Newspace parameters
| Level: | \( N \) | \(=\) | \( 522 = 2 \cdot 3^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 522.x (of order \(84\), degree \(24\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.16819098551\) |
| Analytic rank: | \(0\) |
| Dimension: | \(720\) |
| Relative dimension: | \(30\) over \(\Q(\zeta_{84})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{84}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11.1 | −0.982566 | − | 0.185912i | −1.71642 | − | 0.232147i | 0.930874 | + | 0.365341i | −0.184951 | − | 2.46800i | 1.64334 | + | 0.547203i | −1.56577 | − | 3.98951i | −0.846724 | − | 0.532032i | 2.89222 | + | 0.796925i | −0.277103 | + | 2.45936i |
| 11.2 | −0.982566 | − | 0.185912i | −1.50597 | + | 0.855594i | 0.930874 | + | 0.365341i | −0.0639284 | − | 0.853065i | 1.63878 | − | 0.560699i | 0.298111 | + | 0.759576i | −0.846724 | − | 0.532032i | 1.53592 | − | 2.57700i | −0.0957808 | + | 0.850078i |
| 11.3 | −0.982566 | − | 0.185912i | −1.44169 | − | 0.959969i | 0.930874 | + | 0.365341i | −0.275865 | − | 3.68116i | 1.23808 | + | 1.21126i | 1.68705 | + | 4.29853i | −0.846724 | − | 0.532032i | 1.15692 | + | 2.76795i | −0.413315 | + | 3.66827i |
| 11.4 | −0.982566 | − | 0.185912i | −1.29418 | − | 1.15113i | 0.930874 | + | 0.365341i | 0.0856576 | + | 1.14302i | 1.05761 | + | 1.37167i | −0.125872 | − | 0.320716i | −0.846724 | − | 0.532032i | 0.349797 | + | 2.97954i | 0.128337 | − | 1.13902i |
| 11.5 | −0.982566 | − | 0.185912i | −1.23504 | − | 1.21436i | 0.930874 | + | 0.365341i | 0.204402 | + | 2.72756i | 0.987747 | + | 1.42280i | 0.592755 | + | 1.51031i | −0.846724 | − | 0.532032i | 0.0506548 | + | 2.99957i | 0.306246 | − | 2.71801i |
| 11.6 | −0.982566 | − | 0.185912i | −0.820653 | + | 1.52530i | 0.930874 | + | 0.365341i | 0.213523 | + | 2.84927i | 1.08992 | − | 1.34614i | −1.60496 | − | 4.08938i | −0.846724 | − | 0.532032i | −1.65306 | − | 2.50348i | 0.319911 | − | 2.83929i |
| 11.7 | −0.982566 | − | 0.185912i | −0.518316 | + | 1.65268i | 0.930874 | + | 0.365341i | 0.0879327 | + | 1.17338i | 0.816532 | − | 1.52751i | −0.445691 | − | 1.13560i | −0.846724 | − | 0.532032i | −2.46270 | − | 1.71322i | 0.131745 | − | 1.16927i |
| 11.8 | −0.982566 | − | 0.185912i | 0.0343479 | − | 1.73171i | 0.930874 | + | 0.365341i | −0.136577 | − | 1.82250i | −0.355694 | + | 1.69513i | −1.64863 | − | 4.20064i | −0.846724 | − | 0.532032i | −2.99764 | − | 0.118961i | −0.204627 | + | 1.81612i |
| 11.9 | −0.982566 | − | 0.185912i | 0.157136 | + | 1.72491i | 0.930874 | + | 0.365341i | −0.0842626 | − | 1.12441i | 0.166284 | − | 1.72405i | 1.53953 | + | 3.92267i | −0.846724 | − | 0.532032i | −2.95062 | + | 0.542091i | −0.126247 | + | 1.12047i |
| 11.10 | −0.982566 | − | 0.185912i | 0.555505 | − | 1.64055i | 0.930874 | + | 0.365341i | −0.0412137 | − | 0.549958i | −0.850818 | + | 1.50868i | 0.841625 | + | 2.14443i | −0.846724 | − | 0.532032i | −2.38283 | − | 1.82267i | −0.0617484 | + | 0.548033i |
| 11.11 | −0.982566 | − | 0.185912i | 0.767664 | − | 1.55264i | 0.930874 | + | 0.365341i | 0.318141 | + | 4.24529i | −1.04293 | + | 1.38285i | −0.310906 | − | 0.792175i | −0.846724 | − | 0.532032i | −1.82138 | − | 2.38381i | 0.476655 | − | 4.23043i |
| 11.12 | −0.982566 | − | 0.185912i | 1.05165 | + | 1.37624i | 0.930874 | + | 0.365341i | −0.0759607 | − | 1.01362i | −0.777456 | − | 1.54776i | −0.646748 | − | 1.64789i | −0.846724 | − | 0.532032i | −0.788070 | + | 2.89464i | −0.113808 | + | 1.01008i |
| 11.13 | −0.982566 | − | 0.185912i | 1.56532 | − | 0.741469i | 0.930874 | + | 0.365341i | −0.303679 | − | 4.05232i | −1.67588 | + | 0.437531i | −0.0290033 | − | 0.0738992i | −0.846724 | − | 0.532032i | 1.90045 | − | 2.32127i | −0.454988 | + | 4.03813i |
| 11.14 | −0.982566 | − | 0.185912i | 1.59878 | + | 0.666256i | 0.930874 | + | 0.365341i | 0.242739 | + | 3.23913i | −1.44704 | − | 0.951873i | 1.06501 | + | 2.71360i | −0.846724 | − | 0.532032i | 2.11221 | + | 2.13040i | 0.363684 | − | 3.22778i |
| 11.15 | −0.982566 | − | 0.185912i | 1.73184 | − | 0.0268280i | 0.930874 | + | 0.365341i | 0.0140425 | + | 0.187384i | −1.70664 | − | 0.295609i | 0.495198 | + | 1.26174i | −0.846724 | − | 0.532032i | 2.99856 | − | 0.0929238i | 0.0210392 | − | 0.186728i |
| 11.16 | 0.982566 | + | 0.185912i | −1.67126 | − | 0.454848i | 0.930874 | + | 0.365341i | 0.195862 | + | 2.61359i | −1.55756 | − | 0.757625i | −1.29177 | − | 3.29137i | 0.846724 | + | 0.532032i | 2.58623 | + | 1.52034i | −0.293450 | + | 2.60444i |
| 11.17 | 0.982566 | + | 0.185912i | −1.65841 | − | 0.499689i | 0.930874 | + | 0.365341i | −0.0777480 | − | 1.03748i | −1.53660 | − | 0.799295i | 1.12244 | + | 2.85994i | 0.846724 | + | 0.532032i | 2.50062 | + | 1.65738i | 0.116486 | − | 1.03384i |
| 11.18 | 0.982566 | + | 0.185912i | −1.40938 | + | 1.00680i | 0.930874 | + | 0.365341i | −0.0704594 | − | 0.940215i | −1.57199 | + | 0.727222i | −1.16593 | − | 2.97075i | 0.846724 | + | 0.532032i | 0.972727 | − | 2.83792i | 0.105566 | − | 0.936923i |
| 11.19 | 0.982566 | + | 0.185912i | −1.07799 | − | 1.35570i | 0.930874 | + | 0.365341i | −0.186309 | − | 2.48612i | −0.807159 | − | 1.53248i | −0.574533 | − | 1.46389i | 0.846724 | + | 0.532032i | −0.675861 | + | 2.92288i | 0.279138 | − | 2.47742i |
| 11.20 | 0.982566 | + | 0.185912i | −0.924014 | + | 1.46499i | 0.930874 | + | 0.365341i | 0.254779 | + | 3.39979i | −1.18026 | + | 1.26767i | 0.116202 | + | 0.296079i | 0.846724 | + | 0.532032i | −1.29239 | − | 2.70734i | −0.381723 | + | 3.38789i |
| See next 80 embeddings (of 720 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.d | odd | 6 | 1 | inner |
| 29.f | odd | 28 | 1 | inner |
| 261.x | even | 84 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 522.2.x.a | ✓ | 720 |
| 9.d | odd | 6 | 1 | inner | 522.2.x.a | ✓ | 720 |
| 29.f | odd | 28 | 1 | inner | 522.2.x.a | ✓ | 720 |
| 261.x | even | 84 | 1 | inner | 522.2.x.a | ✓ | 720 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 522.2.x.a | ✓ | 720 | 1.a | even | 1 | 1 | trivial |
| 522.2.x.a | ✓ | 720 | 9.d | odd | 6 | 1 | inner |
| 522.2.x.a | ✓ | 720 | 29.f | odd | 28 | 1 | inner |
| 522.2.x.a | ✓ | 720 | 261.x | even | 84 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(522, [\chi])\).