Properties

Label 5239.2.a.t.1.6
Level $5239$
Weight $2$
Character 5239.1
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,2,-5,28,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 5239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.92927 q^{2} +1.67028 q^{3} +1.72208 q^{4} +2.56491 q^{5} -3.22241 q^{6} +0.681322 q^{7} +0.536185 q^{8} -0.210175 q^{9} -4.94841 q^{10} -2.28267 q^{11} +2.87635 q^{12} -1.31445 q^{14} +4.28412 q^{15} -4.47860 q^{16} -5.55908 q^{17} +0.405484 q^{18} -7.89524 q^{19} +4.41698 q^{20} +1.13800 q^{21} +4.40389 q^{22} +8.68233 q^{23} +0.895578 q^{24} +1.57879 q^{25} -5.36188 q^{27} +1.17329 q^{28} -4.32363 q^{29} -8.26521 q^{30} -1.00000 q^{31} +7.56806 q^{32} -3.81269 q^{33} +10.7250 q^{34} +1.74753 q^{35} -0.361938 q^{36} +11.2267 q^{37} +15.2321 q^{38} +1.37527 q^{40} +6.80962 q^{41} -2.19550 q^{42} -7.36042 q^{43} -3.93094 q^{44} -0.539080 q^{45} -16.7505 q^{46} +10.8788 q^{47} -7.48051 q^{48} -6.53580 q^{49} -3.04590 q^{50} -9.28520 q^{51} -9.57178 q^{53} +10.3445 q^{54} -5.85486 q^{55} +0.365315 q^{56} -13.1872 q^{57} +8.34144 q^{58} +9.15512 q^{59} +7.37759 q^{60} +7.00621 q^{61} +1.92927 q^{62} -0.143197 q^{63} -5.64361 q^{64} +7.35571 q^{66} -4.18226 q^{67} -9.57317 q^{68} +14.5019 q^{69} -3.37146 q^{70} -9.67090 q^{71} -0.112693 q^{72} -7.54664 q^{73} -21.6594 q^{74} +2.63701 q^{75} -13.5962 q^{76} -1.55523 q^{77} +9.38808 q^{79} -11.4872 q^{80} -8.32530 q^{81} -13.1376 q^{82} -10.8075 q^{83} +1.95972 q^{84} -14.2586 q^{85} +14.2002 q^{86} -7.22165 q^{87} -1.22393 q^{88} +7.94388 q^{89} +1.04003 q^{90} +14.9516 q^{92} -1.67028 q^{93} -20.9880 q^{94} -20.2506 q^{95} +12.6408 q^{96} +0.383647 q^{97} +12.6093 q^{98} +0.479760 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2 q^{2} - 5 q^{3} + 28 q^{4} + 5 q^{5} - 3 q^{6} + 5 q^{7} + 3 q^{8} + 5 q^{9} - 15 q^{10} - q^{11} - 13 q^{12} - 19 q^{14} - 10 q^{15} + 4 q^{16} - 46 q^{17} - 9 q^{18} + 8 q^{19} - 5 q^{20} - 16 q^{21}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.92927 −1.36420 −0.682100 0.731259i \(-0.738933\pi\)
−0.682100 + 0.731259i \(0.738933\pi\)
\(3\) 1.67028 0.964335 0.482167 0.876079i \(-0.339850\pi\)
0.482167 + 0.876079i \(0.339850\pi\)
\(4\) 1.72208 0.861039
\(5\) 2.56491 1.14706 0.573532 0.819183i \(-0.305573\pi\)
0.573532 + 0.819183i \(0.305573\pi\)
\(6\) −3.22241 −1.31554
\(7\) 0.681322 0.257515 0.128758 0.991676i \(-0.458901\pi\)
0.128758 + 0.991676i \(0.458901\pi\)
\(8\) 0.536185 0.189570
\(9\) −0.210175 −0.0700583
\(10\) −4.94841 −1.56482
\(11\) −2.28267 −0.688251 −0.344126 0.938924i \(-0.611825\pi\)
−0.344126 + 0.938924i \(0.611825\pi\)
\(12\) 2.87635 0.830330
\(13\) 0 0
\(14\) −1.31445 −0.351302
\(15\) 4.28412 1.10615
\(16\) −4.47860 −1.11965
\(17\) −5.55908 −1.34827 −0.674137 0.738606i \(-0.735484\pi\)
−0.674137 + 0.738606i \(0.735484\pi\)
\(18\) 0.405484 0.0955734
\(19\) −7.89524 −1.81129 −0.905647 0.424033i \(-0.860614\pi\)
−0.905647 + 0.424033i \(0.860614\pi\)
\(20\) 4.41698 0.987668
\(21\) 1.13800 0.248331
\(22\) 4.40389 0.938912
\(23\) 8.68233 1.81039 0.905195 0.424996i \(-0.139725\pi\)
0.905195 + 0.424996i \(0.139725\pi\)
\(24\) 0.895578 0.182809
\(25\) 1.57879 0.315757
\(26\) 0 0
\(27\) −5.36188 −1.03189
\(28\) 1.17329 0.221731
\(29\) −4.32363 −0.802877 −0.401439 0.915886i \(-0.631490\pi\)
−0.401439 + 0.915886i \(0.631490\pi\)
\(30\) −8.26521 −1.50901
\(31\) −1.00000 −0.179605
\(32\) 7.56806 1.33786
\(33\) −3.81269 −0.663705
\(34\) 10.7250 1.83931
\(35\) 1.74753 0.295387
\(36\) −0.361938 −0.0603229
\(37\) 11.2267 1.84566 0.922832 0.385202i \(-0.125868\pi\)
0.922832 + 0.385202i \(0.125868\pi\)
\(38\) 15.2321 2.47096
\(39\) 0 0
\(40\) 1.37527 0.217449
\(41\) 6.80962 1.06348 0.531742 0.846906i \(-0.321538\pi\)
0.531742 + 0.846906i \(0.321538\pi\)
\(42\) −2.19550 −0.338773
\(43\) −7.36042 −1.12245 −0.561227 0.827662i \(-0.689670\pi\)
−0.561227 + 0.827662i \(0.689670\pi\)
\(44\) −3.93094 −0.592612
\(45\) −0.539080 −0.0803614
\(46\) −16.7505 −2.46973
\(47\) 10.8788 1.58683 0.793415 0.608681i \(-0.208301\pi\)
0.793415 + 0.608681i \(0.208301\pi\)
\(48\) −7.48051 −1.07972
\(49\) −6.53580 −0.933686
\(50\) −3.04590 −0.430756
\(51\) −9.28520 −1.30019
\(52\) 0 0
\(53\) −9.57178 −1.31479 −0.657393 0.753548i \(-0.728341\pi\)
−0.657393 + 0.753548i \(0.728341\pi\)
\(54\) 10.3445 1.40771
\(55\) −5.85486 −0.789469
\(56\) 0.365315 0.0488172
\(57\) −13.1872 −1.74669
\(58\) 8.34144 1.09528
\(59\) 9.15512 1.19190 0.595948 0.803023i \(-0.296777\pi\)
0.595948 + 0.803023i \(0.296777\pi\)
\(60\) 7.37759 0.952442
\(61\) 7.00621 0.897053 0.448527 0.893769i \(-0.351949\pi\)
0.448527 + 0.893769i \(0.351949\pi\)
\(62\) 1.92927 0.245017
\(63\) −0.143197 −0.0180411
\(64\) −5.64361 −0.705452
\(65\) 0 0
\(66\) 7.35571 0.905426
\(67\) −4.18226 −0.510945 −0.255472 0.966816i \(-0.582231\pi\)
−0.255472 + 0.966816i \(0.582231\pi\)
\(68\) −9.57317 −1.16092
\(69\) 14.5019 1.74582
\(70\) −3.37146 −0.402966
\(71\) −9.67090 −1.14772 −0.573862 0.818952i \(-0.694556\pi\)
−0.573862 + 0.818952i \(0.694556\pi\)
\(72\) −0.112693 −0.0132810
\(73\) −7.54664 −0.883267 −0.441633 0.897196i \(-0.645601\pi\)
−0.441633 + 0.897196i \(0.645601\pi\)
\(74\) −21.6594 −2.51785
\(75\) 2.63701 0.304496
\(76\) −13.5962 −1.55959
\(77\) −1.55523 −0.177235
\(78\) 0 0
\(79\) 9.38808 1.05624 0.528121 0.849169i \(-0.322897\pi\)
0.528121 + 0.849169i \(0.322897\pi\)
\(80\) −11.4872 −1.28431
\(81\) −8.32530 −0.925034
\(82\) −13.1376 −1.45080
\(83\) −10.8075 −1.18628 −0.593139 0.805100i \(-0.702111\pi\)
−0.593139 + 0.805100i \(0.702111\pi\)
\(84\) 1.95972 0.213823
\(85\) −14.2586 −1.54656
\(86\) 14.2002 1.53125
\(87\) −7.22165 −0.774243
\(88\) −1.22393 −0.130472
\(89\) 7.94388 0.842050 0.421025 0.907049i \(-0.361670\pi\)
0.421025 + 0.907049i \(0.361670\pi\)
\(90\) 1.04003 0.109629
\(91\) 0 0
\(92\) 14.9516 1.55882
\(93\) −1.67028 −0.173200
\(94\) −20.9880 −2.16475
\(95\) −20.2506 −2.07767
\(96\) 12.6408 1.29014
\(97\) 0.383647 0.0389535 0.0194767 0.999810i \(-0.493800\pi\)
0.0194767 + 0.999810i \(0.493800\pi\)
\(98\) 12.6093 1.27373
\(99\) 0.479760 0.0482177
\(100\) 2.71879 0.271879
\(101\) −12.8886 −1.28246 −0.641230 0.767348i \(-0.721576\pi\)
−0.641230 + 0.767348i \(0.721576\pi\)
\(102\) 17.9136 1.77372
\(103\) −8.36750 −0.824475 −0.412237 0.911076i \(-0.635253\pi\)
−0.412237 + 0.911076i \(0.635253\pi\)
\(104\) 0 0
\(105\) 2.91886 0.284852
\(106\) 18.4665 1.79363
\(107\) −11.9738 −1.15755 −0.578774 0.815488i \(-0.696469\pi\)
−0.578774 + 0.815488i \(0.696469\pi\)
\(108\) −9.23358 −0.888502
\(109\) −5.55713 −0.532277 −0.266138 0.963935i \(-0.585748\pi\)
−0.266138 + 0.963935i \(0.585748\pi\)
\(110\) 11.2956 1.07699
\(111\) 18.7518 1.77984
\(112\) −3.05137 −0.288327
\(113\) 1.98514 0.186746 0.0933731 0.995631i \(-0.470235\pi\)
0.0933731 + 0.995631i \(0.470235\pi\)
\(114\) 25.4417 2.38284
\(115\) 22.2694 2.07663
\(116\) −7.44563 −0.691309
\(117\) 0 0
\(118\) −17.6627 −1.62598
\(119\) −3.78752 −0.347201
\(120\) 2.29708 0.209694
\(121\) −5.78941 −0.526310
\(122\) −13.5169 −1.22376
\(123\) 11.3740 1.02556
\(124\) −1.72208 −0.154647
\(125\) −8.77512 −0.784871
\(126\) 0.276265 0.0246116
\(127\) −8.35141 −0.741068 −0.370534 0.928819i \(-0.620825\pi\)
−0.370534 + 0.928819i \(0.620825\pi\)
\(128\) −4.24807 −0.375480
\(129\) −12.2939 −1.08242
\(130\) 0 0
\(131\) −0.186139 −0.0162631 −0.00813154 0.999967i \(-0.502588\pi\)
−0.00813154 + 0.999967i \(0.502588\pi\)
\(132\) −6.56576 −0.571476
\(133\) −5.37920 −0.466436
\(134\) 8.06871 0.697031
\(135\) −13.7528 −1.18365
\(136\) −2.98070 −0.255592
\(137\) 9.97675 0.852371 0.426186 0.904636i \(-0.359857\pi\)
0.426186 + 0.904636i \(0.359857\pi\)
\(138\) −27.9780 −2.38165
\(139\) 1.91146 0.162128 0.0810639 0.996709i \(-0.474168\pi\)
0.0810639 + 0.996709i \(0.474168\pi\)
\(140\) 3.00939 0.254340
\(141\) 18.1705 1.53024
\(142\) 18.6578 1.56572
\(143\) 0 0
\(144\) 0.941289 0.0784408
\(145\) −11.0897 −0.920952
\(146\) 14.5595 1.20495
\(147\) −10.9166 −0.900386
\(148\) 19.3333 1.58919
\(149\) −19.2851 −1.57990 −0.789949 0.613173i \(-0.789893\pi\)
−0.789949 + 0.613173i \(0.789893\pi\)
\(150\) −5.08750 −0.415393
\(151\) 9.96896 0.811262 0.405631 0.914037i \(-0.367052\pi\)
0.405631 + 0.914037i \(0.367052\pi\)
\(152\) −4.23331 −0.343367
\(153\) 1.16838 0.0944578
\(154\) 3.00046 0.241784
\(155\) −2.56491 −0.206019
\(156\) 0 0
\(157\) −14.0155 −1.11856 −0.559278 0.828980i \(-0.688922\pi\)
−0.559278 + 0.828980i \(0.688922\pi\)
\(158\) −18.1121 −1.44092
\(159\) −15.9875 −1.26789
\(160\) 19.4114 1.53461
\(161\) 5.91546 0.466203
\(162\) 16.0617 1.26193
\(163\) −12.3709 −0.968962 −0.484481 0.874802i \(-0.660992\pi\)
−0.484481 + 0.874802i \(0.660992\pi\)
\(164\) 11.7267 0.915702
\(165\) −9.77924 −0.761312
\(166\) 20.8506 1.61832
\(167\) −21.4372 −1.65886 −0.829430 0.558611i \(-0.811334\pi\)
−0.829430 + 0.558611i \(0.811334\pi\)
\(168\) 0.610177 0.0470761
\(169\) 0 0
\(170\) 27.5086 2.10981
\(171\) 1.65938 0.126896
\(172\) −12.6752 −0.966477
\(173\) 1.18863 0.0903698 0.0451849 0.998979i \(-0.485612\pi\)
0.0451849 + 0.998979i \(0.485612\pi\)
\(174\) 13.9325 1.05622
\(175\) 1.07566 0.0813123
\(176\) 10.2232 0.770601
\(177\) 15.2916 1.14939
\(178\) −15.3259 −1.14872
\(179\) −6.84998 −0.511991 −0.255996 0.966678i \(-0.582403\pi\)
−0.255996 + 0.966678i \(0.582403\pi\)
\(180\) −0.928339 −0.0691943
\(181\) 14.6857 1.09158 0.545790 0.837922i \(-0.316230\pi\)
0.545790 + 0.837922i \(0.316230\pi\)
\(182\) 0 0
\(183\) 11.7023 0.865060
\(184\) 4.65533 0.343196
\(185\) 28.7956 2.11710
\(186\) 3.22241 0.236279
\(187\) 12.6895 0.927952
\(188\) 18.7341 1.36632
\(189\) −3.65317 −0.265729
\(190\) 39.0689 2.83436
\(191\) −16.7694 −1.21339 −0.606697 0.794933i \(-0.707506\pi\)
−0.606697 + 0.794933i \(0.707506\pi\)
\(192\) −9.42640 −0.680292
\(193\) −16.7070 −1.20259 −0.601297 0.799026i \(-0.705349\pi\)
−0.601297 + 0.799026i \(0.705349\pi\)
\(194\) −0.740159 −0.0531403
\(195\) 0 0
\(196\) −11.2552 −0.803940
\(197\) −6.67130 −0.475310 −0.237655 0.971350i \(-0.576379\pi\)
−0.237655 + 0.971350i \(0.576379\pi\)
\(198\) −0.925586 −0.0657786
\(199\) −9.25209 −0.655863 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(200\) 0.846522 0.0598581
\(201\) −6.98554 −0.492722
\(202\) 24.8655 1.74953
\(203\) −2.94578 −0.206753
\(204\) −15.9898 −1.11951
\(205\) 17.4661 1.21989
\(206\) 16.1432 1.12475
\(207\) −1.82481 −0.126833
\(208\) 0 0
\(209\) 18.0223 1.24663
\(210\) −5.63127 −0.388595
\(211\) 7.27534 0.500855 0.250428 0.968135i \(-0.419429\pi\)
0.250428 + 0.968135i \(0.419429\pi\)
\(212\) −16.4834 −1.13208
\(213\) −16.1531 −1.10679
\(214\) 23.1006 1.57913
\(215\) −18.8788 −1.28753
\(216\) −2.87496 −0.195616
\(217\) −0.681322 −0.0462511
\(218\) 10.7212 0.726131
\(219\) −12.6050 −0.851765
\(220\) −10.0825 −0.679764
\(221\) 0 0
\(222\) −36.1772 −2.42805
\(223\) −12.1265 −0.812050 −0.406025 0.913862i \(-0.633085\pi\)
−0.406025 + 0.913862i \(0.633085\pi\)
\(224\) 5.15628 0.344519
\(225\) −0.331821 −0.0221214
\(226\) −3.82987 −0.254759
\(227\) 9.19394 0.610223 0.305112 0.952317i \(-0.401306\pi\)
0.305112 + 0.952317i \(0.401306\pi\)
\(228\) −22.7095 −1.50397
\(229\) −5.81860 −0.384504 −0.192252 0.981346i \(-0.561579\pi\)
−0.192252 + 0.981346i \(0.561579\pi\)
\(230\) −42.9637 −2.83294
\(231\) −2.59767 −0.170914
\(232\) −2.31826 −0.152202
\(233\) 3.10580 0.203468 0.101734 0.994812i \(-0.467561\pi\)
0.101734 + 0.994812i \(0.467561\pi\)
\(234\) 0 0
\(235\) 27.9031 1.82020
\(236\) 15.7658 1.02627
\(237\) 15.6807 1.01857
\(238\) 7.30714 0.473652
\(239\) 14.2363 0.920868 0.460434 0.887694i \(-0.347694\pi\)
0.460434 + 0.887694i \(0.347694\pi\)
\(240\) −19.1869 −1.23851
\(241\) −20.0648 −1.29249 −0.646244 0.763131i \(-0.723661\pi\)
−0.646244 + 0.763131i \(0.723661\pi\)
\(242\) 11.1693 0.717991
\(243\) 2.18008 0.139852
\(244\) 12.0652 0.772398
\(245\) −16.7638 −1.07100
\(246\) −21.9434 −1.39906
\(247\) 0 0
\(248\) −0.536185 −0.0340478
\(249\) −18.0515 −1.14397
\(250\) 16.9296 1.07072
\(251\) −0.936679 −0.0591226 −0.0295613 0.999563i \(-0.509411\pi\)
−0.0295613 + 0.999563i \(0.509411\pi\)
\(252\) −0.246596 −0.0155341
\(253\) −19.8189 −1.24600
\(254\) 16.1121 1.01096
\(255\) −23.8157 −1.49140
\(256\) 19.4829 1.21768
\(257\) 12.9018 0.804793 0.402396 0.915466i \(-0.368177\pi\)
0.402396 + 0.915466i \(0.368177\pi\)
\(258\) 23.7183 1.47664
\(259\) 7.64902 0.475287
\(260\) 0 0
\(261\) 0.908717 0.0562482
\(262\) 0.359113 0.0221861
\(263\) −15.7166 −0.969129 −0.484565 0.874755i \(-0.661022\pi\)
−0.484565 + 0.874755i \(0.661022\pi\)
\(264\) −2.04431 −0.125819
\(265\) −24.5508 −1.50814
\(266\) 10.3779 0.636311
\(267\) 13.2685 0.812018
\(268\) −7.20219 −0.439944
\(269\) −27.8154 −1.69593 −0.847967 0.530049i \(-0.822174\pi\)
−0.847967 + 0.530049i \(0.822174\pi\)
\(270\) 26.5328 1.61473
\(271\) 6.34889 0.385668 0.192834 0.981231i \(-0.438232\pi\)
0.192834 + 0.981231i \(0.438232\pi\)
\(272\) 24.8969 1.50960
\(273\) 0 0
\(274\) −19.2478 −1.16280
\(275\) −3.60385 −0.217320
\(276\) 24.9734 1.50322
\(277\) 16.5006 0.991424 0.495712 0.868487i \(-0.334907\pi\)
0.495712 + 0.868487i \(0.334907\pi\)
\(278\) −3.68772 −0.221175
\(279\) 0.210175 0.0125828
\(280\) 0.937001 0.0559965
\(281\) 4.73139 0.282251 0.141126 0.989992i \(-0.454928\pi\)
0.141126 + 0.989992i \(0.454928\pi\)
\(282\) −35.0558 −2.08755
\(283\) 2.83565 0.168562 0.0842809 0.996442i \(-0.473141\pi\)
0.0842809 + 0.996442i \(0.473141\pi\)
\(284\) −16.6540 −0.988236
\(285\) −33.8242 −2.00357
\(286\) 0 0
\(287\) 4.63954 0.273864
\(288\) −1.59062 −0.0937279
\(289\) 13.9033 0.817844
\(290\) 21.3951 1.25636
\(291\) 0.640797 0.0375642
\(292\) −12.9959 −0.760528
\(293\) −26.3914 −1.54180 −0.770900 0.636956i \(-0.780193\pi\)
−0.770900 + 0.636956i \(0.780193\pi\)
\(294\) 21.0611 1.22831
\(295\) 23.4821 1.36718
\(296\) 6.01961 0.349883
\(297\) 12.2394 0.710203
\(298\) 37.2062 2.15530
\(299\) 0 0
\(300\) 4.54114 0.262183
\(301\) −5.01481 −0.289049
\(302\) −19.2328 −1.10672
\(303\) −21.5275 −1.23672
\(304\) 35.3597 2.02802
\(305\) 17.9703 1.02898
\(306\) −2.25412 −0.128859
\(307\) 6.66645 0.380474 0.190237 0.981738i \(-0.439074\pi\)
0.190237 + 0.981738i \(0.439074\pi\)
\(308\) −2.67823 −0.152607
\(309\) −13.9760 −0.795070
\(310\) 4.94841 0.281051
\(311\) 33.6723 1.90938 0.954691 0.297598i \(-0.0961855\pi\)
0.954691 + 0.297598i \(0.0961855\pi\)
\(312\) 0 0
\(313\) −3.61362 −0.204254 −0.102127 0.994771i \(-0.532565\pi\)
−0.102127 + 0.994771i \(0.532565\pi\)
\(314\) 27.0396 1.52593
\(315\) −0.367287 −0.0206943
\(316\) 16.1670 0.909466
\(317\) −4.11892 −0.231342 −0.115671 0.993288i \(-0.536902\pi\)
−0.115671 + 0.993288i \(0.536902\pi\)
\(318\) 30.8442 1.72966
\(319\) 9.86942 0.552582
\(320\) −14.4754 −0.809199
\(321\) −19.9995 −1.11626
\(322\) −11.4125 −0.635994
\(323\) 43.8903 2.44212
\(324\) −14.3368 −0.796490
\(325\) 0 0
\(326\) 23.8668 1.32186
\(327\) −9.28195 −0.513293
\(328\) 3.65122 0.201605
\(329\) 7.41193 0.408633
\(330\) 18.8668 1.03858
\(331\) 33.8238 1.85913 0.929563 0.368664i \(-0.120185\pi\)
0.929563 + 0.368664i \(0.120185\pi\)
\(332\) −18.6114 −1.02143
\(333\) −2.35958 −0.129304
\(334\) 41.3581 2.26301
\(335\) −10.7272 −0.586087
\(336\) −5.09663 −0.278044
\(337\) −11.2868 −0.614832 −0.307416 0.951575i \(-0.599464\pi\)
−0.307416 + 0.951575i \(0.599464\pi\)
\(338\) 0 0
\(339\) 3.31573 0.180086
\(340\) −24.5544 −1.33165
\(341\) 2.28267 0.123614
\(342\) −3.20139 −0.173112
\(343\) −9.22223 −0.497954
\(344\) −3.94655 −0.212784
\(345\) 37.1961 2.00257
\(346\) −2.29319 −0.123282
\(347\) 25.0553 1.34504 0.672520 0.740079i \(-0.265212\pi\)
0.672520 + 0.740079i \(0.265212\pi\)
\(348\) −12.4363 −0.666653
\(349\) 16.5925 0.888174 0.444087 0.895984i \(-0.353528\pi\)
0.444087 + 0.895984i \(0.353528\pi\)
\(350\) −2.07524 −0.110926
\(351\) 0 0
\(352\) −17.2754 −0.920782
\(353\) 11.1089 0.591266 0.295633 0.955302i \(-0.404469\pi\)
0.295633 + 0.955302i \(0.404469\pi\)
\(354\) −29.5016 −1.56799
\(355\) −24.8050 −1.31651
\(356\) 13.6800 0.725038
\(357\) −6.32621 −0.334818
\(358\) 13.2154 0.698458
\(359\) 23.0012 1.21396 0.606980 0.794717i \(-0.292381\pi\)
0.606980 + 0.794717i \(0.292381\pi\)
\(360\) −0.289047 −0.0152341
\(361\) 43.3349 2.28078
\(362\) −28.3327 −1.48913
\(363\) −9.66992 −0.507539
\(364\) 0 0
\(365\) −19.3565 −1.01316
\(366\) −22.5769 −1.18011
\(367\) −10.8570 −0.566733 −0.283366 0.959012i \(-0.591451\pi\)
−0.283366 + 0.959012i \(0.591451\pi\)
\(368\) −38.8847 −2.02700
\(369\) −1.43121 −0.0745059
\(370\) −55.5545 −2.88814
\(371\) −6.52146 −0.338577
\(372\) −2.87635 −0.149132
\(373\) 12.9528 0.670671 0.335335 0.942099i \(-0.391150\pi\)
0.335335 + 0.942099i \(0.391150\pi\)
\(374\) −24.4816 −1.26591
\(375\) −14.6569 −0.756878
\(376\) 5.83303 0.300815
\(377\) 0 0
\(378\) 7.04794 0.362507
\(379\) −30.4334 −1.56326 −0.781629 0.623743i \(-0.785611\pi\)
−0.781629 + 0.623743i \(0.785611\pi\)
\(380\) −34.8732 −1.78896
\(381\) −13.9492 −0.714638
\(382\) 32.3528 1.65531
\(383\) −32.9654 −1.68445 −0.842227 0.539123i \(-0.818756\pi\)
−0.842227 + 0.539123i \(0.818756\pi\)
\(384\) −7.09545 −0.362088
\(385\) −3.98904 −0.203300
\(386\) 32.2322 1.64058
\(387\) 1.54698 0.0786372
\(388\) 0.660671 0.0335405
\(389\) 17.8666 0.905871 0.452936 0.891543i \(-0.350377\pi\)
0.452936 + 0.891543i \(0.350377\pi\)
\(390\) 0 0
\(391\) −48.2657 −2.44090
\(392\) −3.50440 −0.176999
\(393\) −0.310904 −0.0156831
\(394\) 12.8707 0.648418
\(395\) 24.0796 1.21158
\(396\) 0.826185 0.0415173
\(397\) 28.5950 1.43514 0.717570 0.696486i \(-0.245254\pi\)
0.717570 + 0.696486i \(0.245254\pi\)
\(398\) 17.8498 0.894728
\(399\) −8.98476 −0.449800
\(400\) −7.07076 −0.353538
\(401\) −7.85670 −0.392345 −0.196172 0.980569i \(-0.562851\pi\)
−0.196172 + 0.980569i \(0.562851\pi\)
\(402\) 13.4770 0.672171
\(403\) 0 0
\(404\) −22.1951 −1.10425
\(405\) −21.3537 −1.06107
\(406\) 5.68320 0.282053
\(407\) −25.6270 −1.27028
\(408\) −4.97859 −0.246477
\(409\) −1.80403 −0.0892036 −0.0446018 0.999005i \(-0.514202\pi\)
−0.0446018 + 0.999005i \(0.514202\pi\)
\(410\) −33.6968 −1.66417
\(411\) 16.6639 0.821971
\(412\) −14.4095 −0.709905
\(413\) 6.23758 0.306931
\(414\) 3.52054 0.173025
\(415\) −27.7203 −1.36074
\(416\) 0 0
\(417\) 3.19267 0.156346
\(418\) −34.7698 −1.70065
\(419\) −27.4795 −1.34246 −0.671230 0.741249i \(-0.734234\pi\)
−0.671230 + 0.741249i \(0.734234\pi\)
\(420\) 5.02651 0.245269
\(421\) 14.4423 0.703875 0.351937 0.936024i \(-0.385523\pi\)
0.351937 + 0.936024i \(0.385523\pi\)
\(422\) −14.0361 −0.683266
\(423\) −2.28644 −0.111171
\(424\) −5.13225 −0.249244
\(425\) −8.77659 −0.425727
\(426\) 31.1636 1.50988
\(427\) 4.77348 0.231005
\(428\) −20.6198 −0.996695
\(429\) 0 0
\(430\) 36.4224 1.75644
\(431\) −28.2615 −1.36131 −0.680654 0.732605i \(-0.738304\pi\)
−0.680654 + 0.732605i \(0.738304\pi\)
\(432\) 24.0137 1.15536
\(433\) −8.67081 −0.416692 −0.208346 0.978055i \(-0.566808\pi\)
−0.208346 + 0.978055i \(0.566808\pi\)
\(434\) 1.31445 0.0630957
\(435\) −18.5229 −0.888106
\(436\) −9.56982 −0.458311
\(437\) −68.5491 −3.27915
\(438\) 24.3184 1.16198
\(439\) −16.3451 −0.780109 −0.390055 0.920792i \(-0.627544\pi\)
−0.390055 + 0.920792i \(0.627544\pi\)
\(440\) −3.13929 −0.149660
\(441\) 1.37366 0.0654124
\(442\) 0 0
\(443\) −7.99653 −0.379926 −0.189963 0.981791i \(-0.560837\pi\)
−0.189963 + 0.981791i \(0.560837\pi\)
\(444\) 32.2920 1.53251
\(445\) 20.3754 0.965886
\(446\) 23.3953 1.10780
\(447\) −32.2115 −1.52355
\(448\) −3.84512 −0.181665
\(449\) 25.5091 1.20385 0.601924 0.798553i \(-0.294401\pi\)
0.601924 + 0.798553i \(0.294401\pi\)
\(450\) 0.640172 0.0301780
\(451\) −15.5441 −0.731945
\(452\) 3.41857 0.160796
\(453\) 16.6509 0.782329
\(454\) −17.7376 −0.832466
\(455\) 0 0
\(456\) −7.07081 −0.331121
\(457\) −21.0600 −0.985143 −0.492571 0.870272i \(-0.663943\pi\)
−0.492571 + 0.870272i \(0.663943\pi\)
\(458\) 11.2256 0.524540
\(459\) 29.8071 1.39128
\(460\) 38.3497 1.78806
\(461\) 7.96798 0.371106 0.185553 0.982634i \(-0.440592\pi\)
0.185553 + 0.982634i \(0.440592\pi\)
\(462\) 5.01161 0.233161
\(463\) −0.760281 −0.0353333 −0.0176666 0.999844i \(-0.505624\pi\)
−0.0176666 + 0.999844i \(0.505624\pi\)
\(464\) 19.3638 0.898942
\(465\) −4.28412 −0.198671
\(466\) −5.99192 −0.277570
\(467\) −0.977457 −0.0452313 −0.0226157 0.999744i \(-0.507199\pi\)
−0.0226157 + 0.999744i \(0.507199\pi\)
\(468\) 0 0
\(469\) −2.84947 −0.131576
\(470\) −53.8325 −2.48311
\(471\) −23.4097 −1.07866
\(472\) 4.90884 0.225948
\(473\) 16.8014 0.772530
\(474\) −30.2523 −1.38953
\(475\) −12.4649 −0.571929
\(476\) −6.52241 −0.298954
\(477\) 2.01175 0.0921116
\(478\) −27.4656 −1.25625
\(479\) −25.9857 −1.18732 −0.593659 0.804716i \(-0.702317\pi\)
−0.593659 + 0.804716i \(0.702317\pi\)
\(480\) 32.4225 1.47988
\(481\) 0 0
\(482\) 38.7104 1.76321
\(483\) 9.88045 0.449576
\(484\) −9.96982 −0.453173
\(485\) 0.984022 0.0446822
\(486\) −4.20597 −0.190786
\(487\) 17.2531 0.781812 0.390906 0.920431i \(-0.372162\pi\)
0.390906 + 0.920431i \(0.372162\pi\)
\(488\) 3.75663 0.170055
\(489\) −20.6628 −0.934404
\(490\) 32.3418 1.46105
\(491\) −7.26010 −0.327644 −0.163822 0.986490i \(-0.552382\pi\)
−0.163822 + 0.986490i \(0.552382\pi\)
\(492\) 19.5868 0.883043
\(493\) 24.0354 1.08250
\(494\) 0 0
\(495\) 1.23054 0.0553088
\(496\) 4.47860 0.201095
\(497\) −6.58899 −0.295557
\(498\) 34.8262 1.56060
\(499\) 13.8502 0.620018 0.310009 0.950734i \(-0.399668\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(500\) −15.1114 −0.675804
\(501\) −35.8060 −1.59970
\(502\) 1.80711 0.0806551
\(503\) 36.9033 1.64544 0.822719 0.568448i \(-0.192456\pi\)
0.822719 + 0.568448i \(0.192456\pi\)
\(504\) −0.0767799 −0.00342005
\(505\) −33.0581 −1.47107
\(506\) 38.2360 1.69980
\(507\) 0 0
\(508\) −14.3818 −0.638088
\(509\) 41.9785 1.86067 0.930333 0.366716i \(-0.119518\pi\)
0.930333 + 0.366716i \(0.119518\pi\)
\(510\) 45.9470 2.03457
\(511\) −5.14169 −0.227455
\(512\) −29.0916 −1.28568
\(513\) 42.3334 1.86906
\(514\) −24.8911 −1.09790
\(515\) −21.4619 −0.945726
\(516\) −21.1711 −0.932007
\(517\) −24.8326 −1.09214
\(518\) −14.7570 −0.648386
\(519\) 1.98534 0.0871468
\(520\) 0 0
\(521\) −20.5597 −0.900736 −0.450368 0.892843i \(-0.648707\pi\)
−0.450368 + 0.892843i \(0.648707\pi\)
\(522\) −1.75316 −0.0767337
\(523\) 7.42281 0.324577 0.162288 0.986743i \(-0.448112\pi\)
0.162288 + 0.986743i \(0.448112\pi\)
\(524\) −0.320547 −0.0140031
\(525\) 1.79665 0.0784123
\(526\) 30.3216 1.32209
\(527\) 5.55908 0.242157
\(528\) 17.0755 0.743118
\(529\) 52.3828 2.27751
\(530\) 47.3651 2.05741
\(531\) −1.92418 −0.0835021
\(532\) −9.26341 −0.401620
\(533\) 0 0
\(534\) −25.5985 −1.10775
\(535\) −30.7117 −1.32778
\(536\) −2.24247 −0.0968599
\(537\) −11.4414 −0.493731
\(538\) 53.6634 2.31359
\(539\) 14.9191 0.642611
\(540\) −23.6833 −1.01917
\(541\) 7.22124 0.310465 0.155233 0.987878i \(-0.450387\pi\)
0.155233 + 0.987878i \(0.450387\pi\)
\(542\) −12.2487 −0.526127
\(543\) 24.5292 1.05265
\(544\) −42.0714 −1.80380
\(545\) −14.2536 −0.610556
\(546\) 0 0
\(547\) 34.1669 1.46087 0.730435 0.682983i \(-0.239318\pi\)
0.730435 + 0.682983i \(0.239318\pi\)
\(548\) 17.1807 0.733925
\(549\) −1.47253 −0.0628460
\(550\) 6.95280 0.296468
\(551\) 34.1361 1.45425
\(552\) 7.77570 0.330956
\(553\) 6.39630 0.271999
\(554\) −31.8341 −1.35250
\(555\) 48.0967 2.04159
\(556\) 3.29168 0.139598
\(557\) −17.8338 −0.755643 −0.377822 0.925878i \(-0.623327\pi\)
−0.377822 + 0.925878i \(0.623327\pi\)
\(558\) −0.405484 −0.0171655
\(559\) 0 0
\(560\) −7.82650 −0.330730
\(561\) 21.1951 0.894856
\(562\) −9.12813 −0.385047
\(563\) −11.7075 −0.493412 −0.246706 0.969090i \(-0.579348\pi\)
−0.246706 + 0.969090i \(0.579348\pi\)
\(564\) 31.2911 1.31759
\(565\) 5.09172 0.214210
\(566\) −5.47073 −0.229952
\(567\) −5.67221 −0.238210
\(568\) −5.18539 −0.217574
\(569\) −14.3584 −0.601935 −0.300967 0.953634i \(-0.597310\pi\)
−0.300967 + 0.953634i \(0.597310\pi\)
\(570\) 65.2559 2.73327
\(571\) 22.4767 0.940622 0.470311 0.882501i \(-0.344142\pi\)
0.470311 + 0.882501i \(0.344142\pi\)
\(572\) 0 0
\(573\) −28.0096 −1.17012
\(574\) −8.95093 −0.373604
\(575\) 13.7075 0.571644
\(576\) 1.18615 0.0494227
\(577\) 19.4532 0.809846 0.404923 0.914351i \(-0.367298\pi\)
0.404923 + 0.914351i \(0.367298\pi\)
\(578\) −26.8233 −1.11570
\(579\) −27.9053 −1.15970
\(580\) −19.0974 −0.792976
\(581\) −7.36339 −0.305485
\(582\) −1.23627 −0.0512450
\(583\) 21.8492 0.904903
\(584\) −4.04639 −0.167441
\(585\) 0 0
\(586\) 50.9160 2.10332
\(587\) 32.5707 1.34434 0.672168 0.740398i \(-0.265363\pi\)
0.672168 + 0.740398i \(0.265363\pi\)
\(588\) −18.7992 −0.775268
\(589\) 7.89524 0.325318
\(590\) −45.3033 −1.86511
\(591\) −11.1429 −0.458358
\(592\) −50.2801 −2.06650
\(593\) 3.92792 0.161300 0.0806502 0.996742i \(-0.474300\pi\)
0.0806502 + 0.996742i \(0.474300\pi\)
\(594\) −23.6131 −0.968858
\(595\) −9.71466 −0.398262
\(596\) −33.2105 −1.36035
\(597\) −15.4536 −0.632472
\(598\) 0 0
\(599\) −28.4471 −1.16232 −0.581159 0.813790i \(-0.697401\pi\)
−0.581159 + 0.813790i \(0.697401\pi\)
\(600\) 1.41393 0.0577233
\(601\) −22.1654 −0.904147 −0.452073 0.891981i \(-0.649316\pi\)
−0.452073 + 0.891981i \(0.649316\pi\)
\(602\) 9.67492 0.394320
\(603\) 0.879007 0.0357959
\(604\) 17.1673 0.698529
\(605\) −14.8493 −0.603711
\(606\) 41.5323 1.68713
\(607\) 27.6407 1.12190 0.560950 0.827850i \(-0.310436\pi\)
0.560950 + 0.827850i \(0.310436\pi\)
\(608\) −59.7517 −2.42325
\(609\) −4.92027 −0.199379
\(610\) −34.6696 −1.40373
\(611\) 0 0
\(612\) 2.01204 0.0813318
\(613\) 15.6537 0.632248 0.316124 0.948718i \(-0.397618\pi\)
0.316124 + 0.948718i \(0.397618\pi\)
\(614\) −12.8614 −0.519043
\(615\) 29.1732 1.17638
\(616\) −0.833893 −0.0335985
\(617\) 9.55908 0.384834 0.192417 0.981313i \(-0.438367\pi\)
0.192417 + 0.981313i \(0.438367\pi\)
\(618\) 26.9636 1.08463
\(619\) −36.5043 −1.46723 −0.733616 0.679565i \(-0.762169\pi\)
−0.733616 + 0.679565i \(0.762169\pi\)
\(620\) −4.41698 −0.177390
\(621\) −46.5536 −1.86813
\(622\) −64.9630 −2.60478
\(623\) 5.41234 0.216841
\(624\) 0 0
\(625\) −30.4014 −1.21605
\(626\) 6.97164 0.278643
\(627\) 30.1022 1.20216
\(628\) −24.1357 −0.963121
\(629\) −62.4103 −2.48846
\(630\) 0.708596 0.0282311
\(631\) 20.3233 0.809057 0.404528 0.914525i \(-0.367436\pi\)
0.404528 + 0.914525i \(0.367436\pi\)
\(632\) 5.03375 0.200232
\(633\) 12.1518 0.482992
\(634\) 7.94651 0.315596
\(635\) −21.4207 −0.850053
\(636\) −27.5318 −1.09171
\(637\) 0 0
\(638\) −19.0408 −0.753831
\(639\) 2.03258 0.0804076
\(640\) −10.8959 −0.430699
\(641\) −32.4780 −1.28280 −0.641402 0.767205i \(-0.721647\pi\)
−0.641402 + 0.767205i \(0.721647\pi\)
\(642\) 38.5845 1.52281
\(643\) 8.83568 0.348445 0.174223 0.984706i \(-0.444259\pi\)
0.174223 + 0.984706i \(0.444259\pi\)
\(644\) 10.1869 0.401419
\(645\) −31.5329 −1.24161
\(646\) −84.6761 −3.33154
\(647\) 7.40134 0.290977 0.145488 0.989360i \(-0.453525\pi\)
0.145488 + 0.989360i \(0.453525\pi\)
\(648\) −4.46390 −0.175359
\(649\) −20.8981 −0.820324
\(650\) 0 0
\(651\) −1.13800 −0.0446016
\(652\) −21.3036 −0.834315
\(653\) 13.4030 0.524500 0.262250 0.965000i \(-0.415536\pi\)
0.262250 + 0.965000i \(0.415536\pi\)
\(654\) 17.9074 0.700234
\(655\) −0.477432 −0.0186548
\(656\) −30.4976 −1.19073
\(657\) 1.58611 0.0618802
\(658\) −14.2996 −0.557457
\(659\) −10.6344 −0.414258 −0.207129 0.978314i \(-0.566412\pi\)
−0.207129 + 0.978314i \(0.566412\pi\)
\(660\) −16.8406 −0.655520
\(661\) −26.6564 −1.03681 −0.518407 0.855134i \(-0.673475\pi\)
−0.518407 + 0.855134i \(0.673475\pi\)
\(662\) −65.2552 −2.53622
\(663\) 0 0
\(664\) −5.79482 −0.224883
\(665\) −13.7972 −0.535032
\(666\) 4.55226 0.176397
\(667\) −37.5391 −1.45352
\(668\) −36.9165 −1.42834
\(669\) −20.2546 −0.783088
\(670\) 20.6956 0.799539
\(671\) −15.9929 −0.617398
\(672\) 8.61242 0.332231
\(673\) −34.8029 −1.34155 −0.670777 0.741659i \(-0.734039\pi\)
−0.670777 + 0.741659i \(0.734039\pi\)
\(674\) 21.7753 0.838754
\(675\) −8.46526 −0.325828
\(676\) 0 0
\(677\) 17.3182 0.665592 0.332796 0.942999i \(-0.392008\pi\)
0.332796 + 0.942999i \(0.392008\pi\)
\(678\) −6.39694 −0.245673
\(679\) 0.261387 0.0100311
\(680\) −7.64523 −0.293181
\(681\) 15.3564 0.588460
\(682\) −4.40389 −0.168634
\(683\) 11.5364 0.441429 0.220714 0.975338i \(-0.429161\pi\)
0.220714 + 0.975338i \(0.429161\pi\)
\(684\) 2.85759 0.109263
\(685\) 25.5895 0.977725
\(686\) 17.7922 0.679308
\(687\) −9.71867 −0.370790
\(688\) 32.9644 1.25676
\(689\) 0 0
\(690\) −71.7613 −2.73191
\(691\) 31.9993 1.21731 0.608655 0.793435i \(-0.291709\pi\)
0.608655 + 0.793435i \(0.291709\pi\)
\(692\) 2.04691 0.0778120
\(693\) 0.326871 0.0124168
\(694\) −48.3384 −1.83490
\(695\) 4.90273 0.185971
\(696\) −3.87214 −0.146773
\(697\) −37.8552 −1.43387
\(698\) −32.0113 −1.21165
\(699\) 5.18754 0.196211
\(700\) 1.85237 0.0700131
\(701\) −35.4582 −1.33924 −0.669618 0.742706i \(-0.733542\pi\)
−0.669618 + 0.742706i \(0.733542\pi\)
\(702\) 0 0
\(703\) −88.6379 −3.34304
\(704\) 12.8825 0.485528
\(705\) 46.6059 1.75528
\(706\) −21.4320 −0.806605
\(707\) −8.78126 −0.330253
\(708\) 26.3333 0.989667
\(709\) 11.9194 0.447643 0.223822 0.974630i \(-0.428147\pi\)
0.223822 + 0.974630i \(0.428147\pi\)
\(710\) 47.8556 1.79599
\(711\) −1.97314 −0.0739985
\(712\) 4.25939 0.159627
\(713\) −8.68233 −0.325156
\(714\) 12.2050 0.456759
\(715\) 0 0
\(716\) −11.7962 −0.440845
\(717\) 23.7785 0.888025
\(718\) −44.3756 −1.65608
\(719\) −19.5383 −0.728655 −0.364328 0.931271i \(-0.618701\pi\)
−0.364328 + 0.931271i \(0.618701\pi\)
\(720\) 2.41433 0.0899767
\(721\) −5.70096 −0.212315
\(722\) −83.6047 −3.11144
\(723\) −33.5138 −1.24639
\(724\) 25.2900 0.939894
\(725\) −6.82608 −0.253514
\(726\) 18.6559 0.692384
\(727\) 22.0923 0.819360 0.409680 0.912229i \(-0.365640\pi\)
0.409680 + 0.912229i \(0.365640\pi\)
\(728\) 0 0
\(729\) 28.6172 1.05990
\(730\) 37.3438 1.38216
\(731\) 40.9171 1.51338
\(732\) 20.1523 0.744851
\(733\) 0.408574 0.0150910 0.00754551 0.999972i \(-0.497598\pi\)
0.00754551 + 0.999972i \(0.497598\pi\)
\(734\) 20.9461 0.773136
\(735\) −28.0001 −1.03280
\(736\) 65.7083 2.42204
\(737\) 9.54674 0.351659
\(738\) 2.76119 0.101641
\(739\) 50.4023 1.85408 0.927039 0.374964i \(-0.122345\pi\)
0.927039 + 0.374964i \(0.122345\pi\)
\(740\) 49.5883 1.82290
\(741\) 0 0
\(742\) 12.5817 0.461887
\(743\) 5.60492 0.205625 0.102812 0.994701i \(-0.467216\pi\)
0.102812 + 0.994701i \(0.467216\pi\)
\(744\) −0.895578 −0.0328335
\(745\) −49.4647 −1.81225
\(746\) −24.9895 −0.914929
\(747\) 2.27146 0.0831086
\(748\) 21.8524 0.799003
\(749\) −8.15799 −0.298087
\(750\) 28.2771 1.03253
\(751\) −11.4272 −0.416983 −0.208492 0.978024i \(-0.566855\pi\)
−0.208492 + 0.978024i \(0.566855\pi\)
\(752\) −48.7216 −1.77669
\(753\) −1.56451 −0.0570140
\(754\) 0 0
\(755\) 25.5695 0.930570
\(756\) −6.29104 −0.228803
\(757\) 9.82642 0.357147 0.178574 0.983927i \(-0.442852\pi\)
0.178574 + 0.983927i \(0.442852\pi\)
\(758\) 58.7142 2.13260
\(759\) −33.1031 −1.20156
\(760\) −10.8581 −0.393864
\(761\) −24.5095 −0.888470 −0.444235 0.895910i \(-0.646525\pi\)
−0.444235 + 0.895910i \(0.646525\pi\)
\(762\) 26.9117 0.974908
\(763\) −3.78619 −0.137069
\(764\) −28.8783 −1.04478
\(765\) 2.99679 0.108349
\(766\) 63.5991 2.29793
\(767\) 0 0
\(768\) 32.5418 1.17425
\(769\) 9.64255 0.347719 0.173860 0.984770i \(-0.444376\pi\)
0.173860 + 0.984770i \(0.444376\pi\)
\(770\) 7.69593 0.277342
\(771\) 21.5496 0.776090
\(772\) −28.7707 −1.03548
\(773\) 2.29144 0.0824172 0.0412086 0.999151i \(-0.486879\pi\)
0.0412086 + 0.999151i \(0.486879\pi\)
\(774\) −2.98453 −0.107277
\(775\) −1.57879 −0.0567117
\(776\) 0.205706 0.00738441
\(777\) 12.7760 0.458336
\(778\) −34.4694 −1.23579
\(779\) −53.7636 −1.92628
\(780\) 0 0
\(781\) 22.0755 0.789923
\(782\) 93.1176 3.32988
\(783\) 23.1828 0.828485
\(784\) 29.2713 1.04540
\(785\) −35.9485 −1.28306
\(786\) 0.599818 0.0213948
\(787\) 12.5303 0.446657 0.223328 0.974743i \(-0.428308\pi\)
0.223328 + 0.974743i \(0.428308\pi\)
\(788\) −11.4885 −0.409261
\(789\) −26.2511 −0.934565
\(790\) −46.4561 −1.65283
\(791\) 1.35252 0.0480900
\(792\) 0.257240 0.00914064
\(793\) 0 0
\(794\) −55.1674 −1.95782
\(795\) −41.0066 −1.45436
\(796\) −15.9328 −0.564724
\(797\) −17.2101 −0.609612 −0.304806 0.952414i \(-0.598592\pi\)
−0.304806 + 0.952414i \(0.598592\pi\)
\(798\) 17.3340 0.613617
\(799\) −60.4758 −2.13948
\(800\) 11.9483 0.422438
\(801\) −1.66960 −0.0589926
\(802\) 15.1577 0.535236
\(803\) 17.2265 0.607910
\(804\) −12.0296 −0.424253
\(805\) 15.1726 0.534765
\(806\) 0 0
\(807\) −46.4594 −1.63545
\(808\) −6.91066 −0.243116
\(809\) −51.0461 −1.79469 −0.897343 0.441334i \(-0.854505\pi\)
−0.897343 + 0.441334i \(0.854505\pi\)
\(810\) 41.1970 1.44752
\(811\) 18.6496 0.654877 0.327439 0.944872i \(-0.393815\pi\)
0.327439 + 0.944872i \(0.393815\pi\)
\(812\) −5.07287 −0.178023
\(813\) 10.6044 0.371913
\(814\) 49.4413 1.73292
\(815\) −31.7303 −1.11146
\(816\) 41.5847 1.45576
\(817\) 58.1123 2.03309
\(818\) 3.48046 0.121691
\(819\) 0 0
\(820\) 30.0780 1.05037
\(821\) −15.7296 −0.548968 −0.274484 0.961592i \(-0.588507\pi\)
−0.274484 + 0.961592i \(0.588507\pi\)
\(822\) −32.1492 −1.12133
\(823\) −15.0590 −0.524923 −0.262462 0.964942i \(-0.584534\pi\)
−0.262462 + 0.964942i \(0.584534\pi\)
\(824\) −4.48653 −0.156296
\(825\) −6.01943 −0.209570
\(826\) −12.0340 −0.418716
\(827\) 27.6179 0.960368 0.480184 0.877168i \(-0.340570\pi\)
0.480184 + 0.877168i \(0.340570\pi\)
\(828\) −3.14246 −0.109208
\(829\) 35.2019 1.22261 0.611307 0.791394i \(-0.290644\pi\)
0.611307 + 0.791394i \(0.290644\pi\)
\(830\) 53.4800 1.85632
\(831\) 27.5606 0.956065
\(832\) 0 0
\(833\) 36.3330 1.25886
\(834\) −6.15951 −0.213286
\(835\) −54.9845 −1.90282
\(836\) 31.0357 1.07339
\(837\) 5.36188 0.185334
\(838\) 53.0153 1.83138
\(839\) 10.0927 0.348439 0.174219 0.984707i \(-0.444260\pi\)
0.174219 + 0.984707i \(0.444260\pi\)
\(840\) 1.56505 0.0539994
\(841\) −10.3063 −0.355388
\(842\) −27.8631 −0.960226
\(843\) 7.90274 0.272185
\(844\) 12.5287 0.431256
\(845\) 0 0
\(846\) 4.41116 0.151659
\(847\) −3.94445 −0.135533
\(848\) 42.8682 1.47210
\(849\) 4.73632 0.162550
\(850\) 16.9324 0.580777
\(851\) 97.4742 3.34137
\(852\) −27.8169 −0.952990
\(853\) −26.2755 −0.899657 −0.449828 0.893115i \(-0.648515\pi\)
−0.449828 + 0.893115i \(0.648515\pi\)
\(854\) −9.20933 −0.315137
\(855\) 4.25617 0.145558
\(856\) −6.42016 −0.219437
\(857\) −13.4215 −0.458469 −0.229235 0.973371i \(-0.573622\pi\)
−0.229235 + 0.973371i \(0.573622\pi\)
\(858\) 0 0
\(859\) 19.3058 0.658705 0.329352 0.944207i \(-0.393170\pi\)
0.329352 + 0.944207i \(0.393170\pi\)
\(860\) −32.5109 −1.10861
\(861\) 7.74932 0.264096
\(862\) 54.5240 1.85710
\(863\) −49.3900 −1.68126 −0.840628 0.541613i \(-0.817814\pi\)
−0.840628 + 0.541613i \(0.817814\pi\)
\(864\) −40.5790 −1.38053
\(865\) 3.04873 0.103660
\(866\) 16.7283 0.568451
\(867\) 23.2224 0.788675
\(868\) −1.17329 −0.0398240
\(869\) −21.4299 −0.726960
\(870\) 35.7357 1.21155
\(871\) 0 0
\(872\) −2.97965 −0.100904
\(873\) −0.0806330 −0.00272901
\(874\) 132.250 4.47341
\(875\) −5.97868 −0.202116
\(876\) −21.7068 −0.733403
\(877\) 22.5910 0.762844 0.381422 0.924401i \(-0.375434\pi\)
0.381422 + 0.924401i \(0.375434\pi\)
\(878\) 31.5341 1.06422
\(879\) −44.0809 −1.48681
\(880\) 26.2216 0.883929
\(881\) −34.6527 −1.16748 −0.583740 0.811941i \(-0.698411\pi\)
−0.583740 + 0.811941i \(0.698411\pi\)
\(882\) −2.65016 −0.0892356
\(883\) 7.76871 0.261438 0.130719 0.991419i \(-0.458271\pi\)
0.130719 + 0.991419i \(0.458271\pi\)
\(884\) 0 0
\(885\) 39.2216 1.31842
\(886\) 15.4275 0.518295
\(887\) 26.9127 0.903641 0.451821 0.892109i \(-0.350775\pi\)
0.451821 + 0.892109i \(0.350775\pi\)
\(888\) 10.0544 0.337404
\(889\) −5.69000 −0.190836
\(890\) −39.3096 −1.31766
\(891\) 19.0039 0.636656
\(892\) −20.8828 −0.699207
\(893\) −85.8904 −2.87421
\(894\) 62.1446 2.07843
\(895\) −17.5696 −0.587287
\(896\) −2.89430 −0.0966918
\(897\) 0 0
\(898\) −49.2139 −1.64229
\(899\) 4.32363 0.144201
\(900\) −0.571422 −0.0190474
\(901\) 53.2103 1.77269
\(902\) 29.9888 0.998518
\(903\) −8.37613 −0.278740
\(904\) 1.06440 0.0354015
\(905\) 37.6676 1.25211
\(906\) −32.1241 −1.06725
\(907\) 3.77677 0.125406 0.0627028 0.998032i \(-0.480028\pi\)
0.0627028 + 0.998032i \(0.480028\pi\)
\(908\) 15.8327 0.525426
\(909\) 2.70885 0.0898470
\(910\) 0 0
\(911\) −12.6436 −0.418900 −0.209450 0.977819i \(-0.567167\pi\)
−0.209450 + 0.977819i \(0.567167\pi\)
\(912\) 59.0604 1.95569
\(913\) 24.6700 0.816457
\(914\) 40.6303 1.34393
\(915\) 30.0154 0.992280
\(916\) −10.0201 −0.331073
\(917\) −0.126821 −0.00418799
\(918\) −57.5059 −1.89798
\(919\) 26.4585 0.872787 0.436393 0.899756i \(-0.356256\pi\)
0.436393 + 0.899756i \(0.356256\pi\)
\(920\) 11.9405 0.393668
\(921\) 11.1348 0.366905
\(922\) −15.3724 −0.506262
\(923\) 0 0
\(924\) −4.47339 −0.147164
\(925\) 17.7246 0.582782
\(926\) 1.46679 0.0482016
\(927\) 1.75864 0.0577613
\(928\) −32.7215 −1.07413
\(929\) 9.75416 0.320024 0.160012 0.987115i \(-0.448847\pi\)
0.160012 + 0.987115i \(0.448847\pi\)
\(930\) 8.26521 0.271027
\(931\) 51.6017 1.69118
\(932\) 5.34843 0.175194
\(933\) 56.2421 1.84128
\(934\) 1.88578 0.0617045
\(935\) 32.5476 1.06442
\(936\) 0 0
\(937\) 45.1905 1.47631 0.738154 0.674632i \(-0.235698\pi\)
0.738154 + 0.674632i \(0.235698\pi\)
\(938\) 5.49739 0.179496
\(939\) −6.03574 −0.196969
\(940\) 48.0513 1.56726
\(941\) 1.35919 0.0443085 0.0221542 0.999755i \(-0.492948\pi\)
0.0221542 + 0.999755i \(0.492948\pi\)
\(942\) 45.1636 1.47151
\(943\) 59.1234 1.92532
\(944\) −41.0022 −1.33451
\(945\) −9.37006 −0.304808
\(946\) −32.4145 −1.05389
\(947\) −7.80919 −0.253765 −0.126882 0.991918i \(-0.540497\pi\)
−0.126882 + 0.991918i \(0.540497\pi\)
\(948\) 27.0034 0.877030
\(949\) 0 0
\(950\) 24.0482 0.780225
\(951\) −6.87974 −0.223091
\(952\) −2.03081 −0.0658190
\(953\) −23.4731 −0.760368 −0.380184 0.924911i \(-0.624139\pi\)
−0.380184 + 0.924911i \(0.624139\pi\)
\(954\) −3.88120 −0.125659
\(955\) −43.0122 −1.39184
\(956\) 24.5160 0.792904
\(957\) 16.4847 0.532874
\(958\) 50.1335 1.61974
\(959\) 6.79737 0.219499
\(960\) −24.1779 −0.780339
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 2.51659 0.0810959
\(964\) −34.5532 −1.11288
\(965\) −42.8519 −1.37945
\(966\) −19.0620 −0.613311
\(967\) −27.1193 −0.872098 −0.436049 0.899923i \(-0.643623\pi\)
−0.436049 + 0.899923i \(0.643623\pi\)
\(968\) −3.10420 −0.0997726
\(969\) 73.3089 2.35502
\(970\) −1.89844 −0.0609554
\(971\) −7.79697 −0.250217 −0.125108 0.992143i \(-0.539928\pi\)
−0.125108 + 0.992143i \(0.539928\pi\)
\(972\) 3.75427 0.120418
\(973\) 1.30232 0.0417504
\(974\) −33.2858 −1.06655
\(975\) 0 0
\(976\) −31.3780 −1.00439
\(977\) 34.6144 1.10741 0.553707 0.832712i \(-0.313213\pi\)
0.553707 + 0.832712i \(0.313213\pi\)
\(978\) 39.8641 1.27471
\(979\) −18.1333 −0.579542
\(980\) −28.8685 −0.922171
\(981\) 1.16797 0.0372904
\(982\) 14.0067 0.446971
\(983\) −35.2990 −1.12586 −0.562932 0.826503i \(-0.690327\pi\)
−0.562932 + 0.826503i \(0.690327\pi\)
\(984\) 6.09855 0.194415
\(985\) −17.1113 −0.545212
\(986\) −46.3707 −1.47674
\(987\) 12.3800 0.394059
\(988\) 0 0
\(989\) −63.9056 −2.03208
\(990\) −2.37405 −0.0754523
\(991\) 43.9798 1.39706 0.698532 0.715579i \(-0.253837\pi\)
0.698532 + 0.715579i \(0.253837\pi\)
\(992\) −7.56806 −0.240286
\(993\) 56.4951 1.79282
\(994\) 12.7119 0.403198
\(995\) −23.7308 −0.752318
\(996\) −31.0861 −0.985002
\(997\) 55.2614 1.75015 0.875073 0.483992i \(-0.160814\pi\)
0.875073 + 0.483992i \(0.160814\pi\)
\(998\) −26.7207 −0.845828
\(999\) −60.1965 −1.90453
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5239.2.a.t.1.6 yes 36
13.12 even 2 5239.2.a.s.1.31 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5239.2.a.s.1.31 36 13.12 even 2
5239.2.a.t.1.6 yes 36 1.1 even 1 trivial