Properties

Label 5202.2.a.bs
Level $5202$
Weight $2$
Character orbit 5202.a
Self dual yes
Analytic conductor $41.538$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5202,2,Mod(1,5202)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5202.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5202, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,0,0,0,-4,0,0,0,0,-16,0,0,4,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 306)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + \beta_1 q^{5} + 2 \beta_{3} q^{7} - q^{8} - \beta_1 q^{10} + (2 \beta_{3} - 2 \beta_1) q^{11} + (\beta_{2} - 4) q^{13} - 2 \beta_{3} q^{14} + q^{16} + ( - 2 \beta_{2} - 4) q^{19}+ \cdots + (4 \beta_{2} - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} - 16 q^{13} + 4 q^{16} - 16 q^{19} - 12 q^{25} + 16 q^{26} - 4 q^{32} + 16 q^{38} + 16 q^{47} + 4 q^{49} + 12 q^{50} - 16 q^{52} + 32 q^{53} - 16 q^{55} + 32 q^{59} + 4 q^{64}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{16} + \zeta_{16}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.84776
−0.765367
0.765367
1.84776
−1.00000 0 1.00000 −1.84776 0 −1.53073 −1.00000 0 1.84776
1.2 −1.00000 0 1.00000 −0.765367 0 3.69552 −1.00000 0 0.765367
1.3 −1.00000 0 1.00000 0.765367 0 −3.69552 −1.00000 0 −0.765367
1.4 −1.00000 0 1.00000 1.84776 0 1.53073 −1.00000 0 −1.84776
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5202.2.a.bs 4
3.b odd 2 1 5202.2.a.bv 4
17.b even 2 1 inner 5202.2.a.bs 4
17.e odd 16 2 306.2.l.b yes 4
51.c odd 2 1 5202.2.a.bv 4
51.i even 16 2 306.2.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.2.l.a 4 51.i even 16 2
306.2.l.b yes 4 17.e odd 16 2
5202.2.a.bs 4 1.a even 1 1 trivial
5202.2.a.bs 4 17.b even 2 1 inner
5202.2.a.bv 4 3.b odd 2 1
5202.2.a.bv 4 51.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5202))\):

\( T_{5}^{4} - 4T_{5}^{2} + 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 16T_{7}^{2} + 32 \) Copy content Toggle raw display
\( T_{23}^{4} - 16T_{23}^{2} + 32 \) Copy content Toggle raw display
\( T_{47}^{2} - 8T_{47} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4T^{2} + 2 \) Copy content Toggle raw display
$7$ \( T^{4} - 16T^{2} + 32 \) Copy content Toggle raw display
$11$ \( T^{4} - 32T^{2} + 128 \) Copy content Toggle raw display
$13$ \( (T^{2} + 8 T + 14)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 8 T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 16T^{2} + 32 \) Copy content Toggle raw display
$29$ \( T^{4} - 100T^{2} + 1250 \) Copy content Toggle raw display
$31$ \( T^{4} - 16T^{2} + 32 \) Copy content Toggle raw display
$37$ \( T^{4} - 20T^{2} + 98 \) Copy content Toggle raw display
$41$ \( T^{4} - 20T^{2} + 2 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T + 8)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 16 T + 62)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 16 T + 56)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 52T^{2} + 578 \) Copy content Toggle raw display
$67$ \( (T^{2} - 200)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 272 T^{2} + 16928 \) Copy content Toggle raw display
$73$ \( T^{4} - 292 T^{2} + 21218 \) Copy content Toggle raw display
$79$ \( T^{4} - 80T^{2} + 1568 \) Copy content Toggle raw display
$83$ \( (T^{2} - 16 T - 8)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 8 T - 82)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 324 T^{2} + 13122 \) Copy content Toggle raw display
show more
show less