Properties

Label 5225.2.a.y.1.11
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5225,2,Mod(1,5225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,5,4,17,0,-1,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 5 x^{14} - 11 x^{13} + 87 x^{12} - 4 x^{11} - 545 x^{10} + 431 x^{9} + 1480 x^{8} - 1763 x^{7} + \cdots + 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(1.83402\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83402 q^{2} -0.596609 q^{3} +1.36363 q^{4} -1.09419 q^{6} -2.23486 q^{7} -1.16712 q^{8} -2.64406 q^{9} +1.00000 q^{11} -0.813554 q^{12} +3.03166 q^{13} -4.09879 q^{14} -4.86777 q^{16} -2.88338 q^{17} -4.84926 q^{18} +1.00000 q^{19} +1.33334 q^{21} +1.83402 q^{22} +4.68074 q^{23} +0.696311 q^{24} +5.56013 q^{26} +3.36730 q^{27} -3.04753 q^{28} +5.80281 q^{29} -3.86669 q^{31} -6.59336 q^{32} -0.596609 q^{33} -5.28817 q^{34} -3.60552 q^{36} -2.50615 q^{37} +1.83402 q^{38} -1.80872 q^{39} +2.12459 q^{41} +2.44537 q^{42} -7.08607 q^{43} +1.36363 q^{44} +8.58457 q^{46} +8.99585 q^{47} +2.90416 q^{48} -2.00538 q^{49} +1.72025 q^{51} +4.13407 q^{52} +10.8443 q^{53} +6.17569 q^{54} +2.60834 q^{56} -0.596609 q^{57} +10.6425 q^{58} -1.87114 q^{59} +10.3158 q^{61} -7.09159 q^{62} +5.90911 q^{63} -2.35682 q^{64} -1.09419 q^{66} -2.18744 q^{67} -3.93186 q^{68} -2.79257 q^{69} +1.25183 q^{71} +3.08592 q^{72} +7.41454 q^{73} -4.59633 q^{74} +1.36363 q^{76} -2.23486 q^{77} -3.31723 q^{78} -3.19265 q^{79} +5.92321 q^{81} +3.89653 q^{82} +17.3292 q^{83} +1.81818 q^{84} -12.9960 q^{86} -3.46201 q^{87} -1.16712 q^{88} +10.8617 q^{89} -6.77536 q^{91} +6.38280 q^{92} +2.30690 q^{93} +16.4986 q^{94} +3.93366 q^{96} -16.9653 q^{97} -3.67791 q^{98} -2.64406 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 5 q^{2} + 4 q^{3} + 17 q^{4} - q^{6} + 21 q^{7} + 9 q^{8} + 15 q^{9} + 15 q^{11} + 11 q^{12} + 13 q^{13} + 9 q^{14} + 21 q^{16} + 17 q^{17} + 22 q^{18} + 15 q^{19} + 6 q^{21} + 5 q^{22} + 26 q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83402 1.29685 0.648424 0.761279i \(-0.275428\pi\)
0.648424 + 0.761279i \(0.275428\pi\)
\(3\) −0.596609 −0.344452 −0.172226 0.985057i \(-0.555096\pi\)
−0.172226 + 0.985057i \(0.555096\pi\)
\(4\) 1.36363 0.681815
\(5\) 0 0
\(6\) −1.09419 −0.446702
\(7\) −2.23486 −0.844699 −0.422350 0.906433i \(-0.638795\pi\)
−0.422350 + 0.906433i \(0.638795\pi\)
\(8\) −1.16712 −0.412637
\(9\) −2.64406 −0.881353
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) −0.813554 −0.234853
\(13\) 3.03166 0.840832 0.420416 0.907331i \(-0.361884\pi\)
0.420416 + 0.907331i \(0.361884\pi\)
\(14\) −4.09879 −1.09545
\(15\) 0 0
\(16\) −4.86777 −1.21694
\(17\) −2.88338 −0.699321 −0.349661 0.936876i \(-0.613703\pi\)
−0.349661 + 0.936876i \(0.613703\pi\)
\(18\) −4.84926 −1.14298
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.33334 0.290959
\(22\) 1.83402 0.391014
\(23\) 4.68074 0.976002 0.488001 0.872843i \(-0.337726\pi\)
0.488001 + 0.872843i \(0.337726\pi\)
\(24\) 0.696311 0.142134
\(25\) 0 0
\(26\) 5.56013 1.09043
\(27\) 3.36730 0.648036
\(28\) −3.04753 −0.575929
\(29\) 5.80281 1.07756 0.538778 0.842448i \(-0.318886\pi\)
0.538778 + 0.842448i \(0.318886\pi\)
\(30\) 0 0
\(31\) −3.86669 −0.694478 −0.347239 0.937777i \(-0.612881\pi\)
−0.347239 + 0.937777i \(0.612881\pi\)
\(32\) −6.59336 −1.16555
\(33\) −0.596609 −0.103856
\(34\) −5.28817 −0.906913
\(35\) 0 0
\(36\) −3.60552 −0.600919
\(37\) −2.50615 −0.412008 −0.206004 0.978551i \(-0.566046\pi\)
−0.206004 + 0.978551i \(0.566046\pi\)
\(38\) 1.83402 0.297517
\(39\) −1.80872 −0.289627
\(40\) 0 0
\(41\) 2.12459 0.331805 0.165902 0.986142i \(-0.446946\pi\)
0.165902 + 0.986142i \(0.446946\pi\)
\(42\) 2.44537 0.377329
\(43\) −7.08607 −1.08062 −0.540308 0.841467i \(-0.681692\pi\)
−0.540308 + 0.841467i \(0.681692\pi\)
\(44\) 1.36363 0.205575
\(45\) 0 0
\(46\) 8.58457 1.26573
\(47\) 8.99585 1.31218 0.656090 0.754683i \(-0.272209\pi\)
0.656090 + 0.754683i \(0.272209\pi\)
\(48\) 2.90416 0.419179
\(49\) −2.00538 −0.286483
\(50\) 0 0
\(51\) 1.72025 0.240883
\(52\) 4.13407 0.573292
\(53\) 10.8443 1.48957 0.744787 0.667302i \(-0.232551\pi\)
0.744787 + 0.667302i \(0.232551\pi\)
\(54\) 6.17569 0.840405
\(55\) 0 0
\(56\) 2.60834 0.348555
\(57\) −0.596609 −0.0790228
\(58\) 10.6425 1.39743
\(59\) −1.87114 −0.243602 −0.121801 0.992555i \(-0.538867\pi\)
−0.121801 + 0.992555i \(0.538867\pi\)
\(60\) 0 0
\(61\) 10.3158 1.32080 0.660401 0.750913i \(-0.270386\pi\)
0.660401 + 0.750913i \(0.270386\pi\)
\(62\) −7.09159 −0.900633
\(63\) 5.90911 0.744478
\(64\) −2.35682 −0.294602
\(65\) 0 0
\(66\) −1.09419 −0.134686
\(67\) −2.18744 −0.267239 −0.133619 0.991033i \(-0.542660\pi\)
−0.133619 + 0.991033i \(0.542660\pi\)
\(68\) −3.93186 −0.476808
\(69\) −2.79257 −0.336186
\(70\) 0 0
\(71\) 1.25183 0.148565 0.0742827 0.997237i \(-0.476333\pi\)
0.0742827 + 0.997237i \(0.476333\pi\)
\(72\) 3.08592 0.363679
\(73\) 7.41454 0.867806 0.433903 0.900960i \(-0.357136\pi\)
0.433903 + 0.900960i \(0.357136\pi\)
\(74\) −4.59633 −0.534312
\(75\) 0 0
\(76\) 1.36363 0.156419
\(77\) −2.23486 −0.254686
\(78\) −3.31723 −0.375602
\(79\) −3.19265 −0.359201 −0.179600 0.983740i \(-0.557480\pi\)
−0.179600 + 0.983740i \(0.557480\pi\)
\(80\) 0 0
\(81\) 5.92321 0.658135
\(82\) 3.89653 0.430300
\(83\) 17.3292 1.90213 0.951063 0.308998i \(-0.0999936\pi\)
0.951063 + 0.308998i \(0.0999936\pi\)
\(84\) 1.81818 0.198380
\(85\) 0 0
\(86\) −12.9960 −1.40139
\(87\) −3.46201 −0.371166
\(88\) −1.16712 −0.124415
\(89\) 10.8617 1.15134 0.575668 0.817684i \(-0.304742\pi\)
0.575668 + 0.817684i \(0.304742\pi\)
\(90\) 0 0
\(91\) −6.77536 −0.710250
\(92\) 6.38280 0.665453
\(93\) 2.30690 0.239215
\(94\) 16.4986 1.70170
\(95\) 0 0
\(96\) 3.93366 0.401478
\(97\) −16.9653 −1.72257 −0.861283 0.508125i \(-0.830339\pi\)
−0.861283 + 0.508125i \(0.830339\pi\)
\(98\) −3.67791 −0.371525
\(99\) −2.64406 −0.265738
\(100\) 0 0
\(101\) −10.6526 −1.05998 −0.529989 0.848005i \(-0.677804\pi\)
−0.529989 + 0.848005i \(0.677804\pi\)
\(102\) 3.15497 0.312389
\(103\) 15.6734 1.54435 0.772175 0.635410i \(-0.219169\pi\)
0.772175 + 0.635410i \(0.219169\pi\)
\(104\) −3.53830 −0.346959
\(105\) 0 0
\(106\) 19.8886 1.93175
\(107\) 3.35117 0.323970 0.161985 0.986793i \(-0.448210\pi\)
0.161985 + 0.986793i \(0.448210\pi\)
\(108\) 4.59175 0.441841
\(109\) −16.9337 −1.62196 −0.810978 0.585077i \(-0.801064\pi\)
−0.810978 + 0.585077i \(0.801064\pi\)
\(110\) 0 0
\(111\) 1.49519 0.141917
\(112\) 10.8788 1.02795
\(113\) 19.3034 1.81591 0.907954 0.419070i \(-0.137644\pi\)
0.907954 + 0.419070i \(0.137644\pi\)
\(114\) −1.09419 −0.102481
\(115\) 0 0
\(116\) 7.91289 0.734693
\(117\) −8.01589 −0.741070
\(118\) −3.43172 −0.315915
\(119\) 6.44395 0.590716
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 18.9194 1.71288
\(123\) −1.26755 −0.114291
\(124\) −5.27274 −0.473506
\(125\) 0 0
\(126\) 10.8374 0.965475
\(127\) 9.32764 0.827694 0.413847 0.910346i \(-0.364185\pi\)
0.413847 + 0.910346i \(0.364185\pi\)
\(128\) 8.86428 0.783499
\(129\) 4.22762 0.372221
\(130\) 0 0
\(131\) 20.8478 1.82148 0.910741 0.412977i \(-0.135511\pi\)
0.910741 + 0.412977i \(0.135511\pi\)
\(132\) −0.813554 −0.0708108
\(133\) −2.23486 −0.193787
\(134\) −4.01182 −0.346568
\(135\) 0 0
\(136\) 3.36523 0.288566
\(137\) −11.3437 −0.969158 −0.484579 0.874748i \(-0.661027\pi\)
−0.484579 + 0.874748i \(0.661027\pi\)
\(138\) −5.12163 −0.435982
\(139\) −1.37966 −0.117021 −0.0585105 0.998287i \(-0.518635\pi\)
−0.0585105 + 0.998287i \(0.518635\pi\)
\(140\) 0 0
\(141\) −5.36701 −0.451983
\(142\) 2.29589 0.192667
\(143\) 3.03166 0.253520
\(144\) 12.8707 1.07256
\(145\) 0 0
\(146\) 13.5984 1.12541
\(147\) 1.19643 0.0986797
\(148\) −3.41746 −0.280913
\(149\) 18.5982 1.52362 0.761811 0.647800i \(-0.224311\pi\)
0.761811 + 0.647800i \(0.224311\pi\)
\(150\) 0 0
\(151\) 7.69001 0.625805 0.312902 0.949785i \(-0.398699\pi\)
0.312902 + 0.949785i \(0.398699\pi\)
\(152\) −1.16712 −0.0946655
\(153\) 7.62381 0.616349
\(154\) −4.09879 −0.330290
\(155\) 0 0
\(156\) −2.46642 −0.197472
\(157\) 9.60663 0.766693 0.383346 0.923605i \(-0.374772\pi\)
0.383346 + 0.923605i \(0.374772\pi\)
\(158\) −5.85538 −0.465829
\(159\) −6.46979 −0.513088
\(160\) 0 0
\(161\) −10.4608 −0.824428
\(162\) 10.8633 0.853501
\(163\) 11.0474 0.865298 0.432649 0.901562i \(-0.357579\pi\)
0.432649 + 0.901562i \(0.357579\pi\)
\(164\) 2.89715 0.226229
\(165\) 0 0
\(166\) 31.7821 2.46677
\(167\) −8.27878 −0.640631 −0.320316 0.947311i \(-0.603789\pi\)
−0.320316 + 0.947311i \(0.603789\pi\)
\(168\) −1.55616 −0.120060
\(169\) −3.80902 −0.293001
\(170\) 0 0
\(171\) −2.64406 −0.202196
\(172\) −9.66278 −0.736780
\(173\) 5.41017 0.411328 0.205664 0.978623i \(-0.434065\pi\)
0.205664 + 0.978623i \(0.434065\pi\)
\(174\) −6.34940 −0.481346
\(175\) 0 0
\(176\) −4.86777 −0.366922
\(177\) 1.11634 0.0839094
\(178\) 19.9205 1.49311
\(179\) 14.5286 1.08592 0.542959 0.839759i \(-0.317304\pi\)
0.542959 + 0.839759i \(0.317304\pi\)
\(180\) 0 0
\(181\) −8.39894 −0.624288 −0.312144 0.950035i \(-0.601047\pi\)
−0.312144 + 0.950035i \(0.601047\pi\)
\(182\) −12.4261 −0.921087
\(183\) −6.15450 −0.454954
\(184\) −5.46296 −0.402735
\(185\) 0 0
\(186\) 4.23091 0.310225
\(187\) −2.88338 −0.210853
\(188\) 12.2670 0.894664
\(189\) −7.52545 −0.547396
\(190\) 0 0
\(191\) 0.488866 0.0353731 0.0176865 0.999844i \(-0.494370\pi\)
0.0176865 + 0.999844i \(0.494370\pi\)
\(192\) 1.40610 0.101476
\(193\) −10.9732 −0.789868 −0.394934 0.918710i \(-0.629232\pi\)
−0.394934 + 0.918710i \(0.629232\pi\)
\(194\) −31.1147 −2.23391
\(195\) 0 0
\(196\) −2.73460 −0.195328
\(197\) 6.81170 0.485314 0.242657 0.970112i \(-0.421981\pi\)
0.242657 + 0.970112i \(0.421981\pi\)
\(198\) −4.84926 −0.344622
\(199\) −7.26864 −0.515260 −0.257630 0.966244i \(-0.582942\pi\)
−0.257630 + 0.966244i \(0.582942\pi\)
\(200\) 0 0
\(201\) 1.30505 0.0920511
\(202\) −19.5372 −1.37463
\(203\) −12.9685 −0.910210
\(204\) 2.34578 0.164238
\(205\) 0 0
\(206\) 28.7454 2.00279
\(207\) −12.3761 −0.860202
\(208\) −14.7574 −1.02325
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −4.55702 −0.313718 −0.156859 0.987621i \(-0.550137\pi\)
−0.156859 + 0.987621i \(0.550137\pi\)
\(212\) 14.7876 1.01561
\(213\) −0.746856 −0.0511737
\(214\) 6.14611 0.420139
\(215\) 0 0
\(216\) −3.93002 −0.267404
\(217\) 8.64153 0.586625
\(218\) −31.0568 −2.10343
\(219\) −4.42358 −0.298918
\(220\) 0 0
\(221\) −8.74142 −0.588012
\(222\) 2.74221 0.184045
\(223\) −3.44256 −0.230531 −0.115265 0.993335i \(-0.536772\pi\)
−0.115265 + 0.993335i \(0.536772\pi\)
\(224\) 14.7353 0.984542
\(225\) 0 0
\(226\) 35.4028 2.35496
\(227\) 17.7892 1.18071 0.590356 0.807143i \(-0.298988\pi\)
0.590356 + 0.807143i \(0.298988\pi\)
\(228\) −0.813554 −0.0538789
\(229\) −19.4695 −1.28658 −0.643291 0.765622i \(-0.722431\pi\)
−0.643291 + 0.765622i \(0.722431\pi\)
\(230\) 0 0
\(231\) 1.33334 0.0877274
\(232\) −6.77255 −0.444640
\(233\) −7.70793 −0.504963 −0.252481 0.967602i \(-0.581247\pi\)
−0.252481 + 0.967602i \(0.581247\pi\)
\(234\) −14.7013 −0.961055
\(235\) 0 0
\(236\) −2.55155 −0.166092
\(237\) 1.90476 0.123728
\(238\) 11.8183 0.766069
\(239\) −23.6770 −1.53154 −0.765768 0.643117i \(-0.777641\pi\)
−0.765768 + 0.643117i \(0.777641\pi\)
\(240\) 0 0
\(241\) 8.87417 0.571635 0.285818 0.958284i \(-0.407735\pi\)
0.285818 + 0.958284i \(0.407735\pi\)
\(242\) 1.83402 0.117895
\(243\) −13.6357 −0.874733
\(244\) 14.0669 0.900543
\(245\) 0 0
\(246\) −2.32471 −0.148218
\(247\) 3.03166 0.192900
\(248\) 4.51287 0.286568
\(249\) −10.3387 −0.655192
\(250\) 0 0
\(251\) −6.84752 −0.432212 −0.216106 0.976370i \(-0.569336\pi\)
−0.216106 + 0.976370i \(0.569336\pi\)
\(252\) 8.05784 0.507596
\(253\) 4.68074 0.294276
\(254\) 17.1071 1.07339
\(255\) 0 0
\(256\) 20.9709 1.31068
\(257\) −6.94874 −0.433450 −0.216725 0.976233i \(-0.569538\pi\)
−0.216725 + 0.976233i \(0.569538\pi\)
\(258\) 7.75353 0.482714
\(259\) 5.60090 0.348023
\(260\) 0 0
\(261\) −15.3430 −0.949706
\(262\) 38.2353 2.36219
\(263\) −25.2403 −1.55638 −0.778191 0.628028i \(-0.783862\pi\)
−0.778191 + 0.628028i \(0.783862\pi\)
\(264\) 0.696311 0.0428550
\(265\) 0 0
\(266\) −4.09879 −0.251313
\(267\) −6.48018 −0.396580
\(268\) −2.98287 −0.182207
\(269\) 10.3247 0.629506 0.314753 0.949174i \(-0.398078\pi\)
0.314753 + 0.949174i \(0.398078\pi\)
\(270\) 0 0
\(271\) −29.1786 −1.77247 −0.886236 0.463235i \(-0.846689\pi\)
−0.886236 + 0.463235i \(0.846689\pi\)
\(272\) 14.0356 0.851034
\(273\) 4.04224 0.244647
\(274\) −20.8046 −1.25685
\(275\) 0 0
\(276\) −3.80804 −0.229217
\(277\) 11.8590 0.712540 0.356270 0.934383i \(-0.384048\pi\)
0.356270 + 0.934383i \(0.384048\pi\)
\(278\) −2.53032 −0.151758
\(279\) 10.2238 0.612080
\(280\) 0 0
\(281\) 9.45893 0.564272 0.282136 0.959374i \(-0.408957\pi\)
0.282136 + 0.959374i \(0.408957\pi\)
\(282\) −9.84320 −0.586154
\(283\) 18.6561 1.10899 0.554494 0.832188i \(-0.312912\pi\)
0.554494 + 0.832188i \(0.312912\pi\)
\(284\) 1.70704 0.101294
\(285\) 0 0
\(286\) 5.56013 0.328778
\(287\) −4.74816 −0.280275
\(288\) 17.4332 1.02726
\(289\) −8.68615 −0.510950
\(290\) 0 0
\(291\) 10.1217 0.593342
\(292\) 10.1107 0.591683
\(293\) −28.1893 −1.64684 −0.823418 0.567435i \(-0.807936\pi\)
−0.823418 + 0.567435i \(0.807936\pi\)
\(294\) 2.19427 0.127973
\(295\) 0 0
\(296\) 2.92496 0.170010
\(297\) 3.36730 0.195390
\(298\) 34.1094 1.97591
\(299\) 14.1904 0.820654
\(300\) 0 0
\(301\) 15.8364 0.912796
\(302\) 14.1036 0.811573
\(303\) 6.35546 0.365112
\(304\) −4.86777 −0.279186
\(305\) 0 0
\(306\) 13.9822 0.799310
\(307\) 8.93464 0.509927 0.254963 0.966951i \(-0.417937\pi\)
0.254963 + 0.966951i \(0.417937\pi\)
\(308\) −3.04753 −0.173649
\(309\) −9.35091 −0.531955
\(310\) 0 0
\(311\) 13.8365 0.784595 0.392297 0.919838i \(-0.371680\pi\)
0.392297 + 0.919838i \(0.371680\pi\)
\(312\) 2.11098 0.119511
\(313\) 12.0282 0.679873 0.339936 0.940448i \(-0.389594\pi\)
0.339936 + 0.940448i \(0.389594\pi\)
\(314\) 17.6188 0.994284
\(315\) 0 0
\(316\) −4.35359 −0.244908
\(317\) 12.8073 0.719329 0.359665 0.933082i \(-0.382891\pi\)
0.359665 + 0.933082i \(0.382891\pi\)
\(318\) −11.8657 −0.665397
\(319\) 5.80281 0.324895
\(320\) 0 0
\(321\) −1.99934 −0.111592
\(322\) −19.1854 −1.06916
\(323\) −2.88338 −0.160435
\(324\) 8.07707 0.448726
\(325\) 0 0
\(326\) 20.2611 1.12216
\(327\) 10.1028 0.558686
\(328\) −2.47964 −0.136915
\(329\) −20.1045 −1.10840
\(330\) 0 0
\(331\) 22.7336 1.24955 0.624776 0.780804i \(-0.285190\pi\)
0.624776 + 0.780804i \(0.285190\pi\)
\(332\) 23.6306 1.29690
\(333\) 6.62640 0.363124
\(334\) −15.1834 −0.830801
\(335\) 0 0
\(336\) −6.49040 −0.354080
\(337\) 20.2511 1.10315 0.551573 0.834127i \(-0.314028\pi\)
0.551573 + 0.834127i \(0.314028\pi\)
\(338\) −6.98581 −0.379978
\(339\) −11.5166 −0.625494
\(340\) 0 0
\(341\) −3.86669 −0.209393
\(342\) −4.84926 −0.262218
\(343\) 20.1258 1.08669
\(344\) 8.27026 0.445903
\(345\) 0 0
\(346\) 9.92237 0.533430
\(347\) −34.5032 −1.85223 −0.926116 0.377240i \(-0.876873\pi\)
−0.926116 + 0.377240i \(0.876873\pi\)
\(348\) −4.72090 −0.253067
\(349\) −17.7850 −0.952010 −0.476005 0.879442i \(-0.657916\pi\)
−0.476005 + 0.879442i \(0.657916\pi\)
\(350\) 0 0
\(351\) 10.2085 0.544890
\(352\) −6.59336 −0.351427
\(353\) −4.43853 −0.236239 −0.118120 0.992999i \(-0.537687\pi\)
−0.118120 + 0.992999i \(0.537687\pi\)
\(354\) 2.04739 0.108818
\(355\) 0 0
\(356\) 14.8113 0.784998
\(357\) −3.84452 −0.203474
\(358\) 26.6458 1.40827
\(359\) −25.2069 −1.33037 −0.665184 0.746679i \(-0.731647\pi\)
−0.665184 + 0.746679i \(0.731647\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −15.4038 −0.809607
\(363\) −0.596609 −0.0313139
\(364\) −9.23908 −0.484260
\(365\) 0 0
\(366\) −11.2875 −0.590006
\(367\) 4.79279 0.250182 0.125091 0.992145i \(-0.460078\pi\)
0.125091 + 0.992145i \(0.460078\pi\)
\(368\) −22.7848 −1.18774
\(369\) −5.61753 −0.292437
\(370\) 0 0
\(371\) −24.2355 −1.25824
\(372\) 3.14576 0.163100
\(373\) 32.2378 1.66921 0.834604 0.550851i \(-0.185697\pi\)
0.834604 + 0.550851i \(0.185697\pi\)
\(374\) −5.28817 −0.273445
\(375\) 0 0
\(376\) −10.4992 −0.541454
\(377\) 17.5922 0.906043
\(378\) −13.8018 −0.709889
\(379\) −29.2707 −1.50354 −0.751769 0.659427i \(-0.770799\pi\)
−0.751769 + 0.659427i \(0.770799\pi\)
\(380\) 0 0
\(381\) −5.56496 −0.285101
\(382\) 0.896590 0.0458735
\(383\) −22.2407 −1.13644 −0.568222 0.822875i \(-0.692369\pi\)
−0.568222 + 0.822875i \(0.692369\pi\)
\(384\) −5.28851 −0.269878
\(385\) 0 0
\(386\) −20.1251 −1.02434
\(387\) 18.7360 0.952404
\(388\) −23.1344 −1.17447
\(389\) 25.1911 1.27724 0.638619 0.769523i \(-0.279506\pi\)
0.638619 + 0.769523i \(0.279506\pi\)
\(390\) 0 0
\(391\) −13.4963 −0.682539
\(392\) 2.34051 0.118214
\(393\) −12.4380 −0.627414
\(394\) 12.4928 0.629378
\(395\) 0 0
\(396\) −3.60552 −0.181184
\(397\) 2.48439 0.124688 0.0623440 0.998055i \(-0.480142\pi\)
0.0623440 + 0.998055i \(0.480142\pi\)
\(398\) −13.3308 −0.668214
\(399\) 1.33334 0.0667505
\(400\) 0 0
\(401\) −5.61818 −0.280559 −0.140279 0.990112i \(-0.544800\pi\)
−0.140279 + 0.990112i \(0.544800\pi\)
\(402\) 2.39349 0.119376
\(403\) −11.7225 −0.583940
\(404\) −14.5263 −0.722709
\(405\) 0 0
\(406\) −23.7845 −1.18040
\(407\) −2.50615 −0.124225
\(408\) −2.00773 −0.0993973
\(409\) 13.3011 0.657696 0.328848 0.944383i \(-0.393340\pi\)
0.328848 + 0.944383i \(0.393340\pi\)
\(410\) 0 0
\(411\) 6.76776 0.333829
\(412\) 21.3728 1.05296
\(413\) 4.18175 0.205771
\(414\) −22.6981 −1.11555
\(415\) 0 0
\(416\) −19.9889 −0.980035
\(417\) 0.823115 0.0403081
\(418\) 1.83402 0.0897049
\(419\) −26.8456 −1.31150 −0.655748 0.754980i \(-0.727646\pi\)
−0.655748 + 0.754980i \(0.727646\pi\)
\(420\) 0 0
\(421\) −37.7283 −1.83877 −0.919383 0.393364i \(-0.871311\pi\)
−0.919383 + 0.393364i \(0.871311\pi\)
\(422\) −8.35767 −0.406845
\(423\) −23.7855 −1.15649
\(424\) −12.6565 −0.614654
\(425\) 0 0
\(426\) −1.36975 −0.0663645
\(427\) −23.0544 −1.11568
\(428\) 4.56975 0.220887
\(429\) −1.80872 −0.0873257
\(430\) 0 0
\(431\) −22.4835 −1.08299 −0.541495 0.840704i \(-0.682141\pi\)
−0.541495 + 0.840704i \(0.682141\pi\)
\(432\) −16.3912 −0.788624
\(433\) 26.0421 1.25150 0.625751 0.780023i \(-0.284793\pi\)
0.625751 + 0.780023i \(0.284793\pi\)
\(434\) 15.8487 0.760764
\(435\) 0 0
\(436\) −23.0913 −1.10587
\(437\) 4.68074 0.223910
\(438\) −8.11294 −0.387651
\(439\) 31.6821 1.51210 0.756052 0.654512i \(-0.227126\pi\)
0.756052 + 0.654512i \(0.227126\pi\)
\(440\) 0 0
\(441\) 5.30234 0.252492
\(442\) −16.0319 −0.762562
\(443\) 30.5809 1.45294 0.726471 0.687197i \(-0.241159\pi\)
0.726471 + 0.687197i \(0.241159\pi\)
\(444\) 2.03889 0.0967613
\(445\) 0 0
\(446\) −6.31372 −0.298964
\(447\) −11.0958 −0.524815
\(448\) 5.26717 0.248850
\(449\) 20.8054 0.981868 0.490934 0.871197i \(-0.336656\pi\)
0.490934 + 0.871197i \(0.336656\pi\)
\(450\) 0 0
\(451\) 2.12459 0.100043
\(452\) 26.3227 1.23811
\(453\) −4.58793 −0.215560
\(454\) 32.6258 1.53120
\(455\) 0 0
\(456\) 0.696311 0.0326078
\(457\) 2.88348 0.134883 0.0674417 0.997723i \(-0.478516\pi\)
0.0674417 + 0.997723i \(0.478516\pi\)
\(458\) −35.7075 −1.66850
\(459\) −9.70918 −0.453186
\(460\) 0 0
\(461\) −21.9150 −1.02069 −0.510343 0.859971i \(-0.670481\pi\)
−0.510343 + 0.859971i \(0.670481\pi\)
\(462\) 2.44537 0.113769
\(463\) 5.49470 0.255360 0.127680 0.991815i \(-0.459247\pi\)
0.127680 + 0.991815i \(0.459247\pi\)
\(464\) −28.2468 −1.31132
\(465\) 0 0
\(466\) −14.1365 −0.654860
\(467\) 18.2802 0.845905 0.422952 0.906152i \(-0.360994\pi\)
0.422952 + 0.906152i \(0.360994\pi\)
\(468\) −10.9307 −0.505272
\(469\) 4.88864 0.225736
\(470\) 0 0
\(471\) −5.73140 −0.264089
\(472\) 2.18384 0.100519
\(473\) −7.08607 −0.325818
\(474\) 3.49337 0.160456
\(475\) 0 0
\(476\) 8.78717 0.402759
\(477\) −28.6729 −1.31284
\(478\) −43.4240 −1.98617
\(479\) 11.9035 0.543884 0.271942 0.962314i \(-0.412334\pi\)
0.271942 + 0.962314i \(0.412334\pi\)
\(480\) 0 0
\(481\) −7.59780 −0.346430
\(482\) 16.2754 0.741324
\(483\) 6.24102 0.283976
\(484\) 1.36363 0.0619832
\(485\) 0 0
\(486\) −25.0082 −1.13440
\(487\) 11.3635 0.514931 0.257465 0.966288i \(-0.417113\pi\)
0.257465 + 0.966288i \(0.417113\pi\)
\(488\) −12.0397 −0.545013
\(489\) −6.59097 −0.298054
\(490\) 0 0
\(491\) 13.4818 0.608423 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(492\) −1.72847 −0.0779253
\(493\) −16.7317 −0.753557
\(494\) 5.56013 0.250162
\(495\) 0 0
\(496\) 18.8222 0.845141
\(497\) −2.79768 −0.125493
\(498\) −18.9615 −0.849684
\(499\) −3.27906 −0.146791 −0.0733955 0.997303i \(-0.523384\pi\)
−0.0733955 + 0.997303i \(0.523384\pi\)
\(500\) 0 0
\(501\) 4.93919 0.220667
\(502\) −12.5585 −0.560513
\(503\) −14.6071 −0.651300 −0.325650 0.945490i \(-0.605583\pi\)
−0.325650 + 0.945490i \(0.605583\pi\)
\(504\) −6.89661 −0.307200
\(505\) 0 0
\(506\) 8.58457 0.381631
\(507\) 2.27249 0.100925
\(508\) 12.7195 0.564335
\(509\) 20.6334 0.914562 0.457281 0.889322i \(-0.348823\pi\)
0.457281 + 0.889322i \(0.348823\pi\)
\(510\) 0 0
\(511\) −16.5705 −0.733035
\(512\) 20.7325 0.916256
\(513\) 3.36730 0.148670
\(514\) −12.7441 −0.562119
\(515\) 0 0
\(516\) 5.76490 0.253786
\(517\) 8.99585 0.395637
\(518\) 10.2722 0.451333
\(519\) −3.22776 −0.141683
\(520\) 0 0
\(521\) −4.29362 −0.188107 −0.0940533 0.995567i \(-0.529982\pi\)
−0.0940533 + 0.995567i \(0.529982\pi\)
\(522\) −28.1393 −1.23162
\(523\) 15.4694 0.676431 0.338216 0.941069i \(-0.390177\pi\)
0.338216 + 0.941069i \(0.390177\pi\)
\(524\) 28.4287 1.24191
\(525\) 0 0
\(526\) −46.2912 −2.01839
\(527\) 11.1491 0.485663
\(528\) 2.90416 0.126387
\(529\) −1.09067 −0.0474206
\(530\) 0 0
\(531\) 4.94741 0.214699
\(532\) −3.04753 −0.132127
\(533\) 6.44103 0.278992
\(534\) −11.8848 −0.514305
\(535\) 0 0
\(536\) 2.55300 0.110273
\(537\) −8.66790 −0.374047
\(538\) 18.9356 0.816373
\(539\) −2.00538 −0.0863778
\(540\) 0 0
\(541\) −41.9419 −1.80322 −0.901611 0.432548i \(-0.857615\pi\)
−0.901611 + 0.432548i \(0.857615\pi\)
\(542\) −53.5141 −2.29863
\(543\) 5.01088 0.215037
\(544\) 19.0111 0.815096
\(545\) 0 0
\(546\) 7.41355 0.317271
\(547\) 43.0246 1.83960 0.919800 0.392388i \(-0.128351\pi\)
0.919800 + 0.392388i \(0.128351\pi\)
\(548\) −15.4686 −0.660787
\(549\) −27.2756 −1.16409
\(550\) 0 0
\(551\) 5.80281 0.247208
\(552\) 3.25925 0.138723
\(553\) 7.13513 0.303417
\(554\) 21.7497 0.924056
\(555\) 0 0
\(556\) −1.88134 −0.0797866
\(557\) 31.8516 1.34960 0.674799 0.738002i \(-0.264230\pi\)
0.674799 + 0.738002i \(0.264230\pi\)
\(558\) 18.7506 0.793775
\(559\) −21.4826 −0.908617
\(560\) 0 0
\(561\) 1.72025 0.0726289
\(562\) 17.3479 0.731776
\(563\) 8.58917 0.361991 0.180995 0.983484i \(-0.442068\pi\)
0.180995 + 0.983484i \(0.442068\pi\)
\(564\) −7.31861 −0.308169
\(565\) 0 0
\(566\) 34.2156 1.43819
\(567\) −13.2376 −0.555926
\(568\) −1.46103 −0.0613037
\(569\) −7.45323 −0.312456 −0.156228 0.987721i \(-0.549933\pi\)
−0.156228 + 0.987721i \(0.549933\pi\)
\(570\) 0 0
\(571\) 28.2372 1.18169 0.590846 0.806785i \(-0.298794\pi\)
0.590846 + 0.806785i \(0.298794\pi\)
\(572\) 4.13407 0.172854
\(573\) −0.291662 −0.0121843
\(574\) −8.70823 −0.363474
\(575\) 0 0
\(576\) 6.23156 0.259648
\(577\) −12.5237 −0.521367 −0.260684 0.965424i \(-0.583948\pi\)
−0.260684 + 0.965424i \(0.583948\pi\)
\(578\) −15.9306 −0.662624
\(579\) 6.54670 0.272072
\(580\) 0 0
\(581\) −38.7284 −1.60672
\(582\) 18.5633 0.769475
\(583\) 10.8443 0.449124
\(584\) −8.65362 −0.358089
\(585\) 0 0
\(586\) −51.6997 −2.13570
\(587\) −12.9723 −0.535422 −0.267711 0.963499i \(-0.586267\pi\)
−0.267711 + 0.963499i \(0.586267\pi\)
\(588\) 1.63149 0.0672813
\(589\) −3.86669 −0.159324
\(590\) 0 0
\(591\) −4.06392 −0.167167
\(592\) 12.1994 0.501390
\(593\) 23.9722 0.984421 0.492210 0.870476i \(-0.336189\pi\)
0.492210 + 0.870476i \(0.336189\pi\)
\(594\) 6.17569 0.253392
\(595\) 0 0
\(596\) 25.3610 1.03883
\(597\) 4.33653 0.177483
\(598\) 26.0255 1.06426
\(599\) 5.94996 0.243109 0.121554 0.992585i \(-0.461212\pi\)
0.121554 + 0.992585i \(0.461212\pi\)
\(600\) 0 0
\(601\) −7.87983 −0.321425 −0.160712 0.987001i \(-0.551379\pi\)
−0.160712 + 0.987001i \(0.551379\pi\)
\(602\) 29.0443 1.18376
\(603\) 5.78373 0.235532
\(604\) 10.4863 0.426683
\(605\) 0 0
\(606\) 11.6560 0.473495
\(607\) −41.1891 −1.67181 −0.835906 0.548872i \(-0.815057\pi\)
−0.835906 + 0.548872i \(0.815057\pi\)
\(608\) −6.59336 −0.267396
\(609\) 7.73712 0.313524
\(610\) 0 0
\(611\) 27.2724 1.10332
\(612\) 10.3961 0.420236
\(613\) −12.7666 −0.515639 −0.257819 0.966193i \(-0.583004\pi\)
−0.257819 + 0.966193i \(0.583004\pi\)
\(614\) 16.3863 0.661298
\(615\) 0 0
\(616\) 2.60834 0.105093
\(617\) −16.0423 −0.645840 −0.322920 0.946426i \(-0.604665\pi\)
−0.322920 + 0.946426i \(0.604665\pi\)
\(618\) −17.1498 −0.689865
\(619\) 12.9063 0.518750 0.259375 0.965777i \(-0.416483\pi\)
0.259375 + 0.965777i \(0.416483\pi\)
\(620\) 0 0
\(621\) 15.7614 0.632485
\(622\) 25.3764 1.01750
\(623\) −24.2744 −0.972533
\(624\) 8.80443 0.352459
\(625\) 0 0
\(626\) 22.0599 0.881692
\(627\) −0.596609 −0.0238263
\(628\) 13.0999 0.522743
\(629\) 7.22616 0.288126
\(630\) 0 0
\(631\) −2.75194 −0.109553 −0.0547766 0.998499i \(-0.517445\pi\)
−0.0547766 + 0.998499i \(0.517445\pi\)
\(632\) 3.72618 0.148220
\(633\) 2.71876 0.108061
\(634\) 23.4888 0.932861
\(635\) 0 0
\(636\) −8.82240 −0.349831
\(637\) −6.07964 −0.240884
\(638\) 10.6425 0.421340
\(639\) −3.30992 −0.130939
\(640\) 0 0
\(641\) −25.7864 −1.01850 −0.509252 0.860618i \(-0.670078\pi\)
−0.509252 + 0.860618i \(0.670078\pi\)
\(642\) −3.66682 −0.144718
\(643\) 32.1532 1.26800 0.634000 0.773333i \(-0.281412\pi\)
0.634000 + 0.773333i \(0.281412\pi\)
\(644\) −14.2647 −0.562108
\(645\) 0 0
\(646\) −5.28817 −0.208060
\(647\) 22.2482 0.874666 0.437333 0.899300i \(-0.355923\pi\)
0.437333 + 0.899300i \(0.355923\pi\)
\(648\) −6.91307 −0.271571
\(649\) −1.87114 −0.0734488
\(650\) 0 0
\(651\) −5.15562 −0.202065
\(652\) 15.0646 0.589974
\(653\) 0.228402 0.00893805 0.00446902 0.999990i \(-0.498577\pi\)
0.00446902 + 0.999990i \(0.498577\pi\)
\(654\) 18.5288 0.724531
\(655\) 0 0
\(656\) −10.3420 −0.403787
\(657\) −19.6045 −0.764843
\(658\) −36.8721 −1.43742
\(659\) 10.3016 0.401294 0.200647 0.979664i \(-0.435696\pi\)
0.200647 + 0.979664i \(0.435696\pi\)
\(660\) 0 0
\(661\) 4.41139 0.171583 0.0857916 0.996313i \(-0.472658\pi\)
0.0857916 + 0.996313i \(0.472658\pi\)
\(662\) 41.6939 1.62048
\(663\) 5.21521 0.202542
\(664\) −20.2252 −0.784888
\(665\) 0 0
\(666\) 12.1529 0.470917
\(667\) 27.1615 1.05170
\(668\) −11.2892 −0.436792
\(669\) 2.05386 0.0794069
\(670\) 0 0
\(671\) 10.3158 0.398237
\(672\) −8.79120 −0.339128
\(673\) −29.0701 −1.12057 −0.560285 0.828300i \(-0.689308\pi\)
−0.560285 + 0.828300i \(0.689308\pi\)
\(674\) 37.1408 1.43061
\(675\) 0 0
\(676\) −5.19409 −0.199773
\(677\) 28.5867 1.09868 0.549338 0.835600i \(-0.314880\pi\)
0.549338 + 0.835600i \(0.314880\pi\)
\(678\) −21.1216 −0.811171
\(679\) 37.9152 1.45505
\(680\) 0 0
\(681\) −10.6132 −0.406699
\(682\) −7.09159 −0.271551
\(683\) 6.47289 0.247678 0.123839 0.992302i \(-0.460479\pi\)
0.123839 + 0.992302i \(0.460479\pi\)
\(684\) −3.60552 −0.137860
\(685\) 0 0
\(686\) 36.9111 1.40927
\(687\) 11.6157 0.443166
\(688\) 34.4934 1.31505
\(689\) 32.8762 1.25248
\(690\) 0 0
\(691\) 14.8056 0.563231 0.281616 0.959527i \(-0.409130\pi\)
0.281616 + 0.959527i \(0.409130\pi\)
\(692\) 7.37747 0.280450
\(693\) 5.90911 0.224469
\(694\) −63.2796 −2.40206
\(695\) 0 0
\(696\) 4.04056 0.153157
\(697\) −6.12598 −0.232038
\(698\) −32.6181 −1.23461
\(699\) 4.59862 0.173936
\(700\) 0 0
\(701\) 10.0602 0.379968 0.189984 0.981787i \(-0.439156\pi\)
0.189984 + 0.981787i \(0.439156\pi\)
\(702\) 18.7226 0.706639
\(703\) −2.50615 −0.0945211
\(704\) −2.35682 −0.0888259
\(705\) 0 0
\(706\) −8.14036 −0.306367
\(707\) 23.8072 0.895363
\(708\) 1.52228 0.0572107
\(709\) −42.9072 −1.61141 −0.805707 0.592314i \(-0.798214\pi\)
−0.805707 + 0.592314i \(0.798214\pi\)
\(710\) 0 0
\(711\) 8.44154 0.316582
\(712\) −12.6768 −0.475084
\(713\) −18.0990 −0.677812
\(714\) −7.05093 −0.263874
\(715\) 0 0
\(716\) 19.8116 0.740396
\(717\) 14.1259 0.527541
\(718\) −46.2299 −1.72529
\(719\) 16.6275 0.620099 0.310050 0.950720i \(-0.399654\pi\)
0.310050 + 0.950720i \(0.399654\pi\)
\(720\) 0 0
\(721\) −35.0280 −1.30451
\(722\) 1.83402 0.0682552
\(723\) −5.29441 −0.196901
\(724\) −11.4530 −0.425649
\(725\) 0 0
\(726\) −1.09419 −0.0406093
\(727\) −10.0688 −0.373431 −0.186715 0.982414i \(-0.559784\pi\)
−0.186715 + 0.982414i \(0.559784\pi\)
\(728\) 7.90762 0.293076
\(729\) −9.63444 −0.356831
\(730\) 0 0
\(731\) 20.4318 0.755698
\(732\) −8.39246 −0.310194
\(733\) 23.6368 0.873044 0.436522 0.899694i \(-0.356210\pi\)
0.436522 + 0.899694i \(0.356210\pi\)
\(734\) 8.79008 0.324448
\(735\) 0 0
\(736\) −30.8618 −1.13758
\(737\) −2.18744 −0.0805755
\(738\) −10.3027 −0.379246
\(739\) 23.5085 0.864776 0.432388 0.901688i \(-0.357671\pi\)
0.432388 + 0.901688i \(0.357671\pi\)
\(740\) 0 0
\(741\) −1.80872 −0.0664449
\(742\) −44.4483 −1.63175
\(743\) 7.37487 0.270558 0.135279 0.990808i \(-0.456807\pi\)
0.135279 + 0.990808i \(0.456807\pi\)
\(744\) −2.69242 −0.0987090
\(745\) 0 0
\(746\) 59.1247 2.16471
\(747\) −45.8194 −1.67644
\(748\) −3.93186 −0.143763
\(749\) −7.48941 −0.273657
\(750\) 0 0
\(751\) −16.5579 −0.604208 −0.302104 0.953275i \(-0.597689\pi\)
−0.302104 + 0.953275i \(0.597689\pi\)
\(752\) −43.7898 −1.59685
\(753\) 4.08529 0.148876
\(754\) 32.2644 1.17500
\(755\) 0 0
\(756\) −10.2619 −0.373223
\(757\) 45.2848 1.64590 0.822952 0.568111i \(-0.192325\pi\)
0.822952 + 0.568111i \(0.192325\pi\)
\(758\) −53.6831 −1.94986
\(759\) −2.79257 −0.101364
\(760\) 0 0
\(761\) −32.4848 −1.17757 −0.588787 0.808288i \(-0.700394\pi\)
−0.588787 + 0.808288i \(0.700394\pi\)
\(762\) −10.2062 −0.369733
\(763\) 37.8446 1.37006
\(764\) 0.666632 0.0241179
\(765\) 0 0
\(766\) −40.7898 −1.47380
\(767\) −5.67268 −0.204829
\(768\) −12.5114 −0.451467
\(769\) −34.7020 −1.25139 −0.625693 0.780070i \(-0.715184\pi\)
−0.625693 + 0.780070i \(0.715184\pi\)
\(770\) 0 0
\(771\) 4.14568 0.149303
\(772\) −14.9634 −0.538544
\(773\) 36.4485 1.31096 0.655481 0.755212i \(-0.272466\pi\)
0.655481 + 0.755212i \(0.272466\pi\)
\(774\) 34.3622 1.23512
\(775\) 0 0
\(776\) 19.8005 0.710796
\(777\) −3.34155 −0.119877
\(778\) 46.2010 1.65638
\(779\) 2.12459 0.0761212
\(780\) 0 0
\(781\) 1.25183 0.0447942
\(782\) −24.7525 −0.885149
\(783\) 19.5398 0.698295
\(784\) 9.76173 0.348633
\(785\) 0 0
\(786\) −22.8115 −0.813661
\(787\) 13.7303 0.489433 0.244717 0.969595i \(-0.421305\pi\)
0.244717 + 0.969595i \(0.421305\pi\)
\(788\) 9.28864 0.330894
\(789\) 15.0586 0.536100
\(790\) 0 0
\(791\) −43.1404 −1.53390
\(792\) 3.08592 0.109653
\(793\) 31.2740 1.11057
\(794\) 4.55642 0.161701
\(795\) 0 0
\(796\) −9.91173 −0.351312
\(797\) 18.7861 0.665438 0.332719 0.943026i \(-0.392034\pi\)
0.332719 + 0.943026i \(0.392034\pi\)
\(798\) 2.44537 0.0865653
\(799\) −25.9384 −0.917635
\(800\) 0 0
\(801\) −28.7189 −1.01473
\(802\) −10.3039 −0.363842
\(803\) 7.41454 0.261653
\(804\) 1.77960 0.0627618
\(805\) 0 0
\(806\) −21.4993 −0.757281
\(807\) −6.15978 −0.216835
\(808\) 12.4329 0.437386
\(809\) −19.5394 −0.686968 −0.343484 0.939159i \(-0.611607\pi\)
−0.343484 + 0.939159i \(0.611607\pi\)
\(810\) 0 0
\(811\) 30.9500 1.08680 0.543400 0.839474i \(-0.317137\pi\)
0.543400 + 0.839474i \(0.317137\pi\)
\(812\) −17.6842 −0.620595
\(813\) 17.4082 0.610532
\(814\) −4.59633 −0.161101
\(815\) 0 0
\(816\) −8.37378 −0.293141
\(817\) −7.08607 −0.247910
\(818\) 24.3944 0.852932
\(819\) 17.9144 0.625981
\(820\) 0 0
\(821\) −41.5384 −1.44970 −0.724850 0.688907i \(-0.758091\pi\)
−0.724850 + 0.688907i \(0.758091\pi\)
\(822\) 12.4122 0.432925
\(823\) 1.03434 0.0360549 0.0180274 0.999837i \(-0.494261\pi\)
0.0180274 + 0.999837i \(0.494261\pi\)
\(824\) −18.2927 −0.637256
\(825\) 0 0
\(826\) 7.66942 0.266853
\(827\) 28.5352 0.992266 0.496133 0.868246i \(-0.334753\pi\)
0.496133 + 0.868246i \(0.334753\pi\)
\(828\) −16.8765 −0.586498
\(829\) 45.3435 1.57485 0.787423 0.616413i \(-0.211415\pi\)
0.787423 + 0.616413i \(0.211415\pi\)
\(830\) 0 0
\(831\) −7.07520 −0.245436
\(832\) −7.14508 −0.247711
\(833\) 5.78226 0.200344
\(834\) 1.50961 0.0522735
\(835\) 0 0
\(836\) 1.36363 0.0471621
\(837\) −13.0203 −0.450047
\(838\) −49.2354 −1.70081
\(839\) −54.9859 −1.89832 −0.949162 0.314787i \(-0.898067\pi\)
−0.949162 + 0.314787i \(0.898067\pi\)
\(840\) 0 0
\(841\) 4.67262 0.161125
\(842\) −69.1945 −2.38460
\(843\) −5.64328 −0.194365
\(844\) −6.21409 −0.213898
\(845\) 0 0
\(846\) −43.6232 −1.49980
\(847\) −2.23486 −0.0767909
\(848\) −52.7874 −1.81273
\(849\) −11.1304 −0.381993
\(850\) 0 0
\(851\) −11.7306 −0.402121
\(852\) −1.01844 −0.0348910
\(853\) −31.0326 −1.06254 −0.531268 0.847204i \(-0.678284\pi\)
−0.531268 + 0.847204i \(0.678284\pi\)
\(854\) −42.2823 −1.44687
\(855\) 0 0
\(856\) −3.91120 −0.133682
\(857\) −34.7215 −1.18606 −0.593032 0.805179i \(-0.702069\pi\)
−0.593032 + 0.805179i \(0.702069\pi\)
\(858\) −3.31723 −0.113248
\(859\) −25.1407 −0.857790 −0.428895 0.903354i \(-0.641097\pi\)
−0.428895 + 0.903354i \(0.641097\pi\)
\(860\) 0 0
\(861\) 2.83280 0.0965414
\(862\) −41.2351 −1.40447
\(863\) −14.7102 −0.500743 −0.250371 0.968150i \(-0.580553\pi\)
−0.250371 + 0.968150i \(0.580553\pi\)
\(864\) −22.2018 −0.755321
\(865\) 0 0
\(866\) 47.7617 1.62301
\(867\) 5.18223 0.175998
\(868\) 11.7839 0.399970
\(869\) −3.19265 −0.108303
\(870\) 0 0
\(871\) −6.63159 −0.224703
\(872\) 19.7636 0.669280
\(873\) 44.8573 1.51819
\(874\) 8.58457 0.290377
\(875\) 0 0
\(876\) −6.03213 −0.203807
\(877\) 41.6310 1.40578 0.702890 0.711298i \(-0.251893\pi\)
0.702890 + 0.711298i \(0.251893\pi\)
\(878\) 58.1056 1.96097
\(879\) 16.8180 0.567257
\(880\) 0 0
\(881\) 40.2961 1.35761 0.678805 0.734319i \(-0.262498\pi\)
0.678805 + 0.734319i \(0.262498\pi\)
\(882\) 9.72460 0.327444
\(883\) −33.4683 −1.12630 −0.563149 0.826355i \(-0.690410\pi\)
−0.563149 + 0.826355i \(0.690410\pi\)
\(884\) −11.9201 −0.400915
\(885\) 0 0
\(886\) 56.0860 1.88425
\(887\) 26.0465 0.874557 0.437278 0.899326i \(-0.355942\pi\)
0.437278 + 0.899326i \(0.355942\pi\)
\(888\) −1.74506 −0.0585603
\(889\) −20.8460 −0.699153
\(890\) 0 0
\(891\) 5.92321 0.198435
\(892\) −4.69438 −0.157179
\(893\) 8.99585 0.301035
\(894\) −20.3500 −0.680606
\(895\) 0 0
\(896\) −19.8105 −0.661821
\(897\) −8.46614 −0.282676
\(898\) 38.1575 1.27333
\(899\) −22.4377 −0.748339
\(900\) 0 0
\(901\) −31.2681 −1.04169
\(902\) 3.89653 0.129740
\(903\) −9.44815 −0.314415
\(904\) −22.5292 −0.749312
\(905\) 0 0
\(906\) −8.41436 −0.279548
\(907\) −30.2463 −1.00431 −0.502157 0.864777i \(-0.667460\pi\)
−0.502157 + 0.864777i \(0.667460\pi\)
\(908\) 24.2579 0.805027
\(909\) 28.1662 0.934214
\(910\) 0 0
\(911\) −13.9292 −0.461494 −0.230747 0.973014i \(-0.574117\pi\)
−0.230747 + 0.973014i \(0.574117\pi\)
\(912\) 2.90416 0.0961663
\(913\) 17.3292 0.573512
\(914\) 5.28836 0.174923
\(915\) 0 0
\(916\) −26.5492 −0.877211
\(917\) −46.5921 −1.53861
\(918\) −17.8068 −0.587713
\(919\) 31.6978 1.04562 0.522808 0.852451i \(-0.324885\pi\)
0.522808 + 0.852451i \(0.324885\pi\)
\(920\) 0 0
\(921\) −5.33049 −0.175646
\(922\) −40.1926 −1.32367
\(923\) 3.79514 0.124919
\(924\) 1.81818 0.0598138
\(925\) 0 0
\(926\) 10.0774 0.331164
\(927\) −41.4415 −1.36112
\(928\) −38.2600 −1.25595
\(929\) −29.7520 −0.976132 −0.488066 0.872807i \(-0.662298\pi\)
−0.488066 + 0.872807i \(0.662298\pi\)
\(930\) 0 0
\(931\) −2.00538 −0.0657237
\(932\) −10.5108 −0.344291
\(933\) −8.25497 −0.270256
\(934\) 33.5262 1.09701
\(935\) 0 0
\(936\) 9.35547 0.305793
\(937\) 14.5055 0.473873 0.236937 0.971525i \(-0.423857\pi\)
0.236937 + 0.971525i \(0.423857\pi\)
\(938\) 8.96587 0.292746
\(939\) −7.17612 −0.234184
\(940\) 0 0
\(941\) 26.4270 0.861497 0.430749 0.902472i \(-0.358250\pi\)
0.430749 + 0.902472i \(0.358250\pi\)
\(942\) −10.5115 −0.342484
\(943\) 9.94463 0.323842
\(944\) 9.10831 0.296450
\(945\) 0 0
\(946\) −12.9960 −0.422536
\(947\) 47.6292 1.54774 0.773870 0.633344i \(-0.218318\pi\)
0.773870 + 0.633344i \(0.218318\pi\)
\(948\) 2.59739 0.0843593
\(949\) 22.4784 0.729679
\(950\) 0 0
\(951\) −7.64095 −0.247775
\(952\) −7.52083 −0.243752
\(953\) 26.1535 0.847195 0.423598 0.905850i \(-0.360767\pi\)
0.423598 + 0.905850i \(0.360767\pi\)
\(954\) −52.5866 −1.70255
\(955\) 0 0
\(956\) −32.2866 −1.04422
\(957\) −3.46201 −0.111911
\(958\) 21.8312 0.705335
\(959\) 25.3516 0.818647
\(960\) 0 0
\(961\) −16.0487 −0.517700
\(962\) −13.9345 −0.449267
\(963\) −8.86068 −0.285531
\(964\) 12.1011 0.389750
\(965\) 0 0
\(966\) 11.4462 0.368274
\(967\) 21.0604 0.677256 0.338628 0.940920i \(-0.390037\pi\)
0.338628 + 0.940920i \(0.390037\pi\)
\(968\) −1.16712 −0.0375125
\(969\) 1.72025 0.0552623
\(970\) 0 0
\(971\) −23.9140 −0.767436 −0.383718 0.923450i \(-0.625356\pi\)
−0.383718 + 0.923450i \(0.625356\pi\)
\(972\) −18.5941 −0.596406
\(973\) 3.08335 0.0988475
\(974\) 20.8409 0.667787
\(975\) 0 0
\(976\) −50.2150 −1.60734
\(977\) −51.3119 −1.64161 −0.820806 0.571207i \(-0.806475\pi\)
−0.820806 + 0.571207i \(0.806475\pi\)
\(978\) −12.0880 −0.386531
\(979\) 10.8617 0.347141
\(980\) 0 0
\(981\) 44.7737 1.42951
\(982\) 24.7258 0.789033
\(983\) 28.6268 0.913053 0.456527 0.889710i \(-0.349093\pi\)
0.456527 + 0.889710i \(0.349093\pi\)
\(984\) 1.47937 0.0471607
\(985\) 0 0
\(986\) −30.6862 −0.977249
\(987\) 11.9945 0.381790
\(988\) 4.13407 0.131522
\(989\) −33.1681 −1.05468
\(990\) 0 0
\(991\) 34.0379 1.08125 0.540625 0.841263i \(-0.318188\pi\)
0.540625 + 0.841263i \(0.318188\pi\)
\(992\) 25.4945 0.809451
\(993\) −13.5631 −0.430411
\(994\) −5.13100 −0.162746
\(995\) 0 0
\(996\) −14.0982 −0.446720
\(997\) −37.9979 −1.20340 −0.601702 0.798721i \(-0.705511\pi\)
−0.601702 + 0.798721i \(0.705511\pi\)
\(998\) −6.01387 −0.190366
\(999\) −8.43894 −0.266996
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.y.1.11 yes 15
5.4 even 2 5225.2.a.r.1.5 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5225.2.a.r.1.5 15 5.4 even 2
5225.2.a.y.1.11 yes 15 1.1 even 1 trivial