{56} +4.75423 q^{57} +3.47894 q^{58} +0.824336 q^{59} +1.60020 q^{60} +4.26371 q^{61} -0.600196 q^{62} -1.14246 q^{63} +1.00000 q^{64} -1.20039 q^{65} -0.703084 q^{66} +11.2901 q^{67} -2.33225 q^{68} +2.60020 q^{70} +7.52840 q^{71} -0.439374 q^{72} -16.0716 q^{73} +7.20039 q^{74} +1.60020 q^{75} +2.97103 q^{76} -1.14246 q^{77} -1.92086 q^{78} +3.03957 q^{79} +1.00000 q^{80} -7.48883 q^{81} +8.56797 q^{82} +3.84342 q^{83} +4.16082 q^{84} -2.33225 q^{85} +10.1971 q^{86} +5.56699 q^{87} -0.439374 q^{88} +9.98261 q^{89} -0.439374 q^{90} -3.12125 q^{91} -0.960431 q^{93} -0.960431 q^{94} +2.97103 q^{95} +1.60020 q^{96} +6.92820 q^{97} -0.238982 q^{98} +0.193049 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + 4 q^{5} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + 4 q^{5} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 4 q^{9} + 4 q^{10} + 4 q^{11} + 2 q^{12} + 4 q^{13} + 6 q^{14} + 2 q^{15} + 4 q^{16} + 2 q^{17} + 4 q^{18} + 8 q^{19} + 4 q^{20} + 18 q^{21} + 4 q^{22} + 2 q^{24} + 4 q^{25} + 4 q^{26} + 2 q^{27} + 6 q^{28} - 2 q^{29} + 2 q^{30} + 2 q^{31} + 4 q^{32} + 8 q^{33} + 2 q^{34} + 6 q^{35} + 4 q^{36} + 20 q^{37} + 8 q^{38} - 28 q^{39} + 4 q^{40} - 8 q^{41} + 18 q^{42} - 2 q^{43} + 4 q^{44} + 4 q^{45} - 14 q^{47} + 2 q^{48} - 4 q^{49} + 4 q^{50} - 8 q^{51} + 4 q^{52} + 30 q^{53} + 2 q^{54} + 4 q^{55} + 6 q^{56} - 38 q^{57} - 2 q^{58} + 4 q^{59} + 2 q^{60} + 12 q^{61} + 2 q^{62} + 12 q^{63} + 4 q^{64} + 4 q^{65} + 8 q^{66} + 2 q^{67} + 2 q^{68} + 6 q^{70} - 2 q^{71} + 4 q^{72} + 2 q^{73} + 20 q^{74} + 2 q^{75} + 8 q^{76} + 12 q^{77} - 28 q^{78} + 2 q^{79} + 4 q^{80} - 8 q^{81} - 8 q^{82} + 26 q^{83} + 18 q^{84} + 2 q^{85} - 2 q^{86} + 2 q^{87} + 4 q^{88} + 4 q^{90} - 24 q^{91} - 14 q^{93} - 14 q^{94} + 8 q^{95} + 2 q^{96} - 4 q^{98} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.60020 0.923873 0.461937 0.886913i \(-0.347155\pi\)
0.461937 + 0.886913i \(0.347155\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.60020 0.653277
\(7\) 2.60020 0.982782 0.491391 0.870939i \(-0.336489\pi\)
0.491391 + 0.870939i \(0.336489\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.439374 −0.146458
\(10\) 1.00000 0.316228
\(11\) −0.439374 −0.132476 −0.0662381 0.997804i \(-0.521100\pi\)
−0.0662381 + 0.997804i \(0.521100\pi\)
\(12\) 1.60020 0.461937
\(13\) −1.20039 −0.332929 −0.166464 0.986047i \(-0.553235\pi\)
−0.166464 + 0.986047i \(0.553235\pi\)
\(14\) 2.60020 0.694932
\(15\) 1.60020 0.413169
\(16\) 1.00000 0.250000
\(17\) −2.33225 −0.565653 −0.282826 0.959171i \(-0.591272\pi\)
−0.282826 + 0.959171i \(0.591272\pi\)
\(18\) −0.439374 −0.103561
\(19\) 2.97103 0.681602 0.340801 0.940136i \(-0.389302\pi\)
0.340801 + 0.940136i \(0.389302\pi\)
\(20\) 1.00000 0.223607
\(21\) 4.16082 0.907966
\(22\) −0.439374 −0.0936748
\(23\) 0 0
\(24\) 1.60020 0.326639
\(25\) 1.00000 0.200000
\(26\) −1.20039 −0.235416
\(27\) −5.50367 −1.05918
\(28\) 2.60020 0.491391
\(29\) 3.47894 0.646024 0.323012 0.946395i \(-0.395305\pi\)
0.323012 + 0.946395i \(0.395305\pi\)
\(30\) 1.60020 0.292154
\(31\) −0.600196 −0.107798 −0.0538992 0.998546i \(-0.517165\pi\)
−0.0538992 + 0.998546i \(0.517165\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.703084 −0.122391
\(34\) −2.33225 −0.399977
\(35\) 2.60020 0.439513
\(36\) −0.439374 −0.0732290
\(37\) 7.20039 1.18374 0.591869 0.806035i \(-0.298390\pi\)
0.591869 + 0.806035i \(0.298390\pi\)
\(38\) 2.97103 0.481965
\(39\) −1.92086 −0.307584
\(40\) 1.00000 0.158114
\(41\) 8.56797 1.33809 0.669046 0.743221i \(-0.266703\pi\)
0.669046 + 0.743221i \(0.266703\pi\)
\(42\) 4.16082 0.642029
\(43\) 10.1971 1.55505 0.777524 0.628853i \(-0.216475\pi\)
0.777524 + 0.628853i \(0.216475\pi\)
\(44\) −0.439374 −0.0662381
\(45\) −0.439374 −0.0654980
\(46\) 0 0
\(47\) −0.960431 −0.140093 −0.0700466 0.997544i \(-0.522315\pi\)
−0.0700466 + 0.997544i \(0.522315\pi\)
\(48\) 1.60020 0.230968
\(49\) −0.238982 −0.0341403
\(50\) 1.00000 0.141421
\(51\) −3.73205 −0.522592
\(52\) −1.20039 −0.166464
\(53\) 8.60020 1.18133 0.590664 0.806918i \(-0.298866\pi\)
0.590664 + 0.806918i \(0.298866\pi\)
\(54\) −5.50367 −0.748955
\(55\) −0.439374 −0.0592451
\(56\) 2.60020 0.347466
\(57\) 4.75423 0.629714
\(58\) 3.47894 0.456808
\(59\) 0.824336 0.107319 0.0536597 0.998559i \(-0.482911\pi\)
0.0536597 + 0.998559i \(0.482911\pi\)
\(60\) 1.60020 0.206584
\(61\) 4.26371 0.545912 0.272956 0.962026i \(-0.411999\pi\)
0.272956 + 0.962026i \(0.411999\pi\)
\(62\) −0.600196 −0.0762249
\(63\) −1.14246 −0.143936
\(64\) 1.00000 0.125000
\(65\) −1.20039 −0.148890
\(66\) −0.703084 −0.0865437
\(67\) 11.2901 1.37931 0.689655 0.724138i \(-0.257762\pi\)
0.689655 + 0.724138i \(0.257762\pi\)
\(68\) −2.33225 −0.282826
\(69\) 0 0
\(70\) 2.60020 0.310783
\(71\) 7.52840 0.893457 0.446728 0.894670i \(-0.352589\pi\)
0.446728 + 0.894670i \(0.352589\pi\)
\(72\) −0.439374 −0.0517807
\(73\) −16.0716 −1.88104 −0.940522 0.339734i \(-0.889663\pi\)
−0.940522 + 0.339734i \(0.889663\pi\)
\(74\) 7.20039 0.837028
\(75\) 1.60020 0.184775
\(76\) 2.97103 0.340801
\(77\) −1.14246 −0.130195
\(78\) −1.92086 −0.217495
\(79\) 3.03957 0.341978 0.170989 0.985273i \(-0.445304\pi\)
0.170989 + 0.985273i \(0.445304\pi\)
\(80\) 1.00000 0.111803
\(81\) −7.48883 −0.832092
\(82\) 8.56797 0.946174
\(83\) 3.84342 0.421870 0.210935 0.977500i \(-0.432349\pi\)
0.210935 + 0.977500i \(0.432349\pi\)
\(84\) 4.16082 0.453983
\(85\) −2.33225 −0.252968
\(86\) 10.1971 1.09958
\(87\) 5.56699 0.596844
\(88\) −0.439374 −0.0468374
\(89\) 9.98261 1.05815 0.529077 0.848574i \(-0.322538\pi\)
0.529077 + 0.848574i \(0.322538\pi\)
\(90\) −0.439374 −0.0463141
\(91\) −3.12125 −0.327196
\(92\) 0 0
\(93\) −0.960431 −0.0995920
\(94\) −0.960431 −0.0990608
\(95\) 2.97103 0.304822
\(96\) 1.60020 0.163319
\(97\) 6.92820 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(98\) −0.238982 −0.0241409
\(99\) 0.193049 0.0194022
\(100\) 1.00000 0.100000
\(101\) −9.32899 −0.928269 −0.464134 0.885765i \(-0.653635\pi\)
−0.464134 + 0.885765i \(0.653635\pi\)
\(102\) −3.73205 −0.369528
\(103\) −19.0073 −1.87285 −0.936425 0.350869i \(-0.885886\pi\)
−0.936425 + 0.350869i \(0.885886\pi\)
\(104\) −1.20039 −0.117708
\(105\) 4.16082 0.406055
\(106\) 8.60020 0.835325
\(107\) −13.9935 −1.35280 −0.676400 0.736534i \(-0.736461\pi\)
−0.676400 + 0.736534i \(0.736461\pi\)
\(108\) −5.50367 −0.529591
\(109\) 3.51753 0.336919 0.168459 0.985709i \(-0.446121\pi\)
0.168459 + 0.985709i \(0.446121\pi\)
\(110\) −0.439374 −0.0418926
\(111\) 11.5220 1.09362
\(112\) 2.60020 0.245695
\(113\) 6.02799 0.567065 0.283533 0.958963i \(-0.408494\pi\)
0.283533 + 0.958963i \(0.408494\pi\)
\(114\) 4.75423 0.445275
\(115\) 0 0
\(116\) 3.47894 0.323012
\(117\) 0.527420 0.0487600
\(118\) 0.824336 0.0758863
\(119\) −6.06430 −0.555913
\(120\) 1.60020 0.146077
\(121\) −10.8070 −0.982450
\(122\) 4.26371 0.386018
\(123\) 13.7104 1.23623
\(124\) −0.600196 −0.0538992
\(125\) 1.00000 0.0894427
\(126\) −1.14246 −0.101778
\(127\) −17.0890 −1.51641 −0.758203 0.652019i \(-0.773922\pi\)
−0.758203 + 0.652019i \(0.773922\pi\)
\(128\) 1.00000 0.0883883
\(129\) 16.3174 1.43667
\(130\) −1.20039 −0.105281
\(131\) 9.25480 0.808596 0.404298 0.914627i \(-0.367516\pi\)
0.404298 + 0.914627i \(0.367516\pi\)
\(132\) −0.703084 −0.0611956
\(133\) 7.72527 0.669866
\(134\) 11.2901 0.975319
\(135\) −5.50367 −0.473681
\(136\) −2.33225 −0.199988
\(137\) −20.0126 −1.70979 −0.854894 0.518802i \(-0.826378\pi\)
−0.854894 + 0.518802i \(0.826378\pi\)
\(138\) 0 0
\(139\) −15.7050 −1.33208 −0.666042 0.745914i \(-0.732013\pi\)
−0.666042 + 0.745914i \(0.732013\pi\)
\(140\) 2.60020 0.219757
\(141\) −1.53688 −0.129428
\(142\) 7.52840 0.631769
\(143\) 0.527420 0.0441051
\(144\) −0.439374 −0.0366145
\(145\) 3.47894 0.288911
\(146\) −16.0716 −1.33010
\(147\) −0.382419 −0.0315413
\(148\) 7.20039 0.591869
\(149\) −3.65461 −0.299397 −0.149699 0.988732i \(-0.547830\pi\)
−0.149699 + 0.988732i \(0.547830\pi\)
\(150\) 1.60020 0.130655
\(151\) 8.79309 0.715571 0.357786 0.933804i \(-0.383532\pi\)
0.357786 + 0.933804i \(0.383532\pi\)
\(152\) 2.97103 0.240983
\(153\) 1.02473 0.0828443
\(154\) −1.14246 −0.0920619
\(155\) −0.600196 −0.0482089
\(156\) −1.92086 −0.153792
\(157\) −5.59270 −0.446346 −0.223173 0.974779i \(-0.571641\pi\)
−0.223173 + 0.974779i \(0.571641\pi\)
\(158\) 3.03957 0.241815
\(159\) 13.7620 1.09140
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) −7.48883 −0.588378
\(163\) 11.2498 0.881156 0.440578 0.897714i \(-0.354774\pi\)
0.440578 + 0.897714i \(0.354774\pi\)
\(164\) 8.56797 0.669046
\(165\) −0.703084 −0.0547350
\(166\) 3.84342 0.298307
\(167\) −20.0257 −1.54964 −0.774818 0.632185i \(-0.782158\pi\)
−0.774818 + 0.632185i \(0.782158\pi\)
\(168\) 4.16082 0.321014
\(169\) −11.5591 −0.889159
\(170\) −2.33225 −0.178875
\(171\) −1.30539 −0.0998260
\(172\) 10.1971 0.777524
\(173\) −1.08903 −0.0827971 −0.0413985 0.999143i \(-0.513181\pi\)
−0.0413985 + 0.999143i \(0.513181\pi\)
\(174\) 5.56699 0.422032
\(175\) 2.60020 0.196556
\(176\) −0.439374 −0.0331190
\(177\) 1.31910 0.0991496
\(178\) 9.98261 0.748229
\(179\) 17.2746 1.29116 0.645581 0.763692i \(-0.276615\pi\)
0.645581 + 0.763692i \(0.276615\pi\)
\(180\) −0.439374 −0.0327490
\(181\) −26.4155 −1.96345 −0.981723 0.190315i \(-0.939049\pi\)
−0.981723 + 0.190315i \(0.939049\pi\)
\(182\) −3.12125 −0.231363
\(183\) 6.82277 0.504354
\(184\) 0 0
\(185\) 7.20039 0.529383
\(186\) −0.960431 −0.0704222
\(187\) 1.02473 0.0749355
\(188\) −0.960431 −0.0700466
\(189\) −14.3106 −1.04094
\(190\) 2.97103 0.215541
\(191\) 16.6323 1.20347 0.601734 0.798696i \(-0.294477\pi\)
0.601734 + 0.798696i \(0.294477\pi\)
\(192\) 1.60020 0.115484
\(193\) −9.23996 −0.665107 −0.332553 0.943084i \(-0.607910\pi\)
−0.332553 + 0.943084i \(0.607910\pi\)
\(194\) 6.92820 0.497416
\(195\) −1.92086 −0.137556
\(196\) −0.238982 −0.0170702
\(197\) 7.52204 0.535923 0.267961 0.963430i \(-0.413650\pi\)
0.267961 + 0.963430i \(0.413650\pi\)
\(198\) 0.193049 0.0137194
\(199\) 2.23996 0.158787 0.0793933 0.996843i \(-0.474702\pi\)
0.0793933 + 0.996843i \(0.474702\pi\)
\(200\) 1.00000 0.0707107
\(201\) 18.0664 1.27431
\(202\) −9.32899 −0.656385
\(203\) 9.04593 0.634900
\(204\) −3.73205 −0.261296
\(205\) 8.56797 0.598413
\(206\) −19.0073 −1.32430
\(207\) 0 0
\(208\) −1.20039 −0.0832322
\(209\) −1.30539 −0.0902960
\(210\) 4.16082 0.287124
\(211\) 10.8946 0.750013 0.375006 0.927022i \(-0.377640\pi\)
0.375006 + 0.927022i \(0.377640\pi\)
\(212\) 8.60020 0.590664
\(213\) 12.0469 0.825441
\(214\) −13.9935 −0.956575
\(215\) 10.1971 0.695439
\(216\) −5.50367 −0.374477
\(217\) −1.56063 −0.105942
\(218\) 3.51753 0.238237
\(219\) −25.7178 −1.73785
\(220\) −0.439374 −0.0296226
\(221\) 2.79961 0.188322
\(222\) 11.5220 0.773308
\(223\) −11.2414 −0.752778 −0.376389 0.926462i \(-0.622834\pi\)
−0.376389 + 0.926462i \(0.622834\pi\)
\(224\) 2.60020 0.173733
\(225\) −0.439374 −0.0292916
\(226\) 6.02799 0.400976
\(227\) −5.21099 −0.345866 −0.172933 0.984934i \(-0.555324\pi\)
−0.172933 + 0.984934i \(0.555324\pi\)
\(228\) 4.75423 0.314857
\(229\) −10.4542 −0.690834 −0.345417 0.938449i \(-0.612263\pi\)
−0.345417 + 0.938449i \(0.612263\pi\)
\(230\) 0 0
\(231\) −1.82816 −0.120284
\(232\) 3.47894 0.228404
\(233\) 9.44769 0.618939 0.309470 0.950909i \(-0.399849\pi\)
0.309470 + 0.950909i \(0.399849\pi\)
\(234\) 0.527420 0.0344786
\(235\) −0.960431 −0.0626516
\(236\) 0.824336 0.0536597
\(237\) 4.86391 0.315945
\(238\) −6.06430 −0.393090
\(239\) −15.9355 −1.03078 −0.515392 0.856954i \(-0.672354\pi\)
−0.515392 + 0.856954i \(0.672354\pi\)
\(240\) 1.60020 0.103292
\(241\) −25.4618 −1.64014 −0.820070 0.572263i \(-0.806066\pi\)
−0.820070 + 0.572263i \(0.806066\pi\)
\(242\) −10.8070 −0.694697
\(243\) 4.52742 0.290434
\(244\) 4.26371 0.272956
\(245\) −0.238982 −0.0152680
\(246\) 13.7104 0.874145
\(247\) −3.56640 −0.226925
\(248\) −0.600196 −0.0381125
\(249\) 6.15022 0.389754
\(250\) 1.00000 0.0632456
\(251\) −12.0189 −0.758628 −0.379314 0.925268i \(-0.623840\pi\)
−0.379314 + 0.925268i \(0.623840\pi\)
\(252\) −1.14246 −0.0719681
\(253\) 0 0
\(254\) −17.0890 −1.07226
\(255\) −3.73205 −0.233710
\(256\) 1.00000 0.0625000
\(257\) −10.2350 −0.638442 −0.319221 0.947680i \(-0.603421\pi\)
−0.319221 + 0.947680i \(0.603421\pi\)
\(258\) 16.3174 1.01588
\(259\) 18.7224 1.16335
\(260\) −1.20039 −0.0744451
\(261\) −1.52856 −0.0946153
\(262\) 9.25480 0.571764
\(263\) −5.51356 −0.339981 −0.169990 0.985446i \(-0.554374\pi\)
−0.169990 + 0.985446i \(0.554374\pi\)
\(264\) −0.703084 −0.0432718
\(265\) 8.60020 0.528306
\(266\) 7.72527 0.473667
\(267\) 15.9741 0.977601
\(268\) 11.2901 0.689655
\(269\) −29.2236 −1.78179 −0.890896 0.454208i \(-0.849922\pi\)
−0.890896 + 0.454208i \(0.849922\pi\)
\(270\) −5.50367 −0.334943
\(271\) −13.6204 −0.827382 −0.413691 0.910417i \(-0.635761\pi\)
−0.413691 + 0.910417i \(0.635761\pi\)
\(272\) −2.33225 −0.141413
\(273\) −4.99461 −0.302288
\(274\) −20.0126 −1.20900
\(275\) −0.439374 −0.0264952
\(276\) 0 0
\(277\) −7.99550 −0.480403 −0.240201 0.970723i \(-0.577214\pi\)
−0.240201 + 0.970723i \(0.577214\pi\)
\(278\) −15.7050 −0.941926
\(279\) 0.263710 0.0157879
\(280\) 2.60020 0.155391
\(281\) −31.5993 −1.88506 −0.942529 0.334125i \(-0.891559\pi\)
−0.942529 + 0.334125i \(0.891559\pi\)
\(282\) −1.53688 −0.0915197
\(283\) −5.73841 −0.341113 −0.170557 0.985348i \(-0.554557\pi\)
−0.170557 + 0.985348i \(0.554557\pi\)
\(284\) 7.52840 0.446728
\(285\) 4.75423 0.281617
\(286\) 0.527420 0.0311870
\(287\) 22.2784 1.31505
\(288\) −0.439374 −0.0258903
\(289\) −11.5606 −0.680037
\(290\) 3.47894 0.204291
\(291\) 11.0865 0.649901
\(292\) −16.0716 −0.940522
\(293\) 15.1425 0.884632 0.442316 0.896859i \(-0.354157\pi\)
0.442316 + 0.896859i \(0.354157\pi\)
\(294\) −0.382419 −0.0223031
\(295\) 0.824336 0.0479947
\(296\) 7.20039 0.418514
\(297\) 2.41817 0.140316
\(298\) −3.65461 −0.211706
\(299\) 0 0
\(300\) 1.60020 0.0923873
\(301\) 26.5145 1.52827
\(302\) 8.79309 0.505985
\(303\) −14.9282 −0.857603
\(304\) 2.97103 0.170400
\(305\) 4.26371 0.244139
\(306\) 1.02473 0.0585798
\(307\) 27.1369 1.54879 0.774393 0.632705i \(-0.218055\pi\)
0.774393 + 0.632705i \(0.218055\pi\)
\(308\) −1.14246 −0.0650976
\(309\) −30.4155 −1.73028
\(310\) −0.600196 −0.0340888
\(311\) −17.5991 −0.997951 −0.498976 0.866616i \(-0.666290\pi\)
−0.498976 + 0.866616i \(0.666290\pi\)
\(312\) −1.92086 −0.108747
\(313\) −4.90021 −0.276977 −0.138488 0.990364i \(-0.544224\pi\)
−0.138488 + 0.990364i \(0.544224\pi\)
\(314\) −5.59270 −0.315614
\(315\) −1.14246 −0.0643702
\(316\) 3.03957 0.170989
\(317\) 26.3601 1.48053 0.740265 0.672316i \(-0.234700\pi\)
0.740265 + 0.672316i \(0.234700\pi\)
\(318\) 13.7620 0.771734
\(319\) −1.52856 −0.0855827
\(320\) 1.00000 0.0559017
\(321\) −22.3923 −1.24982
\(322\) 0 0
\(323\) −6.92918 −0.385550
\(324\) −7.48883 −0.416046
\(325\) −1.20039 −0.0665857
\(326\) 11.2498 0.623071
\(327\) 5.62874 0.311270
\(328\) 8.56797 0.473087
\(329\) −2.49731 −0.137681
\(330\) −0.703084 −0.0387035
\(331\) 28.7213 1.57866 0.789332 0.613966i \(-0.210427\pi\)
0.789332 + 0.613966i \(0.210427\pi\)
\(332\) 3.84342 0.210935
\(333\) −3.16366 −0.173368
\(334\) −20.0257 −1.09576
\(335\) 11.2901 0.616846
\(336\) 4.16082 0.226991
\(337\) −22.5206 −1.22678 −0.613389 0.789781i \(-0.710194\pi\)
−0.613389 + 0.789781i \(0.710194\pi\)
\(338\) −11.5591 −0.628730
\(339\) 9.64596 0.523897
\(340\) −2.33225 −0.126484
\(341\) 0.263710 0.0142807
\(342\) −1.30539 −0.0705876
\(343\) −18.8228 −1.01633
\(344\) 10.1971 0.549792
\(345\) 0 0
\(346\) −1.08903 −0.0585464
\(347\) 23.3620 1.25414 0.627070 0.778963i \(-0.284254\pi\)
0.627070 + 0.778963i \(0.284254\pi\)
\(348\) 5.56699 0.298422
\(349\) −17.2645 −0.924149 −0.462075 0.886841i \(-0.652895\pi\)
−0.462075 + 0.886841i \(0.652895\pi\)
\(350\) 2.60020 0.138986
\(351\) 6.60656 0.352632
\(352\) −0.439374 −0.0234187
\(353\) 21.4457 1.14144 0.570721 0.821144i \(-0.306664\pi\)
0.570721 + 0.821144i \(0.306664\pi\)
\(354\) 1.31910 0.0701094
\(355\) 7.52840 0.399566
\(356\) 9.98261 0.529077
\(357\) −9.70406 −0.513593
\(358\) 17.2746 0.912990
\(359\) −12.9341 −0.682638 −0.341319 0.939948i \(-0.610874\pi\)
−0.341319 + 0.939948i \(0.610874\pi\)
\(360\) −0.439374 −0.0231570
\(361\) −10.1730 −0.535419
\(362\) −26.4155 −1.38837
\(363\) −17.2932 −0.907659
\(364\) −3.12125 −0.163598
\(365\) −16.0716 −0.841228
\(366\) 6.82277 0.356632
\(367\) 8.78672 0.458663 0.229332 0.973348i \(-0.426346\pi\)
0.229332 + 0.973348i \(0.426346\pi\)
\(368\) 0 0
\(369\) −3.76454 −0.195974
\(370\) 7.20039 0.374331
\(371\) 22.3622 1.16099
\(372\) −0.960431 −0.0497960
\(373\) 33.7856 1.74935 0.874676 0.484709i \(-0.161074\pi\)
0.874676 + 0.484709i \(0.161074\pi\)
\(374\) 1.02473 0.0529874
\(375\) 1.60020 0.0826338
\(376\) −0.960431 −0.0495304
\(377\) −4.17609 −0.215080
\(378\) −14.3106 −0.736059
\(379\) −8.61080 −0.442307 −0.221153 0.975239i \(-0.570982\pi\)
−0.221153 + 0.975239i \(0.570982\pi\)
\(380\) 2.97103 0.152411
\(381\) −27.3458 −1.40097
\(382\) 16.6323 0.850981
\(383\) 15.9143 0.813185 0.406592 0.913610i \(-0.366717\pi\)
0.406592 + 0.913610i \(0.366717\pi\)
\(384\) 1.60020 0.0816596
\(385\) −1.14246 −0.0582250
\(386\) −9.23996 −0.470302
\(387\) −4.48035 −0.227749
\(388\) 6.92820 0.351726
\(389\) 1.49183 0.0756387 0.0378193 0.999285i \(-0.487959\pi\)
0.0378193 + 0.999285i \(0.487959\pi\)
\(390\) −1.92086 −0.0972666
\(391\) 0 0
\(392\) −0.238982 −0.0120704
\(393\) 14.8095 0.747040
\(394\) 7.52204 0.378955
\(395\) 3.03957 0.152937
\(396\) 0.193049 0.00970109
\(397\) −18.0766 −0.907238 −0.453619 0.891196i \(-0.649867\pi\)
−0.453619 + 0.891196i \(0.649867\pi\)
\(398\) 2.23996 0.112279
\(399\) 12.3619 0.618871
\(400\) 1.00000 0.0500000
\(401\) 22.5920 1.12819 0.564095 0.825710i \(-0.309225\pi\)
0.564095 + 0.825710i \(0.309225\pi\)
\(402\) 18.0664 0.901071
\(403\) 0.720470 0.0358892
\(404\) −9.32899 −0.464134
\(405\) −7.48883 −0.372123
\(406\) 9.04593 0.448942
\(407\) −3.16366 −0.156817
\(408\) −3.73205 −0.184764
\(409\) 16.3973 0.810792 0.405396 0.914141i \(-0.367134\pi\)
0.405396 + 0.914141i \(0.367134\pi\)
\(410\) 8.56797 0.423142
\(411\) −32.0240 −1.57963
\(412\) −19.0073 −0.936425
\(413\) 2.14344 0.105472
\(414\) 0 0
\(415\) 3.84342 0.188666
\(416\) −1.20039 −0.0588540
\(417\) −25.1311 −1.23068
\(418\) −1.30539 −0.0638489
\(419\) −30.9768 −1.51332 −0.756658 0.653811i \(-0.773169\pi\)
−0.756658 + 0.653811i \(0.773169\pi\)
\(420\) 4.16082 0.203027
\(421\) 0.737698 0.0359532 0.0179766 0.999838i \(-0.494278\pi\)
0.0179766 + 0.999838i \(0.494278\pi\)
\(422\) 10.8946 0.530339
\(423\) 0.421988 0.0205178
\(424\) 8.60020 0.417662
\(425\) −2.33225 −0.113131
\(426\) 12.0469 0.583675
\(427\) 11.0865 0.536512
\(428\) −13.9935 −0.676400
\(429\) 0.843976 0.0407475
\(430\) 10.1971 0.491749
\(431\) 19.3502 0.932066 0.466033 0.884767i \(-0.345683\pi\)
0.466033 + 0.884767i \(0.345683\pi\)
\(432\) −5.50367 −0.264795
\(433\) 15.0954 0.725438 0.362719 0.931899i \(-0.381848\pi\)
0.362719 + 0.931899i \(0.381848\pi\)
\(434\) −1.56063 −0.0749125
\(435\) 5.56699 0.266917
\(436\) 3.51753 0.168459
\(437\) 0 0
\(438\) −25.7178 −1.22884
\(439\) 22.3987 1.06903 0.534515 0.845159i \(-0.320494\pi\)
0.534515 + 0.845159i \(0.320494\pi\)
\(440\) −0.439374 −0.0209463
\(441\) 0.105003 0.00500012
\(442\) 2.79961 0.133164
\(443\) 0.993636 0.0472091 0.0236045 0.999721i \(-0.492486\pi\)
0.0236045 + 0.999721i \(0.492486\pi\)
\(444\) 11.5220 0.546812
\(445\) 9.98261 0.473221
\(446\) −11.2414 −0.532294
\(447\) −5.84809 −0.276605
\(448\) 2.60020 0.122848
\(449\) 39.5737 1.86760 0.933800 0.357795i \(-0.116471\pi\)
0.933800 + 0.357795i \(0.116471\pi\)
\(450\) −0.439374 −0.0207123
\(451\) −3.76454 −0.177265
\(452\) 6.02799 0.283533
\(453\) 14.0707 0.661097
\(454\) −5.21099 −0.244564
\(455\) −3.12125 −0.146327
\(456\) 4.75423 0.222637
\(457\) 3.44290 0.161052 0.0805260 0.996753i \(-0.474340\pi\)
0.0805260 + 0.996753i \(0.474340\pi\)
\(458\) −10.4542 −0.488493
\(459\) 12.8359 0.599129
\(460\) 0 0
\(461\) 8.61308 0.401151 0.200576 0.979678i \(-0.435719\pi\)
0.200576 + 0.979678i \(0.435719\pi\)
\(462\) −1.82816 −0.0850535
\(463\) 0.934724 0.0434403 0.0217202 0.999764i \(-0.493086\pi\)
0.0217202 + 0.999764i \(0.493086\pi\)
\(464\) 3.47894 0.161506
\(465\) −0.960431 −0.0445389
\(466\) 9.44769 0.437656
\(467\) −10.2340 −0.473574 −0.236787 0.971562i \(-0.576094\pi\)
−0.236787 + 0.971562i \(0.576094\pi\)
\(468\) 0.527420 0.0243800
\(469\) 29.3566 1.35556
\(470\) −0.960431 −0.0443014
\(471\) −8.94941 −0.412367
\(472\) 0.824336 0.0379432
\(473\) −4.48035 −0.206007
\(474\) 4.86391 0.223407
\(475\) 2.97103 0.136320
\(476\) −6.06430 −0.277957
\(477\) −3.77870 −0.173015
\(478\) −15.9355 −0.728875
\(479\) −9.83918 −0.449564 −0.224782 0.974409i \(-0.572167\pi\)
−0.224782 + 0.974409i \(0.572167\pi\)
\(480\) 1.60020 0.0730386
\(481\) −8.64329 −0.394100
\(482\) −25.4618 −1.15975
\(483\) 0 0
\(484\) −10.8070 −0.491225
\(485\) 6.92820 0.314594
\(486\) 4.52742 0.205368
\(487\) 0.537855 0.0243726 0.0121863 0.999926i \(-0.496121\pi\)
0.0121863 + 0.999926i \(0.496121\pi\)
\(488\) 4.26371 0.193009
\(489\) 18.0020 0.814077
\(490\) −0.238982 −0.0107961
\(491\) 13.9464 0.629393 0.314696 0.949192i \(-0.398097\pi\)
0.314696 + 0.949192i \(0.398097\pi\)
\(492\) 13.7104 0.618114
\(493\) −8.11375 −0.365425
\(494\) −3.56640 −0.160460
\(495\) 0.193049 0.00867692
\(496\) −0.600196 −0.0269496
\(497\) 19.5753 0.878073
\(498\) 6.15022 0.275598
\(499\) −40.6847 −1.82130 −0.910648 0.413184i \(-0.864417\pi\)
−0.910648 + 0.413184i \(0.864417\pi\)
\(500\) 1.00000 0.0447214
\(501\) −32.0450 −1.43167
\(502\) −12.0189 −0.536431
\(503\) 16.8425 0.750972 0.375486 0.926828i \(-0.377476\pi\)
0.375486 + 0.926828i \(0.377476\pi\)
\(504\) −1.14246 −0.0508891
\(505\) −9.32899 −0.415134
\(506\) 0 0
\(507\) −18.4968 −0.821470
\(508\) −17.0890 −0.758203
\(509\) −15.9871 −0.708616 −0.354308 0.935129i \(-0.615284\pi\)
−0.354308 + 0.935129i \(0.615284\pi\)
\(510\) −3.73205 −0.165258
\(511\) −41.7894 −1.84865
\(512\) 1.00000 0.0441942
\(513\) −16.3516 −0.721940
\(514\) −10.2350 −0.451447
\(515\) −19.0073 −0.837564
\(516\) 16.3174 0.718334
\(517\) 0.421988 0.0185590
\(518\) 18.7224 0.822616
\(519\) −1.74265 −0.0764940
\(520\) −1.20039 −0.0526406
\(521\) 9.87575 0.432664 0.216332 0.976320i \(-0.430591\pi\)
0.216332 + 0.976320i \(0.430591\pi\)
\(522\) −1.52856 −0.0669031
\(523\) −15.0356 −0.657461 −0.328730 0.944424i \(-0.606621\pi\)
−0.328730 + 0.944424i \(0.606621\pi\)
\(524\) 9.25480 0.404298
\(525\) 4.16082 0.181593
\(526\) −5.51356 −0.240403
\(527\) 1.39980 0.0609764
\(528\) −0.703084 −0.0305978
\(529\) 0 0
\(530\) 8.60020 0.373569
\(531\) −0.362192 −0.0157178
\(532\) 7.72527 0.334933
\(533\) −10.2849 −0.445489
\(534\) 15.9741 0.691268
\(535\) −13.9935 −0.604991
\(536\) 11.2901 0.487659
\(537\) 27.6427 1.19287
\(538\) −29.2236 −1.25992
\(539\) 0.105003 0.00452278
\(540\) −5.50367 −0.236840
\(541\) 12.4269 0.534275 0.267137 0.963658i \(-0.413922\pi\)
0.267137 + 0.963658i \(0.413922\pi\)
\(542\) −13.6204 −0.585047
\(543\) −42.2699 −1.81398
\(544\) −2.33225 −0.0999942
\(545\) 3.51753 0.150675
\(546\) −4.99461 −0.213750
\(547\) −33.2966 −1.42366 −0.711830 0.702352i \(-0.752133\pi\)
−0.711830 + 0.702352i \(0.752133\pi\)
\(548\) −20.0126 −0.854894
\(549\) −1.87336 −0.0799532
\(550\) −0.439374 −0.0187350
\(551\) 10.3361 0.440331
\(552\) 0 0
\(553\) 7.90348 0.336090
\(554\) −7.99550 −0.339696
\(555\) 11.5220 0.489083
\(556\) −15.7050 −0.666042
\(557\) 27.4659 1.16377 0.581884 0.813272i \(-0.302316\pi\)
0.581884 + 0.813272i \(0.302316\pi\)
\(558\) 0.263710 0.0111637
\(559\) −12.2405 −0.517720
\(560\) 2.60020 0.109878
\(561\) 1.63977 0.0692309
\(562\) −31.5993 −1.33294
\(563\) −19.6721 −0.829080 −0.414540 0.910031i \(-0.636058\pi\)
−0.414540 + 0.910031i \(0.636058\pi\)
\(564\) −1.53688 −0.0647142
\(565\) 6.02799 0.253599
\(566\) −5.73841 −0.241204
\(567\) −19.4724 −0.817765
\(568\) 7.52840 0.315885
\(569\) 17.8150 0.746844 0.373422 0.927662i \(-0.378184\pi\)
0.373422 + 0.927662i \(0.378184\pi\)
\(570\) 4.75423 0.199133
\(571\) 19.7853 0.827990 0.413995 0.910279i \(-0.364133\pi\)
0.413995 + 0.910279i \(0.364133\pi\)
\(572\) 0.527420 0.0220526
\(573\) 26.6149 1.11185
\(574\) 22.2784 0.929882
\(575\) 0 0
\(576\) −0.439374 −0.0183072
\(577\) −12.3098 −0.512464 −0.256232 0.966615i \(-0.582481\pi\)
−0.256232 + 0.966615i \(0.582481\pi\)
\(578\) −11.5606 −0.480859
\(579\) −14.7857 −0.614475
\(580\) 3.47894 0.144455
\(581\) 9.99364 0.414606
\(582\) 11.0865 0.459549
\(583\) −3.77870 −0.156498
\(584\) −16.0716 −0.665049
\(585\) 0.527420 0.0218062
\(586\) 15.1425 0.625529
\(587\) −9.96891 −0.411461 −0.205730 0.978609i \(-0.565957\pi\)
−0.205730 + 0.978609i \(0.565957\pi\)
\(588\) −0.382419 −0.0157707
\(589\) −1.78320 −0.0734755
\(590\) 0.824336 0.0339374
\(591\) 12.0367 0.495125
\(592\) 7.20039 0.295934
\(593\) 43.9968 1.80673 0.903367 0.428869i \(-0.141088\pi\)
0.903367 + 0.428869i \(0.141088\pi\)
\(594\) 2.41817 0.0992187
\(595\) −6.06430 −0.248612
\(596\) −3.65461 −0.149699
\(597\) 3.58438 0.146699
\(598\) 0 0
\(599\) −21.6584 −0.884939 −0.442470 0.896783i \(-0.645898\pi\)
−0.442470 + 0.896783i \(0.645898\pi\)
\(600\) 1.60020 0.0653277
\(601\) 29.0776 1.18610 0.593049 0.805166i \(-0.297924\pi\)
0.593049 + 0.805166i \(0.297924\pi\)
\(602\) 26.5145 1.08065
\(603\) −4.96059 −0.202011
\(604\) 8.79309 0.357786
\(605\) −10.8070 −0.439365
\(606\) −14.9282 −0.606417
\(607\) 15.2091 0.617320 0.308660 0.951172i \(-0.400119\pi\)
0.308660 + 0.951172i \(0.400119\pi\)
\(608\) 2.97103 0.120491
\(609\) 14.4753 0.586567
\(610\) 4.26371 0.172633
\(611\) 1.15289 0.0466410
\(612\) 1.02473 0.0414222
\(613\) −8.38398 −0.338626 −0.169313 0.985562i \(-0.554155\pi\)
−0.169313 + 0.985562i \(0.554155\pi\)
\(614\) 27.1369 1.09516
\(615\) 13.7104 0.552858
\(616\) −1.14246 −0.0460309
\(617\) −37.0585 −1.49192 −0.745959 0.665991i \(-0.768009\pi\)
−0.745959 + 0.665991i \(0.768009\pi\)
\(618\) −30.4155 −1.22349
\(619\) −17.4815 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(620\) −0.600196 −0.0241044
\(621\) 0 0
\(622\) −17.5991 −0.705658
\(623\) 25.9568 1.03994
\(624\) −1.92086 −0.0768960
\(625\) 1.00000 0.0400000
\(626\) −4.90021 −0.195852
\(627\) −2.08889 −0.0834221
\(628\) −5.59270 −0.223173
\(629\) −16.7931 −0.669584
\(630\) −1.14246 −0.0455166
\(631\) 46.7247 1.86008 0.930040 0.367459i \(-0.119772\pi\)
0.930040 + 0.367459i \(0.119772\pi\)
\(632\) 3.03957 0.120908
\(633\) 17.4334 0.692917
\(634\) 26.3601 1.04689
\(635\) −17.0890 −0.678157
\(636\) 13.7620 0.545699
\(637\) 0.286872 0.0113663
\(638\) −1.52856 −0.0605161
\(639\) −3.30778 −0.130854
\(640\) 1.00000 0.0395285
\(641\) 11.1552 0.440603 0.220301 0.975432i \(-0.429296\pi\)
0.220301 + 0.975432i \(0.429296\pi\)
\(642\) −22.3923 −0.883754
\(643\) 20.2487 0.798531 0.399266 0.916835i \(-0.369265\pi\)
0.399266 + 0.916835i \(0.369265\pi\)
\(644\) 0 0
\(645\) 16.3174 0.642497
\(646\) −6.92918 −0.272625
\(647\) −38.6297 −1.51869 −0.759346 0.650688i \(-0.774481\pi\)
−0.759346 + 0.650688i \(0.774481\pi\)
\(648\) −7.48883 −0.294189
\(649\) −0.362192 −0.0142173
\(650\) −1.20039 −0.0470832
\(651\) −2.49731 −0.0978772
\(652\) 11.2498 0.440578
\(653\) −27.0805 −1.05974 −0.529872 0.848078i \(-0.677760\pi\)
−0.529872 + 0.848078i \(0.677760\pi\)
\(654\) 5.62874 0.220101
\(655\) 9.25480 0.361615
\(656\) 8.56797 0.334523
\(657\) 7.06146 0.275494
\(658\) −2.49731 −0.0973552
\(659\) 3.29268 0.128264 0.0641322 0.997941i \(-0.479572\pi\)
0.0641322 + 0.997941i \(0.479572\pi\)
\(660\) −0.703084 −0.0273675
\(661\) 2.18907 0.0851451 0.0425725 0.999093i \(-0.486445\pi\)
0.0425725 + 0.999093i \(0.486445\pi\)
\(662\) 28.7213 1.11628
\(663\) 4.47992 0.173986
\(664\) 3.84342 0.149154
\(665\) 7.72527 0.299573
\(666\) −3.16366 −0.122589
\(667\) 0 0
\(668\) −20.0257 −0.774818
\(669\) −17.9884 −0.695471
\(670\) 11.2901 0.436176
\(671\) −1.87336 −0.0723204
\(672\) 4.16082 0.160507
\(673\) −35.4026 −1.36467 −0.682335 0.731040i \(-0.739035\pi\)
−0.682335 + 0.731040i \(0.739035\pi\)
\(674\) −22.5206 −0.867463
\(675\) −5.50367 −0.211836
\(676\) −11.5591 −0.444579
\(677\) 28.2998 1.08765 0.543824 0.839199i \(-0.316976\pi\)
0.543824 + 0.839199i \(0.316976\pi\)
\(678\) 9.64596 0.370451
\(679\) 18.0147 0.691340
\(680\) −2.33225 −0.0894376
\(681\) −8.33861 −0.319536
\(682\) 0.263710 0.0100980
\(683\) 10.8520 0.415240 0.207620 0.978210i \(-0.433428\pi\)
0.207620 + 0.978210i \(0.433428\pi\)
\(684\) −1.30539 −0.0499130
\(685\) −20.0126 −0.764641
\(686\) −18.8228 −0.718657
\(687\) −16.7288 −0.638243
\(688\) 10.1971 0.388762
\(689\) −10.3236 −0.393298
\(690\) 0 0
\(691\) 46.0830 1.75308 0.876539 0.481331i \(-0.159846\pi\)
0.876539 + 0.481331i \(0.159846\pi\)
\(692\) −1.08903 −0.0413985
\(693\) 0.501966 0.0190681
\(694\) 23.3620 0.886811
\(695\) −15.7050 −0.595726
\(696\) 5.56699 0.211016
\(697\) −19.9826 −0.756895
\(698\) −17.2645 −0.653472
\(699\) 15.1182 0.571821
\(700\) 2.60020 0.0982782
\(701\) 14.5121 0.548116 0.274058 0.961713i \(-0.411634\pi\)
0.274058 + 0.961713i \(0.411634\pi\)
\(702\) 6.60656 0.249349
\(703\) 21.3926 0.806837
\(704\) −0.439374 −0.0165595
\(705\) −1.53688 −0.0578821
\(706\) 21.4457 0.807121
\(707\) −24.2572 −0.912285
\(708\) 1.31910 0.0495748
\(709\) 3.73375 0.140224 0.0701119 0.997539i \(-0.477664\pi\)
0.0701119 + 0.997539i \(0.477664\pi\)
\(710\) 7.52840 0.282536
\(711\) −1.33551 −0.0500854
\(712\) 9.98261 0.374114
\(713\) 0 0
\(714\) −9.70406 −0.363165
\(715\) 0.527420 0.0197244
\(716\) 17.2746 0.645581
\(717\) −25.5000 −0.952315
\(718\) −12.9341 −0.482698
\(719\) −23.2794 −0.868174 −0.434087 0.900871i \(-0.642929\pi\)
−0.434087 + 0.900871i \(0.642929\pi\)
\(720\) −0.439374 −0.0163745
\(721\) −49.4228 −1.84060
\(722\) −10.1730 −0.378598
\(723\) −40.7439 −1.51528
\(724\) −26.4155 −0.981723
\(725\) 3.47894 0.129205
\(726\) −17.2932 −0.641812
\(727\) 30.7094 1.13895 0.569474 0.822009i \(-0.307147\pi\)
0.569474 + 0.822009i \(0.307147\pi\)
\(728\) −3.12125 −0.115681
\(729\) 29.7112 1.10042
\(730\) −16.0716 −0.594838
\(731\) −23.7822 −0.879617
\(732\) 6.82277 0.252177
\(733\) 11.9801 0.442494 0.221247 0.975218i \(-0.428987\pi\)
0.221247 + 0.975218i \(0.428987\pi\)
\(734\) 8.78672 0.324324
\(735\) −0.382419 −0.0141057
\(736\) 0 0
\(737\) −4.96059 −0.182726
\(738\) −3.76454 −0.138575
\(739\) −29.6248 −1.08976 −0.544882 0.838513i \(-0.683426\pi\)
−0.544882 + 0.838513i \(0.683426\pi\)
\(740\) 7.20039 0.264692
\(741\) −5.70694 −0.209650
\(742\) 22.3622 0.820942
\(743\) −37.7890 −1.38634 −0.693172 0.720773i \(-0.743787\pi\)
−0.693172 + 0.720773i \(0.743787\pi\)
\(744\) −0.960431 −0.0352111
\(745\) −3.65461 −0.133894
\(746\) 33.7856 1.23698
\(747\) −1.68870 −0.0617862
\(748\) 1.02473 0.0374678
\(749\) −36.3858 −1.32951
\(750\) 1.60020 0.0584309
\(751\) −12.7668 −0.465867 −0.232933 0.972493i \(-0.574832\pi\)
−0.232933 + 0.972493i \(0.574832\pi\)
\(752\) −0.960431 −0.0350233
\(753\) −19.2326 −0.700876
\(754\) −4.17609 −0.152084
\(755\) 8.79309 0.320013
\(756\) −14.3106 −0.520472
\(757\) −2.00636 −0.0729225 −0.0364613 0.999335i \(-0.511609\pi\)
−0.0364613 + 0.999335i \(0.511609\pi\)
\(758\) −8.61080 −0.312758
\(759\) 0 0
\(760\) 2.97103 0.107771
\(761\) 6.60499 0.239431 0.119715 0.992808i \(-0.461802\pi\)
0.119715 + 0.992808i \(0.461802\pi\)
\(762\) −27.3458 −0.990633
\(763\) 9.14628 0.331117
\(764\) 16.6323 0.601734
\(765\) 1.02473 0.0370491
\(766\) 15.9143 0.575008
\(767\) −0.989526 −0.0357297
\(768\) 1.60020 0.0577421
\(769\) −17.4382 −0.628839 −0.314419 0.949284i \(-0.601810\pi\)
−0.314419 + 0.949284i \(0.601810\pi\)
\(770\) −1.14246 −0.0411713
\(771\) −16.3780 −0.589840
\(772\) −9.23996 −0.332553
\(773\) −0.990701 −0.0356330 −0.0178165 0.999841i \(-0.505671\pi\)
−0.0178165 + 0.999841i \(0.505671\pi\)
\(774\) −4.48035 −0.161043
\(775\) −0.600196 −0.0215597
\(776\) 6.92820 0.248708
\(777\) 29.9595 1.07479
\(778\) 1.49183 0.0534846
\(779\) 25.4557 0.912046
\(780\) −1.92086 −0.0687779
\(781\) −3.30778 −0.118362
\(782\) 0 0
\(783\) −19.1470 −0.684256
\(784\) −0.238982 −0.00853508
\(785\) −5.59270 −0.199612
\(786\) 14.8095 0.528237
\(787\) 17.4983 0.623747 0.311873 0.950124i \(-0.399044\pi\)
0.311873 + 0.950124i \(0.399044\pi\)
\(788\) 7.52204 0.267961
\(789\) −8.82277 −0.314099
\(790\) 3.03957 0.108143
\(791\) 15.6739 0.557301
\(792\) 0.193049 0.00685971
\(793\) −5.11812 −0.181750
\(794\) −18.0766 −0.641514
\(795\) 13.7620 0.488088
\(796\) 2.23996 0.0793933
\(797\) −28.4269 −1.00693 −0.503467 0.864015i \(-0.667942\pi\)
−0.503467 + 0.864015i \(0.667942\pi\)
\(798\) 12.3619 0.437608
\(799\) 2.23996 0.0792441
\(800\) 1.00000 0.0353553
\(801\) −4.38610 −0.154975
\(802\) 22.5920 0.797751
\(803\) 7.06146 0.249193
\(804\) 18.0664 0.637154
\(805\) 0 0
\(806\) 0.720470 0.0253775
\(807\) −46.7634 −1.64615
\(808\) −9.32899 −0.328193
\(809\) −17.7630 −0.624513 −0.312256 0.949998i \(-0.601085\pi\)
−0.312256 + 0.949998i \(0.601085\pi\)
\(810\) −7.48883 −0.263131
\(811\) −12.4344 −0.436631 −0.218316 0.975878i \(-0.570056\pi\)
−0.218316 + 0.975878i \(0.570056\pi\)
\(812\) 9.04593 0.317450
\(813\) −21.7953 −0.764396
\(814\) −3.16366 −0.110886
\(815\) 11.2498 0.394065
\(816\) −3.73205 −0.130648
\(817\) 30.2960 1.05992
\(818\) 16.3973 0.573317
\(819\) 1.37140 0.0479205
\(820\) 8.56797 0.299206
\(821\) 42.6000 1.48675 0.743376 0.668874i \(-0.233223\pi\)
0.743376 + 0.668874i \(0.233223\pi\)
\(822\) −32.0240 −1.11697
\(823\) 1.33805 0.0466415 0.0233208 0.999728i \(-0.492576\pi\)
0.0233208 + 0.999728i \(0.492576\pi\)
\(824\) −19.0073 −0.662152
\(825\) −0.703084 −0.0244782
\(826\) 2.14344 0.0745797
\(827\) 52.1609 1.81381 0.906907 0.421332i \(-0.138437\pi\)
0.906907 + 0.421332i \(0.138437\pi\)
\(828\) 0 0
\(829\) −3.13625 −0.108927 −0.0544633 0.998516i \(-0.517345\pi\)
−0.0544633 + 0.998516i \(0.517345\pi\)
\(830\) 3.84342 0.133407
\(831\) −12.7944 −0.443832
\(832\) −1.20039 −0.0416161
\(833\) 0.557366 0.0193116
\(834\) −25.1311 −0.870220
\(835\) −20.0257 −0.693018
\(836\) −1.30539 −0.0451480
\(837\) 3.30328 0.114178
\(838\) −30.9768 −1.07008
\(839\) 55.2928 1.90892 0.954459 0.298341i \(-0.0964332\pi\)
0.954459 + 0.298341i \(0.0964332\pi\)
\(840\) 4.16082 0.143562
\(841\) −16.8970 −0.582654
\(842\) 0.737698 0.0254228
\(843\) −50.5651 −1.74155
\(844\) 10.8946 0.375006
\(845\) −11.5591 −0.397644
\(846\) 0.421988 0.0145082
\(847\) −28.1002 −0.965534
\(848\) 8.60020 0.295332
\(849\) −9.18259 −0.315146
\(850\) −2.33225 −0.0799954
\(851\) 0 0
\(852\) 12.0469 0.412720
\(853\) 29.4030 1.00674 0.503370 0.864071i \(-0.332093\pi\)
0.503370 + 0.864071i \(0.332093\pi\)
\(854\) 11.0865 0.379372
\(855\) −1.30539 −0.0446435
\(856\) −13.9935 −0.478287
\(857\) −50.9453 −1.74026 −0.870129 0.492824i \(-0.835965\pi\)
−0.870129 + 0.492824i \(0.835965\pi\)
\(858\) 0.843976 0.0288129
\(859\) −25.2804 −0.862554 −0.431277 0.902219i \(-0.641937\pi\)
−0.431277 + 0.902219i \(0.641937\pi\)
\(860\) 10.1971 0.347719
\(861\) 35.6498 1.21494
\(862\) 19.3502 0.659070
\(863\) 7.86886 0.267859 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(864\) −5.50367 −0.187239
\(865\) −1.08903 −0.0370280
\(866\) 15.0954 0.512962
\(867\) −18.4993 −0.628268
\(868\) −1.56063 −0.0529711
\(869\) −1.33551 −0.0453040
\(870\) 5.56699 0.188739
\(871\) −13.5526 −0.459212
\(872\) 3.51753 0.119119
\(873\) −3.04407 −0.103026
\(874\) 0 0
\(875\) 2.60020 0.0879027
\(876\) −25.7178 −0.868923
\(877\) −44.9494 −1.51783 −0.758917 0.651188i \(-0.774271\pi\)
−0.758917 + 0.651188i \(0.774271\pi\)
\(878\) 22.3987 0.755918
\(879\) 24.2309 0.817288
\(880\) −0.439374 −0.0148113
\(881\) −0.782223 −0.0263538 −0.0131769 0.999913i \(-0.504194\pi\)
−0.0131769 + 0.999913i \(0.504194\pi\)
\(882\) 0.105003 0.00353562
\(883\) 23.4590 0.789458 0.394729 0.918798i \(-0.370839\pi\)
0.394729 + 0.918798i \(0.370839\pi\)
\(884\) 2.79961 0.0941610
\(885\) 1.31910 0.0443411
\(886\) 0.993636 0.0333819
\(887\) −22.7100 −0.762526 −0.381263 0.924467i \(-0.624511\pi\)
−0.381263 + 0.924467i \(0.624511\pi\)
\(888\) 11.5220 0.386654
\(889\) −44.4348 −1.49030
\(890\) 9.98261 0.334618
\(891\) 3.29040 0.110232
\(892\) −11.2414 −0.376389
\(893\) −2.85347 −0.0954878
\(894\) −5.84809 −0.195589
\(895\) 17.2746 0.577425
\(896\) 2.60020 0.0868664
\(897\) 0 0
\(898\) 39.5737 1.32059
\(899\) −2.08805 −0.0696403
\(900\) −0.439374 −0.0146458
\(901\) −20.0578 −0.668221
\(902\) −3.76454 −0.125345
\(903\) 42.4284 1.41193
\(904\) 6.02799 0.200488
\(905\) −26.4155 −0.878080
\(906\) 14.0707 0.467466
\(907\) −28.4132 −0.943446 −0.471723 0.881747i \(-0.656368\pi\)
−0.471723 + 0.881747i \(0.656368\pi\)
\(908\) −5.21099 −0.172933
\(909\) 4.09891 0.135952
\(910\) −3.12125 −0.103469
\(911\) −58.0359 −1.92281 −0.961407 0.275129i \(-0.911280\pi\)
−0.961407 + 0.275129i \(0.911280\pi\)
\(912\) 4.75423 0.157428
\(913\) −1.68870 −0.0558877
\(914\) 3.44290 0.113881
\(915\) 6.82277 0.225554
\(916\) −10.4542 −0.345417
\(917\) 24.0643 0.794673
\(918\) 12.8359 0.423648
\(919\) −10.6732 −0.352078 −0.176039 0.984383i \(-0.556328\pi\)
−0.176039 + 0.984383i \(0.556328\pi\)
\(920\) 0 0
\(921\) 43.4244 1.43088
\(922\) 8.61308 0.283657
\(923\) −9.03703 −0.297457
\(924\) −1.82816 −0.0601419
\(925\) 7.20039 0.236747
\(926\) 0.934724 0.0307169
\(927\) 8.35133 0.274294
\(928\) 3.47894 0.114202
\(929\) −2.17609 −0.0713953 −0.0356977 0.999363i \(-0.511365\pi\)
−0.0356977 + 0.999363i \(0.511365\pi\)
\(930\) −0.960431 −0.0314938
\(931\) −0.710025 −0.0232701
\(932\) 9.44769 0.309470
\(933\) −28.1619 −0.921981
\(934\) −10.2340 −0.334868
\(935\) 1.02473 0.0335122
\(936\) 0.527420 0.0172393
\(937\) 43.2102 1.41162 0.705809 0.708403i \(-0.250584\pi\)
0.705809 + 0.708403i \(0.250584\pi\)
\(938\) 29.3566 0.958525
\(939\) −7.84130 −0.255891
\(940\) −0.960431 −0.0313258
\(941\) 53.9929 1.76012 0.880059 0.474864i \(-0.157503\pi\)
0.880059 + 0.474864i \(0.157503\pi\)
\(942\) −8.94941 −0.291587
\(943\) 0 0
\(944\) 0.824336 0.0268299
\(945\) −14.3106 −0.465525
\(946\) −4.48035 −0.145669
\(947\) 16.7361 0.543851 0.271926 0.962318i \(-0.412340\pi\)
0.271926 + 0.962318i \(0.412340\pi\)
\(948\) 4.86391 0.157972
\(949\) 19.2923 0.626253
\(950\) 2.97103 0.0963930
\(951\) 42.1813 1.36782
\(952\) −6.06430 −0.196545
\(953\) 3.82391 0.123868 0.0619342 0.998080i \(-0.480273\pi\)
0.0619342 + 0.998080i \(0.480273\pi\)
\(954\) −3.77870 −0.122340
\(955\) 16.6323 0.538207
\(956\) −15.9355 −0.515392
\(957\) −2.44599 −0.0790676
\(958\) −9.83918 −0.317889
\(959\) −52.0366 −1.68035
\(960\) 1.60020 0.0516461
\(961\) −30.6398 −0.988380
\(962\) −8.64329 −0.278671
\(963\) 6.14837 0.198128
\(964\) −25.4618 −0.820070
\(965\) −9.23996 −0.297445
\(966\) 0 0
\(967\) −20.9748 −0.674505 −0.337253 0.941414i \(-0.609498\pi\)
−0.337253 + 0.941414i \(0.609498\pi\)
\(968\) −10.8070 −0.347349
\(969\) −11.0880 −0.356199
\(970\) 6.92820 0.222451
\(971\) −47.2203 −1.51537 −0.757685 0.652620i \(-0.773670\pi\)
−0.757685 + 0.652620i \(0.773670\pi\)
\(972\) 4.52742 0.145217
\(973\) −40.8362 −1.30915
\(974\) 0.537855 0.0172340
\(975\) −1.92086 −0.0615168
\(976\) 4.26371 0.136478
\(977\) 16.3988 0.524645 0.262322 0.964980i \(-0.415512\pi\)
0.262322 + 0.964980i \(0.415512\pi\)
\(978\) 18.0020 0.575639
\(979\) −4.38610 −0.140180
\(980\) −0.238982 −0.00763401
\(981\) −1.54551 −0.0493444
\(982\) 13.9464 0.445048
\(983\) −13.5150 −0.431061 −0.215531 0.976497i \(-0.569148\pi\)
−0.215531 + 0.976497i \(0.569148\pi\)
\(984\) 13.7104 0.437072
\(985\) 7.52204 0.239672
\(986\) −8.11375 −0.258395
\(987\) −3.99618 −0.127200
\(988\) −3.56640 −0.113462
\(989\) 0 0
\(990\) 0.193049 0.00613551
\(991\) −14.8425 −0.471489 −0.235744 0.971815i \(-0.575753\pi\)
−0.235744 + 0.971815i \(0.575753\pi\)
\(992\) −0.600196 −0.0190562
\(993\) 45.9597 1.45849
\(994\) 19.5753 0.620891
\(995\) 2.23996 0.0710115
\(996\) 6.15022 0.194877
\(997\) −39.8781 −1.26295 −0.631477 0.775395i \(-0.717551\pi\)
−0.631477 + 0.775395i \(0.717551\pi\)
\(998\) −40.6847 −1.28785
\(999\) −39.6286 −1.25379
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5290.2.a.bb.1.3 yes 4
23.22 odd 2 5290.2.a.ba.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5290.2.a.ba.1.3 4 23.22 odd 2
5290.2.a.bb.1.3 yes 4 1.1 even 1 trivial