Properties

Label 5225.2.a.y.1.7
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5225,2,Mod(1,5225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,5,4,17,0,-1,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 5 x^{14} - 11 x^{13} + 87 x^{12} - 4 x^{11} - 545 x^{10} + 431 x^{9} + 1480 x^{8} - 1763 x^{7} + \cdots + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.102671\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.102671 q^{2} -2.39685 q^{3} -1.98946 q^{4} +0.246087 q^{6} -2.47527 q^{7} +0.409602 q^{8} +2.74488 q^{9} +1.00000 q^{11} +4.76843 q^{12} +4.28964 q^{13} +0.254139 q^{14} +3.93686 q^{16} +6.76526 q^{17} -0.281820 q^{18} +1.00000 q^{19} +5.93286 q^{21} -0.102671 q^{22} +4.01461 q^{23} -0.981755 q^{24} -0.440422 q^{26} +0.611478 q^{27} +4.92445 q^{28} -5.47946 q^{29} +3.31201 q^{31} -1.22341 q^{32} -2.39685 q^{33} -0.694597 q^{34} -5.46083 q^{36} -6.41117 q^{37} -0.102671 q^{38} -10.2816 q^{39} -7.20691 q^{41} -0.609133 q^{42} +10.3647 q^{43} -1.98946 q^{44} -0.412185 q^{46} +3.38016 q^{47} -9.43606 q^{48} -0.873022 q^{49} -16.2153 q^{51} -8.53406 q^{52} -6.42147 q^{53} -0.0627811 q^{54} -1.01388 q^{56} -2.39685 q^{57} +0.562583 q^{58} -3.10281 q^{59} -0.0582058 q^{61} -0.340048 q^{62} -6.79433 q^{63} -7.74812 q^{64} +0.246087 q^{66} -1.24707 q^{67} -13.4592 q^{68} -9.62241 q^{69} +9.20338 q^{71} +1.12431 q^{72} +11.4157 q^{73} +0.658242 q^{74} -1.98946 q^{76} -2.47527 q^{77} +1.05562 q^{78} -11.4226 q^{79} -9.70027 q^{81} +0.739942 q^{82} -3.70335 q^{83} -11.8032 q^{84} -1.06416 q^{86} +13.1334 q^{87} +0.409602 q^{88} +8.44912 q^{89} -10.6180 q^{91} -7.98690 q^{92} -7.93840 q^{93} -0.347044 q^{94} +2.93232 q^{96} +4.30242 q^{97} +0.0896341 q^{98} +2.74488 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 5 q^{2} + 4 q^{3} + 17 q^{4} - q^{6} + 21 q^{7} + 9 q^{8} + 15 q^{9} + 15 q^{11} + 11 q^{12} + 13 q^{13} + 9 q^{14} + 21 q^{16} + 17 q^{17} + 22 q^{18} + 15 q^{19} + 6 q^{21} + 5 q^{22} + 26 q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.102671 −0.0725995 −0.0362997 0.999341i \(-0.511557\pi\)
−0.0362997 + 0.999341i \(0.511557\pi\)
\(3\) −2.39685 −1.38382 −0.691911 0.721983i \(-0.743231\pi\)
−0.691911 + 0.721983i \(0.743231\pi\)
\(4\) −1.98946 −0.994729
\(5\) 0 0
\(6\) 0.246087 0.100465
\(7\) −2.47527 −0.935565 −0.467783 0.883844i \(-0.654947\pi\)
−0.467783 + 0.883844i \(0.654947\pi\)
\(8\) 0.409602 0.144816
\(9\) 2.74488 0.914961
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 4.76843 1.37653
\(13\) 4.28964 1.18973 0.594866 0.803825i \(-0.297205\pi\)
0.594866 + 0.803825i \(0.297205\pi\)
\(14\) 0.254139 0.0679216
\(15\) 0 0
\(16\) 3.93686 0.984216
\(17\) 6.76526 1.64082 0.820408 0.571778i \(-0.193746\pi\)
0.820408 + 0.571778i \(0.193746\pi\)
\(18\) −0.281820 −0.0664257
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 5.93286 1.29466
\(22\) −0.102671 −0.0218896
\(23\) 4.01461 0.837104 0.418552 0.908193i \(-0.362538\pi\)
0.418552 + 0.908193i \(0.362538\pi\)
\(24\) −0.981755 −0.200400
\(25\) 0 0
\(26\) −0.440422 −0.0863739
\(27\) 0.611478 0.117679
\(28\) 4.92445 0.930634
\(29\) −5.47946 −1.01751 −0.508755 0.860911i \(-0.669894\pi\)
−0.508755 + 0.860911i \(0.669894\pi\)
\(30\) 0 0
\(31\) 3.31201 0.594855 0.297428 0.954744i \(-0.403871\pi\)
0.297428 + 0.954744i \(0.403871\pi\)
\(32\) −1.22341 −0.216270
\(33\) −2.39685 −0.417238
\(34\) −0.694597 −0.119122
\(35\) 0 0
\(36\) −5.46083 −0.910138
\(37\) −6.41117 −1.05399 −0.526995 0.849868i \(-0.676681\pi\)
−0.526995 + 0.849868i \(0.676681\pi\)
\(38\) −0.102671 −0.0166555
\(39\) −10.2816 −1.64638
\(40\) 0 0
\(41\) −7.20691 −1.12553 −0.562765 0.826617i \(-0.690263\pi\)
−0.562765 + 0.826617i \(0.690263\pi\)
\(42\) −0.609133 −0.0939913
\(43\) 10.3647 1.58061 0.790304 0.612715i \(-0.209923\pi\)
0.790304 + 0.612715i \(0.209923\pi\)
\(44\) −1.98946 −0.299922
\(45\) 0 0
\(46\) −0.412185 −0.0607733
\(47\) 3.38016 0.493046 0.246523 0.969137i \(-0.420712\pi\)
0.246523 + 0.969137i \(0.420712\pi\)
\(48\) −9.43606 −1.36198
\(49\) −0.873022 −0.124717
\(50\) 0 0
\(51\) −16.2153 −2.27060
\(52\) −8.53406 −1.18346
\(53\) −6.42147 −0.882056 −0.441028 0.897493i \(-0.645386\pi\)
−0.441028 + 0.897493i \(0.645386\pi\)
\(54\) −0.0627811 −0.00854343
\(55\) 0 0
\(56\) −1.01388 −0.135485
\(57\) −2.39685 −0.317470
\(58\) 0.562583 0.0738707
\(59\) −3.10281 −0.403951 −0.201976 0.979391i \(-0.564736\pi\)
−0.201976 + 0.979391i \(0.564736\pi\)
\(60\) 0 0
\(61\) −0.0582058 −0.00745249 −0.00372624 0.999993i \(-0.501186\pi\)
−0.00372624 + 0.999993i \(0.501186\pi\)
\(62\) −0.340048 −0.0431862
\(63\) −6.79433 −0.856006
\(64\) −7.74812 −0.968515
\(65\) 0 0
\(66\) 0.246087 0.0302912
\(67\) −1.24707 −0.152354 −0.0761769 0.997094i \(-0.524271\pi\)
−0.0761769 + 0.997094i \(0.524271\pi\)
\(68\) −13.4592 −1.63217
\(69\) −9.62241 −1.15840
\(70\) 0 0
\(71\) 9.20338 1.09224 0.546120 0.837707i \(-0.316104\pi\)
0.546120 + 0.837707i \(0.316104\pi\)
\(72\) 1.12431 0.132501
\(73\) 11.4157 1.33611 0.668053 0.744113i \(-0.267128\pi\)
0.668053 + 0.744113i \(0.267128\pi\)
\(74\) 0.658242 0.0765191
\(75\) 0 0
\(76\) −1.98946 −0.228207
\(77\) −2.47527 −0.282084
\(78\) 1.05562 0.119526
\(79\) −11.4226 −1.28515 −0.642573 0.766225i \(-0.722133\pi\)
−0.642573 + 0.766225i \(0.722133\pi\)
\(80\) 0 0
\(81\) −9.70027 −1.07781
\(82\) 0.739942 0.0817129
\(83\) −3.70335 −0.406496 −0.203248 0.979127i \(-0.565150\pi\)
−0.203248 + 0.979127i \(0.565150\pi\)
\(84\) −11.8032 −1.28783
\(85\) 0 0
\(86\) −1.06416 −0.114751
\(87\) 13.1334 1.40805
\(88\) 0.409602 0.0436638
\(89\) 8.44912 0.895605 0.447803 0.894132i \(-0.352207\pi\)
0.447803 + 0.894132i \(0.352207\pi\)
\(90\) 0 0
\(91\) −10.6180 −1.11307
\(92\) −7.98690 −0.832692
\(93\) −7.93840 −0.823173
\(94\) −0.347044 −0.0357949
\(95\) 0 0
\(96\) 2.93232 0.299279
\(97\) 4.30242 0.436844 0.218422 0.975854i \(-0.429909\pi\)
0.218422 + 0.975854i \(0.429909\pi\)
\(98\) 0.0896341 0.00905441
\(99\) 2.74488 0.275871
\(100\) 0 0
\(101\) 14.5786 1.45062 0.725311 0.688421i \(-0.241696\pi\)
0.725311 + 0.688421i \(0.241696\pi\)
\(102\) 1.66484 0.164844
\(103\) 8.38445 0.826145 0.413072 0.910698i \(-0.364456\pi\)
0.413072 + 0.910698i \(0.364456\pi\)
\(104\) 1.75705 0.172292
\(105\) 0 0
\(106\) 0.659299 0.0640368
\(107\) 2.44565 0.236430 0.118215 0.992988i \(-0.462283\pi\)
0.118215 + 0.992988i \(0.462283\pi\)
\(108\) −1.21651 −0.117059
\(109\) −14.8048 −1.41804 −0.709021 0.705187i \(-0.750863\pi\)
−0.709021 + 0.705187i \(0.750863\pi\)
\(110\) 0 0
\(111\) 15.3666 1.45853
\(112\) −9.74481 −0.920798
\(113\) −5.81699 −0.547216 −0.273608 0.961841i \(-0.588217\pi\)
−0.273608 + 0.961841i \(0.588217\pi\)
\(114\) 0.246087 0.0230482
\(115\) 0 0
\(116\) 10.9012 1.01215
\(117\) 11.7745 1.08856
\(118\) 0.318569 0.0293266
\(119\) −16.7459 −1.53509
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.00597605 0.000541047 0
\(123\) 17.2739 1.55753
\(124\) −6.58911 −0.591720
\(125\) 0 0
\(126\) 0.697582 0.0621456
\(127\) 9.69084 0.859923 0.429962 0.902847i \(-0.358527\pi\)
0.429962 + 0.902847i \(0.358527\pi\)
\(128\) 3.24232 0.286583
\(129\) −24.8427 −2.18728
\(130\) 0 0
\(131\) 7.65630 0.668934 0.334467 0.942407i \(-0.391444\pi\)
0.334467 + 0.942407i \(0.391444\pi\)
\(132\) 4.76843 0.415039
\(133\) −2.47527 −0.214633
\(134\) 0.128038 0.0110608
\(135\) 0 0
\(136\) 2.77107 0.237617
\(137\) −5.33128 −0.455482 −0.227741 0.973722i \(-0.573134\pi\)
−0.227741 + 0.973722i \(0.573134\pi\)
\(138\) 0.987944 0.0840994
\(139\) 7.77150 0.659170 0.329585 0.944126i \(-0.393091\pi\)
0.329585 + 0.944126i \(0.393091\pi\)
\(140\) 0 0
\(141\) −8.10172 −0.682288
\(142\) −0.944922 −0.0792961
\(143\) 4.28964 0.358717
\(144\) 10.8062 0.900519
\(145\) 0 0
\(146\) −1.17206 −0.0970007
\(147\) 2.09250 0.172587
\(148\) 12.7548 1.04843
\(149\) −7.14887 −0.585658 −0.292829 0.956165i \(-0.594597\pi\)
−0.292829 + 0.956165i \(0.594597\pi\)
\(150\) 0 0
\(151\) 4.14593 0.337391 0.168696 0.985668i \(-0.446044\pi\)
0.168696 + 0.985668i \(0.446044\pi\)
\(152\) 0.409602 0.0332231
\(153\) 18.5698 1.50128
\(154\) 0.254139 0.0204791
\(155\) 0 0
\(156\) 20.4548 1.63770
\(157\) 13.6699 1.09097 0.545487 0.838119i \(-0.316345\pi\)
0.545487 + 0.838119i \(0.316345\pi\)
\(158\) 1.17277 0.0933009
\(159\) 15.3913 1.22061
\(160\) 0 0
\(161\) −9.93726 −0.783166
\(162\) 0.995938 0.0782483
\(163\) 1.85837 0.145558 0.0727792 0.997348i \(-0.476813\pi\)
0.0727792 + 0.997348i \(0.476813\pi\)
\(164\) 14.3379 1.11960
\(165\) 0 0
\(166\) 0.380227 0.0295114
\(167\) −11.2750 −0.872486 −0.436243 0.899829i \(-0.643691\pi\)
−0.436243 + 0.899829i \(0.643691\pi\)
\(168\) 2.43011 0.187487
\(169\) 5.40099 0.415460
\(170\) 0 0
\(171\) 2.74488 0.209906
\(172\) −20.6202 −1.57228
\(173\) 13.0474 0.991973 0.495986 0.868330i \(-0.334807\pi\)
0.495986 + 0.868330i \(0.334807\pi\)
\(174\) −1.34843 −0.102224
\(175\) 0 0
\(176\) 3.93686 0.296752
\(177\) 7.43696 0.558996
\(178\) −0.867481 −0.0650205
\(179\) −10.1413 −0.757996 −0.378998 0.925398i \(-0.623731\pi\)
−0.378998 + 0.925398i \(0.623731\pi\)
\(180\) 0 0
\(181\) −1.19695 −0.0889688 −0.0444844 0.999010i \(-0.514164\pi\)
−0.0444844 + 0.999010i \(0.514164\pi\)
\(182\) 1.09016 0.0808084
\(183\) 0.139510 0.0103129
\(184\) 1.64439 0.121226
\(185\) 0 0
\(186\) 0.815044 0.0597619
\(187\) 6.76526 0.494725
\(188\) −6.72468 −0.490448
\(189\) −1.51357 −0.110096
\(190\) 0 0
\(191\) 12.4942 0.904046 0.452023 0.892006i \(-0.350702\pi\)
0.452023 + 0.892006i \(0.350702\pi\)
\(192\) 18.5711 1.34025
\(193\) −11.8564 −0.853441 −0.426721 0.904383i \(-0.640331\pi\)
−0.426721 + 0.904383i \(0.640331\pi\)
\(194\) −0.441734 −0.0317147
\(195\) 0 0
\(196\) 1.73684 0.124060
\(197\) −26.1005 −1.85959 −0.929793 0.368083i \(-0.880014\pi\)
−0.929793 + 0.368083i \(0.880014\pi\)
\(198\) −0.281820 −0.0200281
\(199\) 12.0041 0.850945 0.425472 0.904971i \(-0.360108\pi\)
0.425472 + 0.904971i \(0.360108\pi\)
\(200\) 0 0
\(201\) 2.98904 0.210830
\(202\) −1.49680 −0.105314
\(203\) 13.5632 0.951948
\(204\) 32.2597 2.25863
\(205\) 0 0
\(206\) −0.860841 −0.0599777
\(207\) 11.0196 0.765918
\(208\) 16.8877 1.17095
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 17.1841 1.18300 0.591500 0.806305i \(-0.298536\pi\)
0.591500 + 0.806305i \(0.298536\pi\)
\(212\) 12.7752 0.877407
\(213\) −22.0591 −1.51147
\(214\) −0.251098 −0.0171647
\(215\) 0 0
\(216\) 0.250463 0.0170418
\(217\) −8.19814 −0.556526
\(218\) 1.52003 0.102949
\(219\) −27.3617 −1.84893
\(220\) 0 0
\(221\) 29.0205 1.95213
\(222\) −1.57771 −0.105889
\(223\) −18.1146 −1.21305 −0.606523 0.795066i \(-0.707436\pi\)
−0.606523 + 0.795066i \(0.707436\pi\)
\(224\) 3.02827 0.202335
\(225\) 0 0
\(226\) 0.597237 0.0397276
\(227\) 18.6952 1.24084 0.620422 0.784268i \(-0.286961\pi\)
0.620422 + 0.784268i \(0.286961\pi\)
\(228\) 4.76843 0.315797
\(229\) −27.1453 −1.79381 −0.896906 0.442220i \(-0.854191\pi\)
−0.896906 + 0.442220i \(0.854191\pi\)
\(230\) 0 0
\(231\) 5.93286 0.390353
\(232\) −2.24440 −0.147352
\(233\) −5.95158 −0.389901 −0.194950 0.980813i \(-0.562455\pi\)
−0.194950 + 0.980813i \(0.562455\pi\)
\(234\) −1.20891 −0.0790287
\(235\) 0 0
\(236\) 6.17291 0.401822
\(237\) 27.3783 1.77841
\(238\) 1.71932 0.111447
\(239\) 6.12898 0.396451 0.198225 0.980156i \(-0.436482\pi\)
0.198225 + 0.980156i \(0.436482\pi\)
\(240\) 0 0
\(241\) −27.8382 −1.79322 −0.896609 0.442823i \(-0.853977\pi\)
−0.896609 + 0.442823i \(0.853977\pi\)
\(242\) −0.102671 −0.00659995
\(243\) 21.4156 1.37381
\(244\) 0.115798 0.00741321
\(245\) 0 0
\(246\) −1.77353 −0.113076
\(247\) 4.28964 0.272943
\(248\) 1.35661 0.0861447
\(249\) 8.87637 0.562517
\(250\) 0 0
\(251\) −16.9502 −1.06989 −0.534943 0.844888i \(-0.679667\pi\)
−0.534943 + 0.844888i \(0.679667\pi\)
\(252\) 13.5170 0.851494
\(253\) 4.01461 0.252396
\(254\) −0.994970 −0.0624300
\(255\) 0 0
\(256\) 15.1633 0.947709
\(257\) 23.6602 1.47588 0.737942 0.674864i \(-0.235798\pi\)
0.737942 + 0.674864i \(0.235798\pi\)
\(258\) 2.55063 0.158795
\(259\) 15.8694 0.986077
\(260\) 0 0
\(261\) −15.0405 −0.930983
\(262\) −0.786082 −0.0485643
\(263\) 15.7211 0.969406 0.484703 0.874679i \(-0.338928\pi\)
0.484703 + 0.874679i \(0.338928\pi\)
\(264\) −0.981755 −0.0604228
\(265\) 0 0
\(266\) 0.254139 0.0155823
\(267\) −20.2513 −1.23936
\(268\) 2.48099 0.151551
\(269\) 18.5449 1.13070 0.565351 0.824850i \(-0.308741\pi\)
0.565351 + 0.824850i \(0.308741\pi\)
\(270\) 0 0
\(271\) −8.57424 −0.520848 −0.260424 0.965494i \(-0.583862\pi\)
−0.260424 + 0.965494i \(0.583862\pi\)
\(272\) 26.6339 1.61492
\(273\) 25.4498 1.54029
\(274\) 0.547369 0.0330678
\(275\) 0 0
\(276\) 19.1434 1.15230
\(277\) −4.01070 −0.240980 −0.120490 0.992715i \(-0.538447\pi\)
−0.120490 + 0.992715i \(0.538447\pi\)
\(278\) −0.797909 −0.0478554
\(279\) 9.09109 0.544269
\(280\) 0 0
\(281\) −23.6412 −1.41031 −0.705157 0.709051i \(-0.749124\pi\)
−0.705157 + 0.709051i \(0.749124\pi\)
\(282\) 0.831813 0.0495337
\(283\) −14.3662 −0.853979 −0.426990 0.904256i \(-0.640426\pi\)
−0.426990 + 0.904256i \(0.640426\pi\)
\(284\) −18.3098 −1.08648
\(285\) 0 0
\(286\) −0.440422 −0.0260427
\(287\) 17.8391 1.05301
\(288\) −3.35811 −0.197878
\(289\) 28.7688 1.69228
\(290\) 0 0
\(291\) −10.3122 −0.604514
\(292\) −22.7111 −1.32906
\(293\) 9.21535 0.538366 0.269183 0.963089i \(-0.413246\pi\)
0.269183 + 0.963089i \(0.413246\pi\)
\(294\) −0.214839 −0.0125297
\(295\) 0 0
\(296\) −2.62603 −0.152635
\(297\) 0.611478 0.0354815
\(298\) 0.733983 0.0425185
\(299\) 17.2212 0.995929
\(300\) 0 0
\(301\) −25.6556 −1.47876
\(302\) −0.425668 −0.0244944
\(303\) −34.9426 −2.00740
\(304\) 3.93686 0.225795
\(305\) 0 0
\(306\) −1.90659 −0.108992
\(307\) −23.7059 −1.35297 −0.676483 0.736458i \(-0.736497\pi\)
−0.676483 + 0.736458i \(0.736497\pi\)
\(308\) 4.92445 0.280597
\(309\) −20.0963 −1.14324
\(310\) 0 0
\(311\) 13.5580 0.768806 0.384403 0.923165i \(-0.374407\pi\)
0.384403 + 0.923165i \(0.374407\pi\)
\(312\) −4.21137 −0.238422
\(313\) −7.33205 −0.414432 −0.207216 0.978295i \(-0.566440\pi\)
−0.207216 + 0.978295i \(0.566440\pi\)
\(314\) −1.40350 −0.0792041
\(315\) 0 0
\(316\) 22.7248 1.27837
\(317\) 13.8194 0.776177 0.388088 0.921622i \(-0.373136\pi\)
0.388088 + 0.921622i \(0.373136\pi\)
\(318\) −1.58024 −0.0886155
\(319\) −5.47946 −0.306791
\(320\) 0 0
\(321\) −5.86185 −0.327177
\(322\) 1.02027 0.0568574
\(323\) 6.76526 0.376429
\(324\) 19.2983 1.07213
\(325\) 0 0
\(326\) −0.190801 −0.0105675
\(327\) 35.4848 1.96232
\(328\) −2.95197 −0.162995
\(329\) −8.36681 −0.461277
\(330\) 0 0
\(331\) −20.7661 −1.14141 −0.570705 0.821155i \(-0.693330\pi\)
−0.570705 + 0.821155i \(0.693330\pi\)
\(332\) 7.36766 0.404353
\(333\) −17.5979 −0.964360
\(334\) 1.15762 0.0633421
\(335\) 0 0
\(336\) 23.3568 1.27422
\(337\) 26.5298 1.44517 0.722586 0.691281i \(-0.242953\pi\)
0.722586 + 0.691281i \(0.242953\pi\)
\(338\) −0.554525 −0.0301622
\(339\) 13.9424 0.757249
\(340\) 0 0
\(341\) 3.31201 0.179356
\(342\) −0.281820 −0.0152391
\(343\) 19.4879 1.05225
\(344\) 4.24542 0.228898
\(345\) 0 0
\(346\) −1.33959 −0.0720167
\(347\) 11.9044 0.639062 0.319531 0.947576i \(-0.396475\pi\)
0.319531 + 0.947576i \(0.396475\pi\)
\(348\) −26.1284 −1.40063
\(349\) 1.01766 0.0544741 0.0272370 0.999629i \(-0.491329\pi\)
0.0272370 + 0.999629i \(0.491329\pi\)
\(350\) 0 0
\(351\) 2.62302 0.140006
\(352\) −1.22341 −0.0652078
\(353\) 18.3943 0.979029 0.489514 0.871995i \(-0.337174\pi\)
0.489514 + 0.871995i \(0.337174\pi\)
\(354\) −0.763561 −0.0405828
\(355\) 0 0
\(356\) −16.8092 −0.890885
\(357\) 40.1373 2.12429
\(358\) 1.04122 0.0550301
\(359\) 9.94068 0.524649 0.262325 0.964980i \(-0.415511\pi\)
0.262325 + 0.964980i \(0.415511\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0.122892 0.00645909
\(363\) −2.39685 −0.125802
\(364\) 21.1241 1.10720
\(365\) 0 0
\(366\) −0.0143237 −0.000748712 0
\(367\) −2.77988 −0.145108 −0.0725542 0.997364i \(-0.523115\pi\)
−0.0725542 + 0.997364i \(0.523115\pi\)
\(368\) 15.8050 0.823891
\(369\) −19.7821 −1.02982
\(370\) 0 0
\(371\) 15.8949 0.825221
\(372\) 15.7931 0.818835
\(373\) 20.7775 1.07582 0.537908 0.843004i \(-0.319215\pi\)
0.537908 + 0.843004i \(0.319215\pi\)
\(374\) −0.694597 −0.0359168
\(375\) 0 0
\(376\) 1.38452 0.0714011
\(377\) −23.5049 −1.21056
\(378\) 0.155400 0.00799294
\(379\) 20.9040 1.07377 0.536883 0.843657i \(-0.319602\pi\)
0.536883 + 0.843657i \(0.319602\pi\)
\(380\) 0 0
\(381\) −23.2275 −1.18998
\(382\) −1.28279 −0.0656333
\(383\) −24.0145 −1.22708 −0.613542 0.789662i \(-0.710256\pi\)
−0.613542 + 0.789662i \(0.710256\pi\)
\(384\) −7.77135 −0.396580
\(385\) 0 0
\(386\) 1.21731 0.0619594
\(387\) 28.4500 1.44619
\(388\) −8.55948 −0.434542
\(389\) −33.8949 −1.71854 −0.859270 0.511522i \(-0.829082\pi\)
−0.859270 + 0.511522i \(0.829082\pi\)
\(390\) 0 0
\(391\) 27.1599 1.37353
\(392\) −0.357592 −0.0180611
\(393\) −18.3510 −0.925686
\(394\) 2.67977 0.135005
\(395\) 0 0
\(396\) −5.46083 −0.274417
\(397\) 30.2669 1.51905 0.759527 0.650475i \(-0.225430\pi\)
0.759527 + 0.650475i \(0.225430\pi\)
\(398\) −1.23247 −0.0617781
\(399\) 5.93286 0.297014
\(400\) 0 0
\(401\) −28.1503 −1.40576 −0.702878 0.711310i \(-0.748102\pi\)
−0.702878 + 0.711310i \(0.748102\pi\)
\(402\) −0.306888 −0.0153062
\(403\) 14.2073 0.707718
\(404\) −29.0035 −1.44298
\(405\) 0 0
\(406\) −1.39255 −0.0691109
\(407\) −6.41117 −0.317790
\(408\) −6.64183 −0.328819
\(409\) −5.79745 −0.286666 −0.143333 0.989675i \(-0.545782\pi\)
−0.143333 + 0.989675i \(0.545782\pi\)
\(410\) 0 0
\(411\) 12.7783 0.630306
\(412\) −16.6805 −0.821790
\(413\) 7.68030 0.377923
\(414\) −1.13140 −0.0556052
\(415\) 0 0
\(416\) −5.24797 −0.257303
\(417\) −18.6271 −0.912173
\(418\) −0.102671 −0.00502181
\(419\) 12.2699 0.599425 0.299712 0.954030i \(-0.403109\pi\)
0.299712 + 0.954030i \(0.403109\pi\)
\(420\) 0 0
\(421\) −36.8040 −1.79372 −0.896860 0.442315i \(-0.854157\pi\)
−0.896860 + 0.442315i \(0.854157\pi\)
\(422\) −1.76431 −0.0858852
\(423\) 9.27813 0.451118
\(424\) −2.63025 −0.127736
\(425\) 0 0
\(426\) 2.26483 0.109732
\(427\) 0.144075 0.00697229
\(428\) −4.86552 −0.235184
\(429\) −10.2816 −0.496401
\(430\) 0 0
\(431\) 28.2190 1.35926 0.679630 0.733556i \(-0.262141\pi\)
0.679630 + 0.733556i \(0.262141\pi\)
\(432\) 2.40730 0.115821
\(433\) −7.43295 −0.357205 −0.178602 0.983921i \(-0.557158\pi\)
−0.178602 + 0.983921i \(0.557158\pi\)
\(434\) 0.841713 0.0404035
\(435\) 0 0
\(436\) 29.4535 1.41057
\(437\) 4.01461 0.192045
\(438\) 2.80926 0.134232
\(439\) 4.04293 0.192959 0.0964793 0.995335i \(-0.469242\pi\)
0.0964793 + 0.995335i \(0.469242\pi\)
\(440\) 0 0
\(441\) −2.39634 −0.114112
\(442\) −2.97957 −0.141724
\(443\) −33.0706 −1.57123 −0.785615 0.618715i \(-0.787653\pi\)
−0.785615 + 0.618715i \(0.787653\pi\)
\(444\) −30.5712 −1.45085
\(445\) 0 0
\(446\) 1.85985 0.0880665
\(447\) 17.1348 0.810446
\(448\) 19.1787 0.906109
\(449\) 37.4339 1.76661 0.883306 0.468796i \(-0.155312\pi\)
0.883306 + 0.468796i \(0.155312\pi\)
\(450\) 0 0
\(451\) −7.20691 −0.339360
\(452\) 11.5727 0.544332
\(453\) −9.93718 −0.466889
\(454\) −1.91946 −0.0900847
\(455\) 0 0
\(456\) −0.981755 −0.0459749
\(457\) −25.3943 −1.18789 −0.593947 0.804504i \(-0.702431\pi\)
−0.593947 + 0.804504i \(0.702431\pi\)
\(458\) 2.78704 0.130230
\(459\) 4.13681 0.193090
\(460\) 0 0
\(461\) −12.2994 −0.572839 −0.286420 0.958104i \(-0.592465\pi\)
−0.286420 + 0.958104i \(0.592465\pi\)
\(462\) −0.609133 −0.0283394
\(463\) 24.7142 1.14857 0.574283 0.818657i \(-0.305281\pi\)
0.574283 + 0.818657i \(0.305281\pi\)
\(464\) −21.5719 −1.00145
\(465\) 0 0
\(466\) 0.611055 0.0283066
\(467\) 23.6362 1.09375 0.546877 0.837213i \(-0.315817\pi\)
0.546877 + 0.837213i \(0.315817\pi\)
\(468\) −23.4250 −1.08282
\(469\) 3.08684 0.142537
\(470\) 0 0
\(471\) −32.7646 −1.50971
\(472\) −1.27092 −0.0584987
\(473\) 10.3647 0.476571
\(474\) −2.81096 −0.129112
\(475\) 0 0
\(476\) 33.3152 1.52700
\(477\) −17.6262 −0.807047
\(478\) −0.629270 −0.0287821
\(479\) 28.9089 1.32088 0.660440 0.750879i \(-0.270370\pi\)
0.660440 + 0.750879i \(0.270370\pi\)
\(480\) 0 0
\(481\) −27.5016 −1.25396
\(482\) 2.85818 0.130187
\(483\) 23.8181 1.08376
\(484\) −1.98946 −0.0904299
\(485\) 0 0
\(486\) −2.19877 −0.0997382
\(487\) 26.6045 1.20556 0.602782 0.797906i \(-0.294059\pi\)
0.602782 + 0.797906i \(0.294059\pi\)
\(488\) −0.0238412 −0.00107924
\(489\) −4.45422 −0.201427
\(490\) 0 0
\(491\) 1.92046 0.0866693 0.0433347 0.999061i \(-0.486202\pi\)
0.0433347 + 0.999061i \(0.486202\pi\)
\(492\) −34.3657 −1.54932
\(493\) −37.0700 −1.66955
\(494\) −0.440422 −0.0198155
\(495\) 0 0
\(496\) 13.0389 0.585466
\(497\) −22.7809 −1.02186
\(498\) −0.911347 −0.0408384
\(499\) 4.95869 0.221981 0.110991 0.993821i \(-0.464598\pi\)
0.110991 + 0.993821i \(0.464598\pi\)
\(500\) 0 0
\(501\) 27.0245 1.20737
\(502\) 1.74030 0.0776732
\(503\) −6.81042 −0.303661 −0.151831 0.988407i \(-0.548517\pi\)
−0.151831 + 0.988407i \(0.548517\pi\)
\(504\) −2.78298 −0.123964
\(505\) 0 0
\(506\) −0.412185 −0.0183238
\(507\) −12.9453 −0.574923
\(508\) −19.2795 −0.855391
\(509\) 10.4847 0.464727 0.232363 0.972629i \(-0.425354\pi\)
0.232363 + 0.972629i \(0.425354\pi\)
\(510\) 0 0
\(511\) −28.2570 −1.25002
\(512\) −8.04148 −0.355387
\(513\) 0.611478 0.0269974
\(514\) −2.42922 −0.107148
\(515\) 0 0
\(516\) 49.4235 2.17575
\(517\) 3.38016 0.148659
\(518\) −1.62933 −0.0715886
\(519\) −31.2726 −1.37271
\(520\) 0 0
\(521\) 29.7694 1.30422 0.652110 0.758124i \(-0.273884\pi\)
0.652110 + 0.758124i \(0.273884\pi\)
\(522\) 1.54422 0.0675888
\(523\) 34.3546 1.50222 0.751111 0.660176i \(-0.229518\pi\)
0.751111 + 0.660176i \(0.229518\pi\)
\(524\) −15.2319 −0.665409
\(525\) 0 0
\(526\) −1.61411 −0.0703783
\(527\) 22.4066 0.976048
\(528\) −9.43606 −0.410652
\(529\) −6.88290 −0.299257
\(530\) 0 0
\(531\) −8.51684 −0.369599
\(532\) 4.92445 0.213502
\(533\) −30.9150 −1.33908
\(534\) 2.07922 0.0899767
\(535\) 0 0
\(536\) −0.510802 −0.0220633
\(537\) 24.3071 1.04893
\(538\) −1.90403 −0.0820884
\(539\) −0.873022 −0.0376037
\(540\) 0 0
\(541\) 35.9823 1.54700 0.773499 0.633797i \(-0.218505\pi\)
0.773499 + 0.633797i \(0.218505\pi\)
\(542\) 0.880328 0.0378133
\(543\) 2.86891 0.123117
\(544\) −8.27667 −0.354859
\(545\) 0 0
\(546\) −2.61296 −0.111824
\(547\) −5.44079 −0.232631 −0.116316 0.993212i \(-0.537108\pi\)
−0.116316 + 0.993212i \(0.537108\pi\)
\(548\) 10.6064 0.453082
\(549\) −0.159768 −0.00681873
\(550\) 0 0
\(551\) −5.47946 −0.233433
\(552\) −3.94136 −0.167756
\(553\) 28.2741 1.20234
\(554\) 0.411783 0.0174950
\(555\) 0 0
\(556\) −15.4611 −0.655696
\(557\) −15.9004 −0.673722 −0.336861 0.941554i \(-0.609365\pi\)
−0.336861 + 0.941554i \(0.609365\pi\)
\(558\) −0.933393 −0.0395137
\(559\) 44.4609 1.88050
\(560\) 0 0
\(561\) −16.2153 −0.684611
\(562\) 2.42727 0.102388
\(563\) −29.3287 −1.23606 −0.618029 0.786155i \(-0.712069\pi\)
−0.618029 + 0.786155i \(0.712069\pi\)
\(564\) 16.1180 0.678692
\(565\) 0 0
\(566\) 1.47499 0.0619985
\(567\) 24.0108 1.00836
\(568\) 3.76973 0.158174
\(569\) 6.18252 0.259185 0.129592 0.991567i \(-0.458633\pi\)
0.129592 + 0.991567i \(0.458633\pi\)
\(570\) 0 0
\(571\) 16.1288 0.674971 0.337485 0.941331i \(-0.390424\pi\)
0.337485 + 0.941331i \(0.390424\pi\)
\(572\) −8.53406 −0.356827
\(573\) −29.9466 −1.25104
\(574\) −1.83156 −0.0764478
\(575\) 0 0
\(576\) −21.2677 −0.886153
\(577\) −13.1699 −0.548270 −0.274135 0.961691i \(-0.588392\pi\)
−0.274135 + 0.961691i \(0.588392\pi\)
\(578\) −2.95372 −0.122859
\(579\) 28.4180 1.18101
\(580\) 0 0
\(581\) 9.16680 0.380303
\(582\) 1.05877 0.0438874
\(583\) −6.42147 −0.265950
\(584\) 4.67590 0.193490
\(585\) 0 0
\(586\) −0.946151 −0.0390851
\(587\) −14.4749 −0.597444 −0.298722 0.954340i \(-0.596560\pi\)
−0.298722 + 0.954340i \(0.596560\pi\)
\(588\) −4.16294 −0.171677
\(589\) 3.31201 0.136469
\(590\) 0 0
\(591\) 62.5590 2.57333
\(592\) −25.2399 −1.03735
\(593\) 13.5088 0.554739 0.277370 0.960763i \(-0.410537\pi\)
0.277370 + 0.960763i \(0.410537\pi\)
\(594\) −0.0627811 −0.00257594
\(595\) 0 0
\(596\) 14.2224 0.582572
\(597\) −28.7719 −1.17756
\(598\) −1.76812 −0.0723039
\(599\) 18.4470 0.753723 0.376861 0.926270i \(-0.377003\pi\)
0.376861 + 0.926270i \(0.377003\pi\)
\(600\) 0 0
\(601\) 37.1149 1.51395 0.756974 0.653445i \(-0.226677\pi\)
0.756974 + 0.653445i \(0.226677\pi\)
\(602\) 2.63409 0.107357
\(603\) −3.42306 −0.139398
\(604\) −8.24816 −0.335613
\(605\) 0 0
\(606\) 3.58760 0.145736
\(607\) 20.2696 0.822717 0.411358 0.911474i \(-0.365055\pi\)
0.411358 + 0.911474i \(0.365055\pi\)
\(608\) −1.22341 −0.0496157
\(609\) −32.5089 −1.31733
\(610\) 0 0
\(611\) 14.4996 0.586593
\(612\) −36.9439 −1.49337
\(613\) 38.4564 1.55324 0.776621 0.629969i \(-0.216932\pi\)
0.776621 + 0.629969i \(0.216932\pi\)
\(614\) 2.43391 0.0982246
\(615\) 0 0
\(616\) −1.01388 −0.0408503
\(617\) 9.13912 0.367927 0.183964 0.982933i \(-0.441107\pi\)
0.183964 + 0.982933i \(0.441107\pi\)
\(618\) 2.06331 0.0829983
\(619\) 35.3756 1.42187 0.710933 0.703260i \(-0.248273\pi\)
0.710933 + 0.703260i \(0.248273\pi\)
\(620\) 0 0
\(621\) 2.45485 0.0985096
\(622\) −1.39202 −0.0558149
\(623\) −20.9139 −0.837897
\(624\) −40.4773 −1.62039
\(625\) 0 0
\(626\) 0.752790 0.0300876
\(627\) −2.39685 −0.0957209
\(628\) −27.1956 −1.08522
\(629\) −43.3732 −1.72940
\(630\) 0 0
\(631\) −3.69774 −0.147205 −0.0736024 0.997288i \(-0.523450\pi\)
−0.0736024 + 0.997288i \(0.523450\pi\)
\(632\) −4.67873 −0.186110
\(633\) −41.1876 −1.63706
\(634\) −1.41886 −0.0563500
\(635\) 0 0
\(636\) −30.6203 −1.21417
\(637\) −3.74495 −0.148380
\(638\) 0.562583 0.0222729
\(639\) 25.2622 0.999357
\(640\) 0 0
\(641\) 39.7510 1.57007 0.785035 0.619451i \(-0.212645\pi\)
0.785035 + 0.619451i \(0.212645\pi\)
\(642\) 0.601843 0.0237529
\(643\) −40.3082 −1.58960 −0.794800 0.606872i \(-0.792424\pi\)
−0.794800 + 0.606872i \(0.792424\pi\)
\(644\) 19.7698 0.779038
\(645\) 0 0
\(646\) −0.694597 −0.0273286
\(647\) −31.8685 −1.25288 −0.626440 0.779469i \(-0.715489\pi\)
−0.626440 + 0.779469i \(0.715489\pi\)
\(648\) −3.97325 −0.156084
\(649\) −3.10281 −0.121796
\(650\) 0 0
\(651\) 19.6497 0.770132
\(652\) −3.69714 −0.144791
\(653\) 35.7351 1.39842 0.699211 0.714916i \(-0.253535\pi\)
0.699211 + 0.714916i \(0.253535\pi\)
\(654\) −3.64327 −0.142463
\(655\) 0 0
\(656\) −28.3726 −1.10777
\(657\) 31.3348 1.22249
\(658\) 0.859030 0.0334885
\(659\) −8.31768 −0.324011 −0.162005 0.986790i \(-0.551796\pi\)
−0.162005 + 0.986790i \(0.551796\pi\)
\(660\) 0 0
\(661\) 11.0879 0.431268 0.215634 0.976474i \(-0.430818\pi\)
0.215634 + 0.976474i \(0.430818\pi\)
\(662\) 2.13208 0.0828658
\(663\) −69.5578 −2.70140
\(664\) −1.51690 −0.0588672
\(665\) 0 0
\(666\) 1.80680 0.0700120
\(667\) −21.9979 −0.851762
\(668\) 22.4312 0.867888
\(669\) 43.4180 1.67864
\(670\) 0 0
\(671\) −0.0582058 −0.00224701
\(672\) −7.25830 −0.279995
\(673\) −29.4826 −1.13647 −0.568236 0.822866i \(-0.692374\pi\)
−0.568236 + 0.822866i \(0.692374\pi\)
\(674\) −2.72385 −0.104919
\(675\) 0 0
\(676\) −10.7450 −0.413271
\(677\) −6.60442 −0.253829 −0.126914 0.991914i \(-0.540507\pi\)
−0.126914 + 0.991914i \(0.540507\pi\)
\(678\) −1.43149 −0.0549759
\(679\) −10.6497 −0.408696
\(680\) 0 0
\(681\) −44.8096 −1.71711
\(682\) −0.340048 −0.0130211
\(683\) 16.8710 0.645550 0.322775 0.946476i \(-0.395384\pi\)
0.322775 + 0.946476i \(0.395384\pi\)
\(684\) −5.46083 −0.208800
\(685\) 0 0
\(686\) −2.00084 −0.0763926
\(687\) 65.0632 2.48232
\(688\) 40.8045 1.55566
\(689\) −27.5458 −1.04941
\(690\) 0 0
\(691\) −10.2317 −0.389231 −0.194615 0.980880i \(-0.562346\pi\)
−0.194615 + 0.980880i \(0.562346\pi\)
\(692\) −25.9572 −0.986745
\(693\) −6.79433 −0.258095
\(694\) −1.22224 −0.0463955
\(695\) 0 0
\(696\) 5.37949 0.203909
\(697\) −48.7566 −1.84679
\(698\) −0.104484 −0.00395479
\(699\) 14.2650 0.539553
\(700\) 0 0
\(701\) −47.1809 −1.78200 −0.890998 0.454006i \(-0.849994\pi\)
−0.890998 + 0.454006i \(0.849994\pi\)
\(702\) −0.269308 −0.0101644
\(703\) −6.41117 −0.241802
\(704\) −7.74812 −0.292018
\(705\) 0 0
\(706\) −1.88856 −0.0710770
\(707\) −36.0860 −1.35715
\(708\) −14.7955 −0.556050
\(709\) 39.0837 1.46782 0.733910 0.679247i \(-0.237693\pi\)
0.733910 + 0.679247i \(0.237693\pi\)
\(710\) 0 0
\(711\) −31.3538 −1.17586
\(712\) 3.46078 0.129698
\(713\) 13.2964 0.497956
\(714\) −4.12094 −0.154222
\(715\) 0 0
\(716\) 20.1757 0.754001
\(717\) −14.6902 −0.548617
\(718\) −1.02062 −0.0380893
\(719\) 28.7476 1.07210 0.536052 0.844185i \(-0.319915\pi\)
0.536052 + 0.844185i \(0.319915\pi\)
\(720\) 0 0
\(721\) −20.7538 −0.772912
\(722\) −0.102671 −0.00382102
\(723\) 66.7240 2.48149
\(724\) 2.38129 0.0884999
\(725\) 0 0
\(726\) 0.246087 0.00913315
\(727\) 48.2185 1.78833 0.894163 0.447741i \(-0.147771\pi\)
0.894163 + 0.447741i \(0.147771\pi\)
\(728\) −4.34917 −0.161191
\(729\) −22.2292 −0.823305
\(730\) 0 0
\(731\) 70.1201 2.59349
\(732\) −0.277550 −0.0102586
\(733\) −20.7545 −0.766584 −0.383292 0.923627i \(-0.625210\pi\)
−0.383292 + 0.923627i \(0.625210\pi\)
\(734\) 0.285413 0.0105348
\(735\) 0 0
\(736\) −4.91150 −0.181040
\(737\) −1.24707 −0.0459364
\(738\) 2.03105 0.0747641
\(739\) −34.2862 −1.26124 −0.630619 0.776092i \(-0.717199\pi\)
−0.630619 + 0.776092i \(0.717199\pi\)
\(740\) 0 0
\(741\) −10.2816 −0.377704
\(742\) −1.63195 −0.0599106
\(743\) −27.6918 −1.01591 −0.507956 0.861383i \(-0.669599\pi\)
−0.507956 + 0.861383i \(0.669599\pi\)
\(744\) −3.25159 −0.119209
\(745\) 0 0
\(746\) −2.13325 −0.0781037
\(747\) −10.1653 −0.371927
\(748\) −13.4592 −0.492117
\(749\) −6.05365 −0.221196
\(750\) 0 0
\(751\) 5.00411 0.182602 0.0913012 0.995823i \(-0.470897\pi\)
0.0913012 + 0.995823i \(0.470897\pi\)
\(752\) 13.3072 0.485264
\(753\) 40.6270 1.48053
\(754\) 2.41328 0.0878863
\(755\) 0 0
\(756\) 3.01119 0.109516
\(757\) −44.0885 −1.60242 −0.801212 0.598380i \(-0.795811\pi\)
−0.801212 + 0.598380i \(0.795811\pi\)
\(758\) −2.14624 −0.0779548
\(759\) −9.62241 −0.349271
\(760\) 0 0
\(761\) −0.838856 −0.0304085 −0.0152043 0.999884i \(-0.504840\pi\)
−0.0152043 + 0.999884i \(0.504840\pi\)
\(762\) 2.38479 0.0863919
\(763\) 36.6459 1.32667
\(764\) −24.8566 −0.899281
\(765\) 0 0
\(766\) 2.46560 0.0890856
\(767\) −13.3099 −0.480593
\(768\) −36.3442 −1.31146
\(769\) −20.6026 −0.742950 −0.371475 0.928443i \(-0.621148\pi\)
−0.371475 + 0.928443i \(0.621148\pi\)
\(770\) 0 0
\(771\) −56.7100 −2.04236
\(772\) 23.5878 0.848943
\(773\) 36.2748 1.30471 0.652357 0.757912i \(-0.273780\pi\)
0.652357 + 0.757912i \(0.273780\pi\)
\(774\) −2.92099 −0.104993
\(775\) 0 0
\(776\) 1.76228 0.0632622
\(777\) −38.0366 −1.36455
\(778\) 3.48003 0.124765
\(779\) −7.20691 −0.258214
\(780\) 0 0
\(781\) 9.20338 0.329323
\(782\) −2.78854 −0.0997179
\(783\) −3.35057 −0.119740
\(784\) −3.43697 −0.122749
\(785\) 0 0
\(786\) 1.88412 0.0672043
\(787\) −22.2218 −0.792120 −0.396060 0.918225i \(-0.629623\pi\)
−0.396060 + 0.918225i \(0.629623\pi\)
\(788\) 51.9259 1.84978
\(789\) −37.6811 −1.34148
\(790\) 0 0
\(791\) 14.3986 0.511956
\(792\) 1.12431 0.0399506
\(793\) −0.249682 −0.00886646
\(794\) −3.10754 −0.110283
\(795\) 0 0
\(796\) −23.8816 −0.846460
\(797\) −26.3406 −0.933032 −0.466516 0.884513i \(-0.654491\pi\)
−0.466516 + 0.884513i \(0.654491\pi\)
\(798\) −0.609133 −0.0215631
\(799\) 22.8676 0.808999
\(800\) 0 0
\(801\) 23.1919 0.819444
\(802\) 2.89022 0.102057
\(803\) 11.4157 0.402851
\(804\) −5.94656 −0.209719
\(805\) 0 0
\(806\) −1.45868 −0.0513799
\(807\) −44.4493 −1.56469
\(808\) 5.97142 0.210074
\(809\) −23.6915 −0.832948 −0.416474 0.909148i \(-0.636734\pi\)
−0.416474 + 0.909148i \(0.636734\pi\)
\(810\) 0 0
\(811\) −5.87587 −0.206330 −0.103165 0.994664i \(-0.532897\pi\)
−0.103165 + 0.994664i \(0.532897\pi\)
\(812\) −26.9834 −0.946930
\(813\) 20.5512 0.720761
\(814\) 0.658242 0.0230714
\(815\) 0 0
\(816\) −63.8374 −2.23476
\(817\) 10.3647 0.362616
\(818\) 0.595231 0.0208118
\(819\) −29.1452 −1.01842
\(820\) 0 0
\(821\) −2.87670 −0.100397 −0.0501987 0.998739i \(-0.515985\pi\)
−0.0501987 + 0.998739i \(0.515985\pi\)
\(822\) −1.31196 −0.0457599
\(823\) 51.0614 1.77989 0.889945 0.456068i \(-0.150743\pi\)
0.889945 + 0.456068i \(0.150743\pi\)
\(824\) 3.43429 0.119639
\(825\) 0 0
\(826\) −0.788545 −0.0274370
\(827\) 43.5840 1.51556 0.757782 0.652508i \(-0.226283\pi\)
0.757782 + 0.652508i \(0.226283\pi\)
\(828\) −21.9231 −0.761881
\(829\) 11.9212 0.414040 0.207020 0.978337i \(-0.433623\pi\)
0.207020 + 0.978337i \(0.433623\pi\)
\(830\) 0 0
\(831\) 9.61304 0.333473
\(832\) −33.2366 −1.15227
\(833\) −5.90622 −0.204638
\(834\) 1.91247 0.0662233
\(835\) 0 0
\(836\) −1.98946 −0.0688069
\(837\) 2.02522 0.0700020
\(838\) −1.25977 −0.0435179
\(839\) 6.51682 0.224986 0.112493 0.993653i \(-0.464116\pi\)
0.112493 + 0.993653i \(0.464116\pi\)
\(840\) 0 0
\(841\) 1.02452 0.0353281
\(842\) 3.77871 0.130223
\(843\) 56.6643 1.95162
\(844\) −34.1870 −1.17677
\(845\) 0 0
\(846\) −0.952596 −0.0327509
\(847\) −2.47527 −0.0850514
\(848\) −25.2804 −0.868134
\(849\) 34.4335 1.18175
\(850\) 0 0
\(851\) −25.7384 −0.882299
\(852\) 43.8857 1.50350
\(853\) 35.7807 1.22511 0.612554 0.790428i \(-0.290142\pi\)
0.612554 + 0.790428i \(0.290142\pi\)
\(854\) −0.0147924 −0.000506184 0
\(855\) 0 0
\(856\) 1.00174 0.0342389
\(857\) −37.9264 −1.29554 −0.647771 0.761835i \(-0.724299\pi\)
−0.647771 + 0.761835i \(0.724299\pi\)
\(858\) 1.05562 0.0360384
\(859\) 49.7834 1.69859 0.849293 0.527921i \(-0.177028\pi\)
0.849293 + 0.527921i \(0.177028\pi\)
\(860\) 0 0
\(861\) −42.7576 −1.45717
\(862\) −2.89727 −0.0986815
\(863\) −39.7764 −1.35400 −0.677002 0.735981i \(-0.736721\pi\)
−0.677002 + 0.735981i \(0.736721\pi\)
\(864\) −0.748086 −0.0254504
\(865\) 0 0
\(866\) 0.763149 0.0259329
\(867\) −68.9543 −2.34181
\(868\) 16.3099 0.553593
\(869\) −11.4226 −0.387486
\(870\) 0 0
\(871\) −5.34947 −0.181260
\(872\) −6.06408 −0.205356
\(873\) 11.8096 0.399695
\(874\) −0.412185 −0.0139424
\(875\) 0 0
\(876\) 54.4350 1.83919
\(877\) 14.7361 0.497603 0.248802 0.968554i \(-0.419963\pi\)
0.248802 + 0.968554i \(0.419963\pi\)
\(878\) −0.415092 −0.0140087
\(879\) −22.0878 −0.745003
\(880\) 0 0
\(881\) 36.1210 1.21695 0.608473 0.793575i \(-0.291782\pi\)
0.608473 + 0.793575i \(0.291782\pi\)
\(882\) 0.246035 0.00828444
\(883\) −54.5279 −1.83501 −0.917505 0.397723i \(-0.869800\pi\)
−0.917505 + 0.397723i \(0.869800\pi\)
\(884\) −57.7351 −1.94184
\(885\) 0 0
\(886\) 3.39539 0.114070
\(887\) −30.6419 −1.02885 −0.514427 0.857534i \(-0.671995\pi\)
−0.514427 + 0.857534i \(0.671995\pi\)
\(888\) 6.29420 0.211219
\(889\) −23.9875 −0.804515
\(890\) 0 0
\(891\) −9.70027 −0.324971
\(892\) 36.0383 1.20665
\(893\) 3.38016 0.113113
\(894\) −1.75925 −0.0588380
\(895\) 0 0
\(896\) −8.02563 −0.268118
\(897\) −41.2767 −1.37819
\(898\) −3.84338 −0.128255
\(899\) −18.1481 −0.605272
\(900\) 0 0
\(901\) −43.4429 −1.44729
\(902\) 0.739942 0.0246374
\(903\) 61.4925 2.04634
\(904\) −2.38265 −0.0792458
\(905\) 0 0
\(906\) 1.02026 0.0338959
\(907\) 52.2779 1.73586 0.867929 0.496688i \(-0.165451\pi\)
0.867929 + 0.496688i \(0.165451\pi\)
\(908\) −37.1934 −1.23430
\(909\) 40.0165 1.32726
\(910\) 0 0
\(911\) 15.3410 0.508272 0.254136 0.967169i \(-0.418209\pi\)
0.254136 + 0.967169i \(0.418209\pi\)
\(912\) −9.43606 −0.312459
\(913\) −3.70335 −0.122563
\(914\) 2.60726 0.0862405
\(915\) 0 0
\(916\) 54.0045 1.78436
\(917\) −18.9514 −0.625832
\(918\) −0.424731 −0.0140182
\(919\) 32.0789 1.05818 0.529092 0.848564i \(-0.322532\pi\)
0.529092 + 0.848564i \(0.322532\pi\)
\(920\) 0 0
\(921\) 56.8194 1.87226
\(922\) 1.26279 0.0415878
\(923\) 39.4792 1.29947
\(924\) −11.8032 −0.388296
\(925\) 0 0
\(926\) −2.53743 −0.0833853
\(927\) 23.0143 0.755890
\(928\) 6.70361 0.220057
\(929\) −6.23142 −0.204446 −0.102223 0.994761i \(-0.532596\pi\)
−0.102223 + 0.994761i \(0.532596\pi\)
\(930\) 0 0
\(931\) −0.873022 −0.0286121
\(932\) 11.8404 0.387846
\(933\) −32.4966 −1.06389
\(934\) −2.42676 −0.0794059
\(935\) 0 0
\(936\) 4.82288 0.157641
\(937\) −35.2669 −1.15212 −0.576059 0.817408i \(-0.695410\pi\)
−0.576059 + 0.817408i \(0.695410\pi\)
\(938\) −0.316929 −0.0103481
\(939\) 17.5738 0.573500
\(940\) 0 0
\(941\) −22.3104 −0.727299 −0.363649 0.931536i \(-0.618469\pi\)
−0.363649 + 0.931536i \(0.618469\pi\)
\(942\) 3.36398 0.109604
\(943\) −28.9329 −0.942186
\(944\) −12.2153 −0.397575
\(945\) 0 0
\(946\) −1.06416 −0.0345988
\(947\) −41.3286 −1.34300 −0.671499 0.741005i \(-0.734349\pi\)
−0.671499 + 0.741005i \(0.734349\pi\)
\(948\) −54.4680 −1.76904
\(949\) 48.9692 1.58961
\(950\) 0 0
\(951\) −33.1231 −1.07409
\(952\) −6.85915 −0.222306
\(953\) −19.8043 −0.641524 −0.320762 0.947160i \(-0.603939\pi\)
−0.320762 + 0.947160i \(0.603939\pi\)
\(954\) 1.80970 0.0585912
\(955\) 0 0
\(956\) −12.1934 −0.394361
\(957\) 13.1334 0.424544
\(958\) −2.96811 −0.0958951
\(959\) 13.1964 0.426134
\(960\) 0 0
\(961\) −20.0306 −0.646147
\(962\) 2.82362 0.0910372
\(963\) 6.71302 0.216324
\(964\) 55.3830 1.78377
\(965\) 0 0
\(966\) −2.44543 −0.0786805
\(967\) −15.4967 −0.498341 −0.249170 0.968460i \(-0.580158\pi\)
−0.249170 + 0.968460i \(0.580158\pi\)
\(968\) 0.409602 0.0131651
\(969\) −16.2153 −0.520911
\(970\) 0 0
\(971\) −3.10819 −0.0997467 −0.0498733 0.998756i \(-0.515882\pi\)
−0.0498733 + 0.998756i \(0.515882\pi\)
\(972\) −42.6055 −1.36657
\(973\) −19.2366 −0.616696
\(974\) −2.73151 −0.0875233
\(975\) 0 0
\(976\) −0.229148 −0.00733485
\(977\) 52.0716 1.66592 0.832960 0.553334i \(-0.186645\pi\)
0.832960 + 0.553334i \(0.186645\pi\)
\(978\) 0.457320 0.0146235
\(979\) 8.44912 0.270035
\(980\) 0 0
\(981\) −40.6374 −1.29745
\(982\) −0.197176 −0.00629215
\(983\) −16.7488 −0.534204 −0.267102 0.963668i \(-0.586066\pi\)
−0.267102 + 0.963668i \(0.586066\pi\)
\(984\) 7.07542 0.225556
\(985\) 0 0
\(986\) 3.80602 0.121208
\(987\) 20.0540 0.638325
\(988\) −8.53406 −0.271504
\(989\) 41.6104 1.32313
\(990\) 0 0
\(991\) −22.5486 −0.716279 −0.358140 0.933668i \(-0.616589\pi\)
−0.358140 + 0.933668i \(0.616589\pi\)
\(992\) −4.05194 −0.128649
\(993\) 49.7733 1.57951
\(994\) 2.33894 0.0741867
\(995\) 0 0
\(996\) −17.6592 −0.559552
\(997\) 59.0193 1.86916 0.934580 0.355752i \(-0.115775\pi\)
0.934580 + 0.355752i \(0.115775\pi\)
\(998\) −0.509114 −0.0161157
\(999\) −3.92029 −0.124032
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.y.1.7 yes 15
5.4 even 2 5225.2.a.r.1.9 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5225.2.a.r.1.9 15 5.4 even 2
5225.2.a.y.1.7 yes 15 1.1 even 1 trivial