Properties

Label 522.4.a.k.1.2
Level $522$
Weight $4$
Character 522.1
Self dual yes
Analytic conductor $30.799$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [522,4,Mod(1,522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("522.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(522, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 522 = 2 \cdot 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 522.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,0,12,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.7989970230\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.19816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 42x - 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.13291\) of defining polynomial
Character \(\chi\) \(=\) 522.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -2.36031 q^{5} -18.5045 q^{7} -8.00000 q^{8} +4.72062 q^{10} +15.3852 q^{11} +27.8241 q^{13} +37.0090 q^{14} +16.0000 q^{16} +62.4231 q^{17} +55.3245 q^{19} -9.44123 q^{20} -30.7703 q^{22} -44.3109 q^{23} -119.429 q^{25} -55.6482 q^{26} -74.0180 q^{28} -29.0000 q^{29} -207.078 q^{31} -32.0000 q^{32} -124.846 q^{34} +43.6763 q^{35} +303.388 q^{37} -110.649 q^{38} +18.8825 q^{40} -125.712 q^{41} +101.246 q^{43} +61.5406 q^{44} +88.6218 q^{46} -50.8663 q^{47} -0.583766 q^{49} +238.858 q^{50} +111.296 q^{52} -692.512 q^{53} -36.3137 q^{55} +148.036 q^{56} +58.0000 q^{58} -557.935 q^{59} +809.678 q^{61} +414.157 q^{62} +64.0000 q^{64} -65.6734 q^{65} -749.866 q^{67} +249.692 q^{68} -87.3526 q^{70} +54.7703 q^{71} -184.533 q^{73} -606.775 q^{74} +221.298 q^{76} -284.694 q^{77} -752.875 q^{79} -37.7649 q^{80} +251.423 q^{82} +902.018 q^{83} -147.338 q^{85} -202.492 q^{86} -123.081 q^{88} -953.385 q^{89} -514.871 q^{91} -177.244 q^{92} +101.733 q^{94} -130.583 q^{95} -1114.68 q^{97} +1.16753 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 12 q^{4} - 20 q^{5} + 24 q^{7} - 24 q^{8} + 40 q^{10} - 10 q^{11} - 4 q^{13} - 48 q^{14} + 48 q^{16} + 66 q^{17} - 164 q^{19} - 80 q^{20} + 20 q^{22} + 204 q^{23} + 79 q^{25} + 8 q^{26}+ \cdots - 1078 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −2.36031 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(6\) 0 0
\(7\) −18.5045 −0.999149 −0.499574 0.866271i \(-0.666510\pi\)
−0.499574 + 0.866271i \(0.666510\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 4.72062 0.149279
\(11\) 15.3852 0.421709 0.210854 0.977517i \(-0.432375\pi\)
0.210854 + 0.977517i \(0.432375\pi\)
\(12\) 0 0
\(13\) 27.8241 0.593617 0.296808 0.954937i \(-0.404078\pi\)
0.296808 + 0.954937i \(0.404078\pi\)
\(14\) 37.0090 0.706505
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 62.4231 0.890578 0.445289 0.895387i \(-0.353101\pi\)
0.445289 + 0.895387i \(0.353101\pi\)
\(18\) 0 0
\(19\) 55.3245 0.668016 0.334008 0.942570i \(-0.391599\pi\)
0.334008 + 0.942570i \(0.391599\pi\)
\(20\) −9.44123 −0.105556
\(21\) 0 0
\(22\) −30.7703 −0.298193
\(23\) −44.3109 −0.401716 −0.200858 0.979620i \(-0.564373\pi\)
−0.200858 + 0.979620i \(0.564373\pi\)
\(24\) 0 0
\(25\) −119.429 −0.955432
\(26\) −55.6482 −0.419750
\(27\) 0 0
\(28\) −74.0180 −0.499574
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −207.078 −1.19975 −0.599877 0.800092i \(-0.704784\pi\)
−0.599877 + 0.800092i \(0.704784\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −124.846 −0.629734
\(35\) 43.6763 0.210933
\(36\) 0 0
\(37\) 303.388 1.34802 0.674008 0.738724i \(-0.264571\pi\)
0.674008 + 0.738724i \(0.264571\pi\)
\(38\) −110.649 −0.472359
\(39\) 0 0
\(40\) 18.8825 0.0746395
\(41\) −125.712 −0.478850 −0.239425 0.970915i \(-0.576959\pi\)
−0.239425 + 0.970915i \(0.576959\pi\)
\(42\) 0 0
\(43\) 101.246 0.359066 0.179533 0.983752i \(-0.442541\pi\)
0.179533 + 0.983752i \(0.442541\pi\)
\(44\) 61.5406 0.210854
\(45\) 0 0
\(46\) 88.6218 0.284056
\(47\) −50.8663 −0.157864 −0.0789320 0.996880i \(-0.525151\pi\)
−0.0789320 + 0.996880i \(0.525151\pi\)
\(48\) 0 0
\(49\) −0.583766 −0.00170194
\(50\) 238.858 0.675592
\(51\) 0 0
\(52\) 111.296 0.296808
\(53\) −692.512 −1.79479 −0.897395 0.441229i \(-0.854543\pi\)
−0.897395 + 0.441229i \(0.854543\pi\)
\(54\) 0 0
\(55\) −36.3137 −0.0890280
\(56\) 148.036 0.353252
\(57\) 0 0
\(58\) 58.0000 0.131306
\(59\) −557.935 −1.23113 −0.615567 0.788085i \(-0.711073\pi\)
−0.615567 + 0.788085i \(0.711073\pi\)
\(60\) 0 0
\(61\) 809.678 1.69948 0.849742 0.527198i \(-0.176757\pi\)
0.849742 + 0.527198i \(0.176757\pi\)
\(62\) 414.157 0.848354
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −65.6734 −0.125320
\(66\) 0 0
\(67\) −749.866 −1.36732 −0.683662 0.729799i \(-0.739614\pi\)
−0.683662 + 0.729799i \(0.739614\pi\)
\(68\) 249.692 0.445289
\(69\) 0 0
\(70\) −87.3526 −0.149152
\(71\) 54.7703 0.0915499 0.0457749 0.998952i \(-0.485424\pi\)
0.0457749 + 0.998952i \(0.485424\pi\)
\(72\) 0 0
\(73\) −184.533 −0.295862 −0.147931 0.988998i \(-0.547261\pi\)
−0.147931 + 0.988998i \(0.547261\pi\)
\(74\) −606.775 −0.953192
\(75\) 0 0
\(76\) 221.298 0.334008
\(77\) −284.694 −0.421350
\(78\) 0 0
\(79\) −752.875 −1.07222 −0.536108 0.844149i \(-0.680106\pi\)
−0.536108 + 0.844149i \(0.680106\pi\)
\(80\) −37.7649 −0.0527781
\(81\) 0 0
\(82\) 251.423 0.338598
\(83\) 902.018 1.19288 0.596441 0.802657i \(-0.296581\pi\)
0.596441 + 0.802657i \(0.296581\pi\)
\(84\) 0 0
\(85\) −147.338 −0.188012
\(86\) −202.492 −0.253898
\(87\) 0 0
\(88\) −123.081 −0.149097
\(89\) −953.385 −1.13549 −0.567745 0.823204i \(-0.692184\pi\)
−0.567745 + 0.823204i \(0.692184\pi\)
\(90\) 0 0
\(91\) −514.871 −0.593111
\(92\) −177.244 −0.200858
\(93\) 0 0
\(94\) 101.733 0.111627
\(95\) −130.583 −0.141026
\(96\) 0 0
\(97\) −1114.68 −1.16679 −0.583395 0.812189i \(-0.698276\pi\)
−0.583395 + 0.812189i \(0.698276\pi\)
\(98\) 1.16753 0.00120345
\(99\) 0 0
\(100\) −477.716 −0.477716
\(101\) −742.802 −0.731798 −0.365899 0.930655i \(-0.619238\pi\)
−0.365899 + 0.930655i \(0.619238\pi\)
\(102\) 0 0
\(103\) −1782.16 −1.70487 −0.852434 0.522835i \(-0.824874\pi\)
−0.852434 + 0.522835i \(0.824874\pi\)
\(104\) −222.593 −0.209875
\(105\) 0 0
\(106\) 1385.02 1.26911
\(107\) −1758.89 −1.58914 −0.794571 0.607172i \(-0.792304\pi\)
−0.794571 + 0.607172i \(0.792304\pi\)
\(108\) 0 0
\(109\) 1596.84 1.40321 0.701604 0.712567i \(-0.252468\pi\)
0.701604 + 0.712567i \(0.252468\pi\)
\(110\) 72.6274 0.0629523
\(111\) 0 0
\(112\) −296.072 −0.249787
\(113\) −991.893 −0.825747 −0.412874 0.910788i \(-0.635475\pi\)
−0.412874 + 0.910788i \(0.635475\pi\)
\(114\) 0 0
\(115\) 104.587 0.0848072
\(116\) −116.000 −0.0928477
\(117\) 0 0
\(118\) 1115.87 0.870543
\(119\) −1155.11 −0.889819
\(120\) 0 0
\(121\) −1094.30 −0.822162
\(122\) −1619.36 −1.20172
\(123\) 0 0
\(124\) −828.314 −0.599877
\(125\) 576.928 0.412816
\(126\) 0 0
\(127\) 363.708 0.254125 0.127063 0.991895i \(-0.459445\pi\)
0.127063 + 0.991895i \(0.459445\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 131.347 0.0886145
\(131\) 665.920 0.444135 0.222068 0.975031i \(-0.428719\pi\)
0.222068 + 0.975031i \(0.428719\pi\)
\(132\) 0 0
\(133\) −1023.75 −0.667448
\(134\) 1499.73 0.966844
\(135\) 0 0
\(136\) −499.385 −0.314867
\(137\) −343.259 −0.214063 −0.107031 0.994256i \(-0.534135\pi\)
−0.107031 + 0.994256i \(0.534135\pi\)
\(138\) 0 0
\(139\) −755.103 −0.460770 −0.230385 0.973100i \(-0.573999\pi\)
−0.230385 + 0.973100i \(0.573999\pi\)
\(140\) 174.705 0.105466
\(141\) 0 0
\(142\) −109.541 −0.0647355
\(143\) 428.078 0.250333
\(144\) 0 0
\(145\) 68.4489 0.0392026
\(146\) 369.065 0.209206
\(147\) 0 0
\(148\) 1213.55 0.674008
\(149\) 3033.96 1.66813 0.834066 0.551664i \(-0.186007\pi\)
0.834066 + 0.551664i \(0.186007\pi\)
\(150\) 0 0
\(151\) −723.924 −0.390146 −0.195073 0.980789i \(-0.562494\pi\)
−0.195073 + 0.980789i \(0.562494\pi\)
\(152\) −442.596 −0.236179
\(153\) 0 0
\(154\) 569.389 0.297939
\(155\) 488.769 0.253283
\(156\) 0 0
\(157\) 647.348 0.329070 0.164535 0.986371i \(-0.447388\pi\)
0.164535 + 0.986371i \(0.447388\pi\)
\(158\) 1505.75 0.758171
\(159\) 0 0
\(160\) 75.5299 0.0373197
\(161\) 819.951 0.401374
\(162\) 0 0
\(163\) −1514.06 −0.727546 −0.363773 0.931488i \(-0.618512\pi\)
−0.363773 + 0.931488i \(0.618512\pi\)
\(164\) −502.847 −0.239425
\(165\) 0 0
\(166\) −1804.04 −0.843496
\(167\) −1841.05 −0.853084 −0.426542 0.904468i \(-0.640268\pi\)
−0.426542 + 0.904468i \(0.640268\pi\)
\(168\) 0 0
\(169\) −1422.82 −0.647619
\(170\) 294.675 0.132945
\(171\) 0 0
\(172\) 404.983 0.179533
\(173\) 303.426 0.133347 0.0666736 0.997775i \(-0.478761\pi\)
0.0666736 + 0.997775i \(0.478761\pi\)
\(174\) 0 0
\(175\) 2209.97 0.954618
\(176\) 246.162 0.105427
\(177\) 0 0
\(178\) 1906.77 0.802913
\(179\) 3036.60 1.26797 0.633983 0.773347i \(-0.281419\pi\)
0.633983 + 0.773347i \(0.281419\pi\)
\(180\) 0 0
\(181\) −2339.77 −0.960851 −0.480425 0.877036i \(-0.659518\pi\)
−0.480425 + 0.877036i \(0.659518\pi\)
\(182\) 1029.74 0.419393
\(183\) 0 0
\(184\) 354.487 0.142028
\(185\) −716.088 −0.284583
\(186\) 0 0
\(187\) 960.389 0.375565
\(188\) −203.465 −0.0789320
\(189\) 0 0
\(190\) 261.166 0.0997208
\(191\) 4217.47 1.59772 0.798862 0.601514i \(-0.205436\pi\)
0.798862 + 0.601514i \(0.205436\pi\)
\(192\) 0 0
\(193\) −1962.59 −0.731969 −0.365985 0.930621i \(-0.619268\pi\)
−0.365985 + 0.930621i \(0.619268\pi\)
\(194\) 2229.36 0.825045
\(195\) 0 0
\(196\) −2.33506 −0.000850971 0
\(197\) −2040.68 −0.738032 −0.369016 0.929423i \(-0.620305\pi\)
−0.369016 + 0.929423i \(0.620305\pi\)
\(198\) 0 0
\(199\) 3235.68 1.15262 0.576310 0.817231i \(-0.304492\pi\)
0.576310 + 0.817231i \(0.304492\pi\)
\(200\) 955.432 0.337796
\(201\) 0 0
\(202\) 1485.60 0.517459
\(203\) 536.630 0.185537
\(204\) 0 0
\(205\) 296.718 0.101091
\(206\) 3564.32 1.20552
\(207\) 0 0
\(208\) 445.186 0.148404
\(209\) 851.176 0.281708
\(210\) 0 0
\(211\) −3943.15 −1.28653 −0.643264 0.765645i \(-0.722420\pi\)
−0.643264 + 0.765645i \(0.722420\pi\)
\(212\) −2770.05 −0.897395
\(213\) 0 0
\(214\) 3517.78 1.12369
\(215\) −238.971 −0.0758033
\(216\) 0 0
\(217\) 3831.88 1.19873
\(218\) −3193.68 −0.992218
\(219\) 0 0
\(220\) −145.255 −0.0445140
\(221\) 1736.87 0.528662
\(222\) 0 0
\(223\) −2530.83 −0.759987 −0.379993 0.924989i \(-0.624074\pi\)
−0.379993 + 0.924989i \(0.624074\pi\)
\(224\) 592.144 0.176626
\(225\) 0 0
\(226\) 1983.79 0.583892
\(227\) −5429.77 −1.58761 −0.793803 0.608175i \(-0.791902\pi\)
−0.793803 + 0.608175i \(0.791902\pi\)
\(228\) 0 0
\(229\) 5597.57 1.61527 0.807637 0.589680i \(-0.200746\pi\)
0.807637 + 0.589680i \(0.200746\pi\)
\(230\) −209.175 −0.0599677
\(231\) 0 0
\(232\) 232.000 0.0656532
\(233\) 1736.74 0.488316 0.244158 0.969735i \(-0.421488\pi\)
0.244158 + 0.969735i \(0.421488\pi\)
\(234\) 0 0
\(235\) 120.060 0.0333271
\(236\) −2231.74 −0.615567
\(237\) 0 0
\(238\) 2310.21 0.629197
\(239\) −4205.18 −1.13812 −0.569059 0.822296i \(-0.692693\pi\)
−0.569059 + 0.822296i \(0.692693\pi\)
\(240\) 0 0
\(241\) 6050.05 1.61709 0.808543 0.588436i \(-0.200256\pi\)
0.808543 + 0.588436i \(0.200256\pi\)
\(242\) 2188.59 0.581356
\(243\) 0 0
\(244\) 3238.71 0.849742
\(245\) 1.37787 0.000359301 0
\(246\) 0 0
\(247\) 1539.35 0.396545
\(248\) 1656.63 0.424177
\(249\) 0 0
\(250\) −1153.86 −0.291905
\(251\) 6533.19 1.64291 0.821457 0.570271i \(-0.193162\pi\)
0.821457 + 0.570271i \(0.193162\pi\)
\(252\) 0 0
\(253\) −681.730 −0.169407
\(254\) −727.417 −0.179694
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2423.49 −0.588222 −0.294111 0.955771i \(-0.595024\pi\)
−0.294111 + 0.955771i \(0.595024\pi\)
\(258\) 0 0
\(259\) −5614.03 −1.34687
\(260\) −262.694 −0.0626599
\(261\) 0 0
\(262\) −1331.84 −0.314051
\(263\) 2692.44 0.631266 0.315633 0.948881i \(-0.397783\pi\)
0.315633 + 0.948881i \(0.397783\pi\)
\(264\) 0 0
\(265\) 1634.54 0.378902
\(266\) 2047.50 0.471957
\(267\) 0 0
\(268\) −2999.46 −0.683662
\(269\) 6688.58 1.51602 0.758011 0.652241i \(-0.226171\pi\)
0.758011 + 0.652241i \(0.226171\pi\)
\(270\) 0 0
\(271\) 1273.30 0.285415 0.142707 0.989765i \(-0.454419\pi\)
0.142707 + 0.989765i \(0.454419\pi\)
\(272\) 998.769 0.222644
\(273\) 0 0
\(274\) 686.517 0.151365
\(275\) −1837.43 −0.402914
\(276\) 0 0
\(277\) −1660.50 −0.360179 −0.180090 0.983650i \(-0.557639\pi\)
−0.180090 + 0.983650i \(0.557639\pi\)
\(278\) 1510.21 0.325814
\(279\) 0 0
\(280\) −349.410 −0.0745760
\(281\) 1247.71 0.264883 0.132442 0.991191i \(-0.457718\pi\)
0.132442 + 0.991191i \(0.457718\pi\)
\(282\) 0 0
\(283\) 6592.72 1.38479 0.692396 0.721517i \(-0.256555\pi\)
0.692396 + 0.721517i \(0.256555\pi\)
\(284\) 219.081 0.0457749
\(285\) 0 0
\(286\) −856.156 −0.177012
\(287\) 2326.23 0.478443
\(288\) 0 0
\(289\) −1016.36 −0.206871
\(290\) −136.898 −0.0277204
\(291\) 0 0
\(292\) −738.130 −0.147931
\(293\) −837.525 −0.166992 −0.0834962 0.996508i \(-0.526609\pi\)
−0.0834962 + 0.996508i \(0.526609\pi\)
\(294\) 0 0
\(295\) 1316.90 0.259908
\(296\) −2427.10 −0.476596
\(297\) 0 0
\(298\) −6067.92 −1.17955
\(299\) −1232.91 −0.238465
\(300\) 0 0
\(301\) −1873.50 −0.358761
\(302\) 1447.85 0.275875
\(303\) 0 0
\(304\) 885.192 0.167004
\(305\) −1911.09 −0.358782
\(306\) 0 0
\(307\) 500.495 0.0930448 0.0465224 0.998917i \(-0.485186\pi\)
0.0465224 + 0.998917i \(0.485186\pi\)
\(308\) −1138.78 −0.210675
\(309\) 0 0
\(310\) −977.538 −0.179098
\(311\) −2016.48 −0.367667 −0.183833 0.982957i \(-0.558851\pi\)
−0.183833 + 0.982957i \(0.558851\pi\)
\(312\) 0 0
\(313\) 8739.06 1.57815 0.789075 0.614296i \(-0.210560\pi\)
0.789075 + 0.614296i \(0.210560\pi\)
\(314\) −1294.70 −0.232688
\(315\) 0 0
\(316\) −3011.50 −0.536108
\(317\) 1690.73 0.299560 0.149780 0.988719i \(-0.452143\pi\)
0.149780 + 0.988719i \(0.452143\pi\)
\(318\) 0 0
\(319\) −446.169 −0.0783094
\(320\) −151.060 −0.0263890
\(321\) 0 0
\(322\) −1639.90 −0.283814
\(323\) 3453.53 0.594920
\(324\) 0 0
\(325\) −3323.00 −0.567160
\(326\) 3028.11 0.514453
\(327\) 0 0
\(328\) 1005.69 0.169299
\(329\) 941.255 0.157730
\(330\) 0 0
\(331\) −7446.19 −1.23649 −0.618247 0.785984i \(-0.712157\pi\)
−0.618247 + 0.785984i \(0.712157\pi\)
\(332\) 3608.07 0.596441
\(333\) 0 0
\(334\) 3682.11 0.603221
\(335\) 1769.91 0.288659
\(336\) 0 0
\(337\) −9366.72 −1.51406 −0.757030 0.653381i \(-0.773350\pi\)
−0.757030 + 0.653381i \(0.773350\pi\)
\(338\) 2845.64 0.457936
\(339\) 0 0
\(340\) −589.351 −0.0940060
\(341\) −3185.93 −0.505947
\(342\) 0 0
\(343\) 6357.84 1.00085
\(344\) −809.967 −0.126949
\(345\) 0 0
\(346\) −606.852 −0.0942907
\(347\) −7951.11 −1.23008 −0.615040 0.788496i \(-0.710860\pi\)
−0.615040 + 0.788496i \(0.710860\pi\)
\(348\) 0 0
\(349\) −1256.74 −0.192755 −0.0963776 0.995345i \(-0.530726\pi\)
−0.0963776 + 0.995345i \(0.530726\pi\)
\(350\) −4419.94 −0.675017
\(351\) 0 0
\(352\) −492.325 −0.0745483
\(353\) −7309.17 −1.10206 −0.551031 0.834485i \(-0.685765\pi\)
−0.551031 + 0.834485i \(0.685765\pi\)
\(354\) 0 0
\(355\) −129.275 −0.0193273
\(356\) −3813.54 −0.567745
\(357\) 0 0
\(358\) −6073.20 −0.896588
\(359\) −11555.1 −1.69876 −0.849379 0.527783i \(-0.823024\pi\)
−0.849379 + 0.527783i \(0.823024\pi\)
\(360\) 0 0
\(361\) −3798.20 −0.553754
\(362\) 4679.55 0.679424
\(363\) 0 0
\(364\) −2059.48 −0.296556
\(365\) 435.554 0.0624601
\(366\) 0 0
\(367\) −2097.86 −0.298386 −0.149193 0.988808i \(-0.547668\pi\)
−0.149193 + 0.988808i \(0.547668\pi\)
\(368\) −708.975 −0.100429
\(369\) 0 0
\(370\) 1432.18 0.201231
\(371\) 12814.6 1.79326
\(372\) 0 0
\(373\) 13979.4 1.94055 0.970277 0.241996i \(-0.0778022\pi\)
0.970277 + 0.241996i \(0.0778022\pi\)
\(374\) −1920.78 −0.265564
\(375\) 0 0
\(376\) 406.930 0.0558134
\(377\) −806.899 −0.110232
\(378\) 0 0
\(379\) −894.071 −0.121175 −0.0605875 0.998163i \(-0.519297\pi\)
−0.0605875 + 0.998163i \(0.519297\pi\)
\(380\) −522.331 −0.0705132
\(381\) 0 0
\(382\) −8434.94 −1.12976
\(383\) −5312.26 −0.708730 −0.354365 0.935107i \(-0.615303\pi\)
−0.354365 + 0.935107i \(0.615303\pi\)
\(384\) 0 0
\(385\) 671.967 0.0889522
\(386\) 3925.17 0.517580
\(387\) 0 0
\(388\) −4458.72 −0.583395
\(389\) 4206.27 0.548242 0.274121 0.961695i \(-0.411613\pi\)
0.274121 + 0.961695i \(0.411613\pi\)
\(390\) 0 0
\(391\) −2766.02 −0.357759
\(392\) 4.67013 0.000601727 0
\(393\) 0 0
\(394\) 4081.36 0.521868
\(395\) 1777.02 0.226358
\(396\) 0 0
\(397\) 5702.43 0.720898 0.360449 0.932779i \(-0.382623\pi\)
0.360449 + 0.932779i \(0.382623\pi\)
\(398\) −6471.36 −0.815025
\(399\) 0 0
\(400\) −1910.86 −0.238858
\(401\) −9803.05 −1.22080 −0.610400 0.792093i \(-0.708991\pi\)
−0.610400 + 0.792093i \(0.708991\pi\)
\(402\) 0 0
\(403\) −5761.77 −0.712194
\(404\) −2971.21 −0.365899
\(405\) 0 0
\(406\) −1073.26 −0.131195
\(407\) 4667.66 0.568471
\(408\) 0 0
\(409\) 8384.14 1.01362 0.506808 0.862059i \(-0.330825\pi\)
0.506808 + 0.862059i \(0.330825\pi\)
\(410\) −593.436 −0.0714823
\(411\) 0 0
\(412\) −7128.64 −0.852434
\(413\) 10324.3 1.23009
\(414\) 0 0
\(415\) −2129.04 −0.251832
\(416\) −890.371 −0.104938
\(417\) 0 0
\(418\) −1702.35 −0.199198
\(419\) 12350.2 1.43997 0.719986 0.693989i \(-0.244148\pi\)
0.719986 + 0.693989i \(0.244148\pi\)
\(420\) 0 0
\(421\) −4776.65 −0.552968 −0.276484 0.961018i \(-0.589169\pi\)
−0.276484 + 0.961018i \(0.589169\pi\)
\(422\) 7886.29 0.909712
\(423\) 0 0
\(424\) 5540.10 0.634554
\(425\) −7455.12 −0.850886
\(426\) 0 0
\(427\) −14982.7 −1.69804
\(428\) −7035.55 −0.794571
\(429\) 0 0
\(430\) 477.943 0.0536010
\(431\) 536.087 0.0599128 0.0299564 0.999551i \(-0.490463\pi\)
0.0299564 + 0.999551i \(0.490463\pi\)
\(432\) 0 0
\(433\) 3530.09 0.391790 0.195895 0.980625i \(-0.437239\pi\)
0.195895 + 0.980625i \(0.437239\pi\)
\(434\) −7663.76 −0.847632
\(435\) 0 0
\(436\) 6387.37 0.701604
\(437\) −2451.48 −0.268353
\(438\) 0 0
\(439\) −11536.6 −1.25425 −0.627123 0.778920i \(-0.715768\pi\)
−0.627123 + 0.778920i \(0.715768\pi\)
\(440\) 290.510 0.0314761
\(441\) 0 0
\(442\) −3473.73 −0.373820
\(443\) −6775.94 −0.726715 −0.363357 0.931650i \(-0.618370\pi\)
−0.363357 + 0.931650i \(0.618370\pi\)
\(444\) 0 0
\(445\) 2250.28 0.239716
\(446\) 5061.67 0.537392
\(447\) 0 0
\(448\) −1184.29 −0.124894
\(449\) 6601.58 0.693870 0.346935 0.937889i \(-0.387222\pi\)
0.346935 + 0.937889i \(0.387222\pi\)
\(450\) 0 0
\(451\) −1934.09 −0.201935
\(452\) −3967.57 −0.412874
\(453\) 0 0
\(454\) 10859.5 1.12261
\(455\) 1215.25 0.125213
\(456\) 0 0
\(457\) −4454.94 −0.456003 −0.228001 0.973661i \(-0.573219\pi\)
−0.228001 + 0.973661i \(0.573219\pi\)
\(458\) −11195.1 −1.14217
\(459\) 0 0
\(460\) 418.350 0.0424036
\(461\) −1861.62 −0.188078 −0.0940392 0.995568i \(-0.529978\pi\)
−0.0940392 + 0.995568i \(0.529978\pi\)
\(462\) 0 0
\(463\) −7795.98 −0.782527 −0.391263 0.920279i \(-0.627962\pi\)
−0.391263 + 0.920279i \(0.627962\pi\)
\(464\) −464.000 −0.0464238
\(465\) 0 0
\(466\) −3473.48 −0.345291
\(467\) −13072.0 −1.29529 −0.647646 0.761941i \(-0.724247\pi\)
−0.647646 + 0.761941i \(0.724247\pi\)
\(468\) 0 0
\(469\) 13875.9 1.36616
\(470\) −240.120 −0.0235658
\(471\) 0 0
\(472\) 4463.48 0.435272
\(473\) 1557.68 0.151421
\(474\) 0 0
\(475\) −6607.35 −0.638244
\(476\) −4620.43 −0.444910
\(477\) 0 0
\(478\) 8410.36 0.804771
\(479\) −4847.90 −0.462435 −0.231218 0.972902i \(-0.574271\pi\)
−0.231218 + 0.972902i \(0.574271\pi\)
\(480\) 0 0
\(481\) 8441.48 0.800205
\(482\) −12100.1 −1.14345
\(483\) 0 0
\(484\) −4377.19 −0.411081
\(485\) 2630.99 0.246324
\(486\) 0 0
\(487\) 15092.4 1.40432 0.702160 0.712020i \(-0.252219\pi\)
0.702160 + 0.712020i \(0.252219\pi\)
\(488\) −6477.42 −0.600859
\(489\) 0 0
\(490\) −2.75574 −0.000254064 0
\(491\) 4438.48 0.407955 0.203978 0.978976i \(-0.434613\pi\)
0.203978 + 0.978976i \(0.434613\pi\)
\(492\) 0 0
\(493\) −1810.27 −0.165376
\(494\) −3078.71 −0.280400
\(495\) 0 0
\(496\) −3313.26 −0.299939
\(497\) −1013.50 −0.0914719
\(498\) 0 0
\(499\) 1648.66 0.147904 0.0739519 0.997262i \(-0.476439\pi\)
0.0739519 + 0.997262i \(0.476439\pi\)
\(500\) 2307.71 0.206408
\(501\) 0 0
\(502\) −13066.4 −1.16172
\(503\) −16870.8 −1.49549 −0.747746 0.663984i \(-0.768864\pi\)
−0.747746 + 0.663984i \(0.768864\pi\)
\(504\) 0 0
\(505\) 1753.24 0.154492
\(506\) 1363.46 0.119789
\(507\) 0 0
\(508\) 1454.83 0.127063
\(509\) −11051.6 −0.962384 −0.481192 0.876615i \(-0.659796\pi\)
−0.481192 + 0.876615i \(0.659796\pi\)
\(510\) 0 0
\(511\) 3414.68 0.295610
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 4846.98 0.415936
\(515\) 4206.45 0.359919
\(516\) 0 0
\(517\) −782.586 −0.0665727
\(518\) 11228.1 0.952380
\(519\) 0 0
\(520\) 525.387 0.0443072
\(521\) 15369.3 1.29240 0.646201 0.763167i \(-0.276357\pi\)
0.646201 + 0.763167i \(0.276357\pi\)
\(522\) 0 0
\(523\) 779.256 0.0651520 0.0325760 0.999469i \(-0.489629\pi\)
0.0325760 + 0.999469i \(0.489629\pi\)
\(524\) 2663.68 0.222068
\(525\) 0 0
\(526\) −5384.88 −0.446373
\(527\) −12926.5 −1.06847
\(528\) 0 0
\(529\) −10203.5 −0.838624
\(530\) −3269.08 −0.267924
\(531\) 0 0
\(532\) −4095.01 −0.333724
\(533\) −3497.81 −0.284253
\(534\) 0 0
\(535\) 4151.52 0.335487
\(536\) 5998.92 0.483422
\(537\) 0 0
\(538\) −13377.2 −1.07199
\(539\) −8.98133 −0.000717724 0
\(540\) 0 0
\(541\) 18847.1 1.49778 0.748889 0.662695i \(-0.230587\pi\)
0.748889 + 0.662695i \(0.230587\pi\)
\(542\) −2546.60 −0.201819
\(543\) 0 0
\(544\) −1997.54 −0.157433
\(545\) −3769.04 −0.296235
\(546\) 0 0
\(547\) −3422.52 −0.267525 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(548\) −1373.03 −0.107031
\(549\) 0 0
\(550\) 3674.87 0.284903
\(551\) −1604.41 −0.124048
\(552\) 0 0
\(553\) 13931.6 1.07130
\(554\) 3321.00 0.254685
\(555\) 0 0
\(556\) −3020.41 −0.230385
\(557\) 24115.0 1.83445 0.917224 0.398373i \(-0.130425\pi\)
0.917224 + 0.398373i \(0.130425\pi\)
\(558\) 0 0
\(559\) 2817.07 0.213148
\(560\) 698.821 0.0527332
\(561\) 0 0
\(562\) −2495.42 −0.187301
\(563\) −18904.9 −1.41518 −0.707591 0.706622i \(-0.750218\pi\)
−0.707591 + 0.706622i \(0.750218\pi\)
\(564\) 0 0
\(565\) 2341.17 0.174325
\(566\) −13185.4 −0.979196
\(567\) 0 0
\(568\) −438.162 −0.0323678
\(569\) 14072.1 1.03679 0.518394 0.855142i \(-0.326530\pi\)
0.518394 + 0.855142i \(0.326530\pi\)
\(570\) 0 0
\(571\) 16218.7 1.18867 0.594334 0.804218i \(-0.297416\pi\)
0.594334 + 0.804218i \(0.297416\pi\)
\(572\) 1712.31 0.125167
\(573\) 0 0
\(574\) −4652.46 −0.338310
\(575\) 5292.01 0.383812
\(576\) 0 0
\(577\) 5122.09 0.369559 0.184779 0.982780i \(-0.440843\pi\)
0.184779 + 0.982780i \(0.440843\pi\)
\(578\) 2032.72 0.146280
\(579\) 0 0
\(580\) 273.796 0.0196013
\(581\) −16691.4 −1.19187
\(582\) 0 0
\(583\) −10654.4 −0.756879
\(584\) 1476.26 0.104603
\(585\) 0 0
\(586\) 1675.05 0.118081
\(587\) −22661.7 −1.59344 −0.796721 0.604347i \(-0.793434\pi\)
−0.796721 + 0.604347i \(0.793434\pi\)
\(588\) 0 0
\(589\) −11456.5 −0.801455
\(590\) −2633.79 −0.183782
\(591\) 0 0
\(592\) 4854.20 0.337004
\(593\) 13919.5 0.963921 0.481960 0.876193i \(-0.339925\pi\)
0.481960 + 0.876193i \(0.339925\pi\)
\(594\) 0 0
\(595\) 2726.41 0.187852
\(596\) 12135.8 0.834066
\(597\) 0 0
\(598\) 2465.82 0.168620
\(599\) 10239.3 0.698441 0.349221 0.937041i \(-0.386446\pi\)
0.349221 + 0.937041i \(0.386446\pi\)
\(600\) 0 0
\(601\) −6948.34 −0.471595 −0.235798 0.971802i \(-0.575770\pi\)
−0.235798 + 0.971802i \(0.575770\pi\)
\(602\) 3747.01 0.253682
\(603\) 0 0
\(604\) −2895.70 −0.195073
\(605\) 2582.88 0.173568
\(606\) 0 0
\(607\) −15449.1 −1.03305 −0.516525 0.856272i \(-0.672775\pi\)
−0.516525 + 0.856272i \(0.672775\pi\)
\(608\) −1770.38 −0.118090
\(609\) 0 0
\(610\) 3822.18 0.253697
\(611\) −1415.31 −0.0937107
\(612\) 0 0
\(613\) 8873.06 0.584632 0.292316 0.956322i \(-0.405574\pi\)
0.292316 + 0.956322i \(0.405574\pi\)
\(614\) −1000.99 −0.0657926
\(615\) 0 0
\(616\) 2277.56 0.148970
\(617\) 16549.2 1.07981 0.539906 0.841725i \(-0.318460\pi\)
0.539906 + 0.841725i \(0.318460\pi\)
\(618\) 0 0
\(619\) −1121.37 −0.0728140 −0.0364070 0.999337i \(-0.511591\pi\)
−0.0364070 + 0.999337i \(0.511591\pi\)
\(620\) 1955.08 0.126642
\(621\) 0 0
\(622\) 4032.97 0.259980
\(623\) 17641.9 1.13452
\(624\) 0 0
\(625\) 13566.9 0.868281
\(626\) −17478.1 −1.11592
\(627\) 0 0
\(628\) 2589.39 0.164535
\(629\) 18938.4 1.20051
\(630\) 0 0
\(631\) 1944.05 0.122649 0.0613245 0.998118i \(-0.480468\pi\)
0.0613245 + 0.998118i \(0.480468\pi\)
\(632\) 6023.00 0.379086
\(633\) 0 0
\(634\) −3381.45 −0.211821
\(635\) −858.464 −0.0536490
\(636\) 0 0
\(637\) −16.2428 −0.00101030
\(638\) 892.339 0.0553731
\(639\) 0 0
\(640\) 302.119 0.0186599
\(641\) 11807.0 0.727530 0.363765 0.931491i \(-0.381491\pi\)
0.363765 + 0.931491i \(0.381491\pi\)
\(642\) 0 0
\(643\) 14848.2 0.910665 0.455333 0.890321i \(-0.349520\pi\)
0.455333 + 0.890321i \(0.349520\pi\)
\(644\) 3279.80 0.200687
\(645\) 0 0
\(646\) −6907.05 −0.420672
\(647\) 4933.68 0.299788 0.149894 0.988702i \(-0.452107\pi\)
0.149894 + 0.988702i \(0.452107\pi\)
\(648\) 0 0
\(649\) −8583.91 −0.519180
\(650\) 6646.00 0.401043
\(651\) 0 0
\(652\) −6056.22 −0.363773
\(653\) 27029.7 1.61984 0.809919 0.586541i \(-0.199511\pi\)
0.809919 + 0.586541i \(0.199511\pi\)
\(654\) 0 0
\(655\) −1571.78 −0.0937625
\(656\) −2011.39 −0.119713
\(657\) 0 0
\(658\) −1882.51 −0.111532
\(659\) −12211.1 −0.721817 −0.360908 0.932601i \(-0.617533\pi\)
−0.360908 + 0.932601i \(0.617533\pi\)
\(660\) 0 0
\(661\) −864.848 −0.0508906 −0.0254453 0.999676i \(-0.508100\pi\)
−0.0254453 + 0.999676i \(0.508100\pi\)
\(662\) 14892.4 0.874333
\(663\) 0 0
\(664\) −7216.14 −0.421748
\(665\) 2416.37 0.140906
\(666\) 0 0
\(667\) 1285.02 0.0745968
\(668\) −7364.21 −0.426542
\(669\) 0 0
\(670\) −3539.83 −0.204113
\(671\) 12457.0 0.716688
\(672\) 0 0
\(673\) −7448.31 −0.426614 −0.213307 0.976985i \(-0.568423\pi\)
−0.213307 + 0.976985i \(0.568423\pi\)
\(674\) 18733.4 1.07060
\(675\) 0 0
\(676\) −5691.28 −0.323810
\(677\) −9281.19 −0.526891 −0.263446 0.964674i \(-0.584859\pi\)
−0.263446 + 0.964674i \(0.584859\pi\)
\(678\) 0 0
\(679\) 20626.6 1.16580
\(680\) 1178.70 0.0664723
\(681\) 0 0
\(682\) 6371.87 0.357759
\(683\) −32252.9 −1.80691 −0.903456 0.428680i \(-0.858979\pi\)
−0.903456 + 0.428680i \(0.858979\pi\)
\(684\) 0 0
\(685\) 810.196 0.0451913
\(686\) −12715.7 −0.707707
\(687\) 0 0
\(688\) 1619.93 0.0897666
\(689\) −19268.5 −1.06542
\(690\) 0 0
\(691\) 4915.05 0.270590 0.135295 0.990805i \(-0.456802\pi\)
0.135295 + 0.990805i \(0.456802\pi\)
\(692\) 1213.70 0.0666736
\(693\) 0 0
\(694\) 15902.2 0.869798
\(695\) 1782.28 0.0972742
\(696\) 0 0
\(697\) −7847.31 −0.426453
\(698\) 2513.47 0.136298
\(699\) 0 0
\(700\) 8839.89 0.477309
\(701\) −11610.7 −0.625577 −0.312788 0.949823i \(-0.601263\pi\)
−0.312788 + 0.949823i \(0.601263\pi\)
\(702\) 0 0
\(703\) 16784.8 0.900497
\(704\) 984.650 0.0527136
\(705\) 0 0
\(706\) 14618.3 0.779275
\(707\) 13745.2 0.731175
\(708\) 0 0
\(709\) −6350.02 −0.336361 −0.168180 0.985756i \(-0.553789\pi\)
−0.168180 + 0.985756i \(0.553789\pi\)
\(710\) 258.550 0.0136665
\(711\) 0 0
\(712\) 7627.08 0.401456
\(713\) 9175.84 0.481960
\(714\) 0 0
\(715\) −1010.40 −0.0528485
\(716\) 12146.4 0.633983
\(717\) 0 0
\(718\) 23110.2 1.20120
\(719\) 22323.6 1.15790 0.578949 0.815364i \(-0.303463\pi\)
0.578949 + 0.815364i \(0.303463\pi\)
\(720\) 0 0
\(721\) 32978.0 1.70342
\(722\) 7596.40 0.391563
\(723\) 0 0
\(724\) −9359.10 −0.480425
\(725\) 3463.44 0.177419
\(726\) 0 0
\(727\) −24589.5 −1.25443 −0.627217 0.778844i \(-0.715806\pi\)
−0.627217 + 0.778844i \(0.715806\pi\)
\(728\) 4118.97 0.209696
\(729\) 0 0
\(730\) −871.108 −0.0441659
\(731\) 6320.08 0.319776
\(732\) 0 0
\(733\) −35064.1 −1.76688 −0.883438 0.468548i \(-0.844777\pi\)
−0.883438 + 0.468548i \(0.844777\pi\)
\(734\) 4195.73 0.210991
\(735\) 0 0
\(736\) 1417.95 0.0710140
\(737\) −11536.8 −0.576612
\(738\) 0 0
\(739\) −33877.0 −1.68631 −0.843157 0.537668i \(-0.819305\pi\)
−0.843157 + 0.537668i \(0.819305\pi\)
\(740\) −2864.35 −0.142291
\(741\) 0 0
\(742\) −25629.2 −1.26803
\(743\) −3119.59 −0.154033 −0.0770166 0.997030i \(-0.524539\pi\)
−0.0770166 + 0.997030i \(0.524539\pi\)
\(744\) 0 0
\(745\) −7161.08 −0.352163
\(746\) −27958.8 −1.37218
\(747\) 0 0
\(748\) 3841.55 0.187782
\(749\) 32547.3 1.58779
\(750\) 0 0
\(751\) −26359.7 −1.28080 −0.640398 0.768043i \(-0.721231\pi\)
−0.640398 + 0.768043i \(0.721231\pi\)
\(752\) −813.861 −0.0394660
\(753\) 0 0
\(754\) 1613.80 0.0779457
\(755\) 1708.68 0.0823647
\(756\) 0 0
\(757\) −10385.9 −0.498654 −0.249327 0.968419i \(-0.580209\pi\)
−0.249327 + 0.968419i \(0.580209\pi\)
\(758\) 1788.14 0.0856837
\(759\) 0 0
\(760\) 1044.66 0.0498604
\(761\) −24007.6 −1.14360 −0.571798 0.820395i \(-0.693754\pi\)
−0.571798 + 0.820395i \(0.693754\pi\)
\(762\) 0 0
\(763\) −29548.7 −1.40201
\(764\) 16869.9 0.798862
\(765\) 0 0
\(766\) 10624.5 0.501148
\(767\) −15524.0 −0.730821
\(768\) 0 0
\(769\) 12607.2 0.591195 0.295597 0.955313i \(-0.404481\pi\)
0.295597 + 0.955313i \(0.404481\pi\)
\(770\) −1343.93 −0.0628987
\(771\) 0 0
\(772\) −7850.35 −0.365985
\(773\) −6237.38 −0.290224 −0.145112 0.989415i \(-0.546354\pi\)
−0.145112 + 0.989415i \(0.546354\pi\)
\(774\) 0 0
\(775\) 24731.2 1.14628
\(776\) 8917.44 0.412522
\(777\) 0 0
\(778\) −8412.54 −0.387666
\(779\) −6954.93 −0.319880
\(780\) 0 0
\(781\) 842.650 0.0386074
\(782\) 5532.05 0.252974
\(783\) 0 0
\(784\) −9.34026 −0.000425486 0
\(785\) −1527.94 −0.0694707
\(786\) 0 0
\(787\) −6005.74 −0.272022 −0.136011 0.990707i \(-0.543428\pi\)
−0.136011 + 0.990707i \(0.543428\pi\)
\(788\) −8162.72 −0.369016
\(789\) 0 0
\(790\) −3554.03 −0.160059
\(791\) 18354.5 0.825044
\(792\) 0 0
\(793\) 22528.5 1.00884
\(794\) −11404.9 −0.509752
\(795\) 0 0
\(796\) 12942.7 0.576310
\(797\) 6169.00 0.274175 0.137087 0.990559i \(-0.456226\pi\)
0.137087 + 0.990559i \(0.456226\pi\)
\(798\) 0 0
\(799\) −3175.23 −0.140590
\(800\) 3821.73 0.168898
\(801\) 0 0
\(802\) 19606.1 0.863236
\(803\) −2839.06 −0.124768
\(804\) 0 0
\(805\) −1935.34 −0.0847350
\(806\) 11523.5 0.503597
\(807\) 0 0
\(808\) 5942.42 0.258730
\(809\) −40910.3 −1.77791 −0.888956 0.457993i \(-0.848568\pi\)
−0.888956 + 0.457993i \(0.848568\pi\)
\(810\) 0 0
\(811\) −28340.0 −1.22707 −0.613534 0.789669i \(-0.710252\pi\)
−0.613534 + 0.789669i \(0.710252\pi\)
\(812\) 2146.52 0.0927686
\(813\) 0 0
\(814\) −9335.33 −0.401969
\(815\) 3573.64 0.153594
\(816\) 0 0
\(817\) 5601.38 0.239862
\(818\) −16768.3 −0.716735
\(819\) 0 0
\(820\) 1186.87 0.0505456
\(821\) 17791.4 0.756303 0.378151 0.925744i \(-0.376560\pi\)
0.378151 + 0.925744i \(0.376560\pi\)
\(822\) 0 0
\(823\) 5375.77 0.227688 0.113844 0.993499i \(-0.463684\pi\)
0.113844 + 0.993499i \(0.463684\pi\)
\(824\) 14257.3 0.602762
\(825\) 0 0
\(826\) −20648.6 −0.869802
\(827\) −17894.5 −0.752422 −0.376211 0.926534i \(-0.622773\pi\)
−0.376211 + 0.926534i \(0.622773\pi\)
\(828\) 0 0
\(829\) 14195.1 0.594713 0.297357 0.954766i \(-0.403895\pi\)
0.297357 + 0.954766i \(0.403895\pi\)
\(830\) 4258.08 0.178072
\(831\) 0 0
\(832\) 1780.74 0.0742021
\(833\) −36.4405 −0.00151571
\(834\) 0 0
\(835\) 4345.45 0.180097
\(836\) 3404.70 0.140854
\(837\) 0 0
\(838\) −24700.5 −1.01821
\(839\) 18312.2 0.753524 0.376762 0.926310i \(-0.377038\pi\)
0.376762 + 0.926310i \(0.377038\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 9553.30 0.391008
\(843\) 0 0
\(844\) −15772.6 −0.643264
\(845\) 3358.29 0.136720
\(846\) 0 0
\(847\) 20249.4 0.821462
\(848\) −11080.2 −0.448697
\(849\) 0 0
\(850\) 14910.2 0.601667
\(851\) −13443.4 −0.541520
\(852\) 0 0
\(853\) 192.909 0.00774335 0.00387168 0.999993i \(-0.498768\pi\)
0.00387168 + 0.999993i \(0.498768\pi\)
\(854\) 29965.3 1.20069
\(855\) 0 0
\(856\) 14071.1 0.561846
\(857\) 20355.5 0.811355 0.405678 0.914016i \(-0.367036\pi\)
0.405678 + 0.914016i \(0.367036\pi\)
\(858\) 0 0
\(859\) 35959.3 1.42831 0.714153 0.699990i \(-0.246812\pi\)
0.714153 + 0.699990i \(0.246812\pi\)
\(860\) −955.886 −0.0379017
\(861\) 0 0
\(862\) −1072.17 −0.0423648
\(863\) −7302.77 −0.288052 −0.144026 0.989574i \(-0.546005\pi\)
−0.144026 + 0.989574i \(0.546005\pi\)
\(864\) 0 0
\(865\) −716.179 −0.0281512
\(866\) −7060.17 −0.277038
\(867\) 0 0
\(868\) 15327.5 0.599367
\(869\) −11583.1 −0.452163
\(870\) 0 0
\(871\) −20864.3 −0.811666
\(872\) −12774.7 −0.496109
\(873\) 0 0
\(874\) 4902.96 0.189754
\(875\) −10675.8 −0.412464
\(876\) 0 0
\(877\) 36855.5 1.41907 0.709533 0.704673i \(-0.248906\pi\)
0.709533 + 0.704673i \(0.248906\pi\)
\(878\) 23073.3 0.886886
\(879\) 0 0
\(880\) −581.019 −0.0222570
\(881\) −9615.17 −0.367699 −0.183850 0.982954i \(-0.558856\pi\)
−0.183850 + 0.982954i \(0.558856\pi\)
\(882\) 0 0
\(883\) 46143.6 1.75861 0.879306 0.476257i \(-0.158007\pi\)
0.879306 + 0.476257i \(0.158007\pi\)
\(884\) 6947.46 0.264331
\(885\) 0 0
\(886\) 13551.9 0.513865
\(887\) 28495.0 1.07866 0.539328 0.842096i \(-0.318678\pi\)
0.539328 + 0.842096i \(0.318678\pi\)
\(888\) 0 0
\(889\) −6730.24 −0.253909
\(890\) −4500.57 −0.169505
\(891\) 0 0
\(892\) −10123.3 −0.379993
\(893\) −2814.15 −0.105456
\(894\) 0 0
\(895\) −7167.31 −0.267684
\(896\) 2368.58 0.0883131
\(897\) 0 0
\(898\) −13203.2 −0.490640
\(899\) 6005.27 0.222789
\(900\) 0 0
\(901\) −43228.7 −1.59840
\(902\) 3868.19 0.142790
\(903\) 0 0
\(904\) 7935.14 0.291946
\(905\) 5522.59 0.202848
\(906\) 0 0
\(907\) 21873.4 0.800764 0.400382 0.916348i \(-0.368877\pi\)
0.400382 + 0.916348i \(0.368877\pi\)
\(908\) −21719.1 −0.793803
\(909\) 0 0
\(910\) −2430.51 −0.0885390
\(911\) −32308.0 −1.17498 −0.587492 0.809230i \(-0.699885\pi\)
−0.587492 + 0.809230i \(0.699885\pi\)
\(912\) 0 0
\(913\) 13877.7 0.503049
\(914\) 8909.88 0.322443
\(915\) 0 0
\(916\) 22390.3 0.807637
\(917\) −12322.5 −0.443757
\(918\) 0 0
\(919\) 4297.83 0.154268 0.0771340 0.997021i \(-0.475423\pi\)
0.0771340 + 0.997021i \(0.475423\pi\)
\(920\) −836.699 −0.0299839
\(921\) 0 0
\(922\) 3723.23 0.132991
\(923\) 1523.93 0.0543455
\(924\) 0 0
\(925\) −36233.3 −1.28794
\(926\) 15592.0 0.553330
\(927\) 0 0
\(928\) 928.000 0.0328266
\(929\) −36879.6 −1.30245 −0.651227 0.758883i \(-0.725746\pi\)
−0.651227 + 0.758883i \(0.725746\pi\)
\(930\) 0 0
\(931\) −32.2966 −0.00113692
\(932\) 6946.96 0.244158
\(933\) 0 0
\(934\) 26144.1 0.915910
\(935\) −2266.81 −0.0792863
\(936\) 0 0
\(937\) −15770.1 −0.549824 −0.274912 0.961469i \(-0.588649\pi\)
−0.274912 + 0.961469i \(0.588649\pi\)
\(938\) −27751.8 −0.966020
\(939\) 0 0
\(940\) 480.241 0.0166635
\(941\) 485.478 0.0168184 0.00840921 0.999965i \(-0.497323\pi\)
0.00840921 + 0.999965i \(0.497323\pi\)
\(942\) 0 0
\(943\) 5570.40 0.192362
\(944\) −8926.95 −0.307783
\(945\) 0 0
\(946\) −3115.37 −0.107071
\(947\) −8167.18 −0.280251 −0.140126 0.990134i \(-0.544751\pi\)
−0.140126 + 0.990134i \(0.544751\pi\)
\(948\) 0 0
\(949\) −5134.45 −0.175628
\(950\) 13214.7 0.451307
\(951\) 0 0
\(952\) 9240.86 0.314599
\(953\) 29839.4 1.01426 0.507132 0.861868i \(-0.330706\pi\)
0.507132 + 0.861868i \(0.330706\pi\)
\(954\) 0 0
\(955\) −9954.53 −0.337299
\(956\) −16820.7 −0.569059
\(957\) 0 0
\(958\) 9695.81 0.326991
\(959\) 6351.83 0.213880
\(960\) 0 0
\(961\) 13090.5 0.439411
\(962\) −16883.0 −0.565830
\(963\) 0 0
\(964\) 24200.2 0.808543
\(965\) 4632.31 0.154528
\(966\) 0 0
\(967\) −8150.60 −0.271050 −0.135525 0.990774i \(-0.543272\pi\)
−0.135525 + 0.990774i \(0.543272\pi\)
\(968\) 8754.38 0.290678
\(969\) 0 0
\(970\) −5261.98 −0.174177
\(971\) 34617.7 1.14411 0.572057 0.820214i \(-0.306146\pi\)
0.572057 + 0.820214i \(0.306146\pi\)
\(972\) 0 0
\(973\) 13972.8 0.460378
\(974\) −30184.9 −0.993004
\(975\) 0 0
\(976\) 12954.8 0.424871
\(977\) 40762.0 1.33479 0.667395 0.744704i \(-0.267409\pi\)
0.667395 + 0.744704i \(0.267409\pi\)
\(978\) 0 0
\(979\) −14668.0 −0.478846
\(980\) 5.51147 0.000179651 0
\(981\) 0 0
\(982\) −8876.97 −0.288468
\(983\) 15737.6 0.510631 0.255315 0.966858i \(-0.417821\pi\)
0.255315 + 0.966858i \(0.417821\pi\)
\(984\) 0 0
\(985\) 4816.63 0.155808
\(986\) 3620.54 0.116939
\(987\) 0 0
\(988\) 6157.42 0.198273
\(989\) −4486.30 −0.144243
\(990\) 0 0
\(991\) −47989.9 −1.53829 −0.769146 0.639073i \(-0.779318\pi\)
−0.769146 + 0.639073i \(0.779318\pi\)
\(992\) 6626.51 0.212089
\(993\) 0 0
\(994\) 2026.99 0.0646804
\(995\) −7637.20 −0.243332
\(996\) 0 0
\(997\) −51443.4 −1.63413 −0.817066 0.576545i \(-0.804401\pi\)
−0.817066 + 0.576545i \(0.804401\pi\)
\(998\) −3297.31 −0.104584
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 522.4.a.k.1.2 3
3.2 odd 2 58.4.a.d.1.3 3
12.11 even 2 464.4.a.i.1.1 3
15.14 odd 2 1450.4.a.h.1.1 3
24.5 odd 2 1856.4.a.r.1.1 3
24.11 even 2 1856.4.a.s.1.3 3
87.86 odd 2 1682.4.a.d.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.4.a.d.1.3 3 3.2 odd 2
464.4.a.i.1.1 3 12.11 even 2
522.4.a.k.1.2 3 1.1 even 1 trivial
1450.4.a.h.1.1 3 15.14 odd 2
1682.4.a.d.1.1 3 87.86 odd 2
1856.4.a.r.1.1 3 24.5 odd 2
1856.4.a.s.1.3 3 24.11 even 2