Properties

Label 5202.2.a.bm.1.3
Level $5202$
Weight $2$
Character 5202.1
Self dual yes
Analytic conductor $41.538$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5202,2,Mod(1,5202)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5202.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5202, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,-6,0,3,3,0,-6,-6,0,6,3,0,3,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1734)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 5202.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -0.120615 q^{5} +1.69459 q^{7} +1.00000 q^{8} -0.120615 q^{10} -6.10607 q^{11} -1.75877 q^{13} +1.69459 q^{14} +1.00000 q^{16} +4.82295 q^{19} -0.120615 q^{20} -6.10607 q^{22} -6.00000 q^{23} -4.98545 q^{25} -1.75877 q^{26} +1.69459 q^{28} +3.90167 q^{29} -7.29086 q^{31} +1.00000 q^{32} -0.204393 q^{35} +3.67499 q^{37} +4.82295 q^{38} -0.120615 q^{40} +3.14796 q^{41} +6.73917 q^{43} -6.10607 q^{44} -6.00000 q^{46} -5.43376 q^{47} -4.12836 q^{49} -4.98545 q^{50} -1.75877 q^{52} -4.71688 q^{53} +0.736482 q^{55} +1.69459 q^{56} +3.90167 q^{58} -2.12061 q^{59} -10.6946 q^{61} -7.29086 q^{62} +1.00000 q^{64} +0.212134 q^{65} -5.88713 q^{67} -0.204393 q^{70} -15.4047 q^{71} -12.5963 q^{73} +3.67499 q^{74} +4.82295 q^{76} -10.3473 q^{77} +13.9932 q^{79} -0.120615 q^{80} +3.14796 q^{82} +14.8871 q^{83} +6.73917 q^{86} -6.10607 q^{88} -16.4979 q^{89} -2.98040 q^{91} -6.00000 q^{92} -5.43376 q^{94} -0.581719 q^{95} -9.08647 q^{97} -4.12836 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 6 q^{5} + 3 q^{7} + 3 q^{8} - 6 q^{10} - 6 q^{11} + 6 q^{13} + 3 q^{14} + 3 q^{16} - 6 q^{19} - 6 q^{20} - 6 q^{22} - 18 q^{23} + 3 q^{25} + 6 q^{26} + 3 q^{28} - 6 q^{31} + 3 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.120615 −0.0539406 −0.0269703 0.999636i \(-0.508586\pi\)
−0.0269703 + 0.999636i \(0.508586\pi\)
\(6\) 0 0
\(7\) 1.69459 0.640496 0.320248 0.947334i \(-0.396234\pi\)
0.320248 + 0.947334i \(0.396234\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.120615 −0.0381417
\(11\) −6.10607 −1.84105 −0.920524 0.390686i \(-0.872238\pi\)
−0.920524 + 0.390686i \(0.872238\pi\)
\(12\) 0 0
\(13\) −1.75877 −0.487795 −0.243898 0.969801i \(-0.578426\pi\)
−0.243898 + 0.969801i \(0.578426\pi\)
\(14\) 1.69459 0.452899
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 0 0
\(19\) 4.82295 1.10646 0.553230 0.833028i \(-0.313395\pi\)
0.553230 + 0.833028i \(0.313395\pi\)
\(20\) −0.120615 −0.0269703
\(21\) 0 0
\(22\) −6.10607 −1.30182
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −4.98545 −0.997090
\(26\) −1.75877 −0.344923
\(27\) 0 0
\(28\) 1.69459 0.320248
\(29\) 3.90167 0.724523 0.362261 0.932077i \(-0.382005\pi\)
0.362261 + 0.932077i \(0.382005\pi\)
\(30\) 0 0
\(31\) −7.29086 −1.30948 −0.654738 0.755855i \(-0.727221\pi\)
−0.654738 + 0.755855i \(0.727221\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −0.204393 −0.0345487
\(36\) 0 0
\(37\) 3.67499 0.604165 0.302083 0.953282i \(-0.402318\pi\)
0.302083 + 0.953282i \(0.402318\pi\)
\(38\) 4.82295 0.782386
\(39\) 0 0
\(40\) −0.120615 −0.0190709
\(41\) 3.14796 0.491628 0.245814 0.969317i \(-0.420945\pi\)
0.245814 + 0.969317i \(0.420945\pi\)
\(42\) 0 0
\(43\) 6.73917 1.02771 0.513857 0.857876i \(-0.328216\pi\)
0.513857 + 0.857876i \(0.328216\pi\)
\(44\) −6.10607 −0.920524
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) −5.43376 −0.792596 −0.396298 0.918122i \(-0.629705\pi\)
−0.396298 + 0.918122i \(0.629705\pi\)
\(48\) 0 0
\(49\) −4.12836 −0.589765
\(50\) −4.98545 −0.705049
\(51\) 0 0
\(52\) −1.75877 −0.243898
\(53\) −4.71688 −0.647913 −0.323957 0.946072i \(-0.605013\pi\)
−0.323957 + 0.946072i \(0.605013\pi\)
\(54\) 0 0
\(55\) 0.736482 0.0993072
\(56\) 1.69459 0.226449
\(57\) 0 0
\(58\) 3.90167 0.512315
\(59\) −2.12061 −0.276081 −0.138040 0.990427i \(-0.544080\pi\)
−0.138040 + 0.990427i \(0.544080\pi\)
\(60\) 0 0
\(61\) −10.6946 −1.36930 −0.684651 0.728871i \(-0.740045\pi\)
−0.684651 + 0.728871i \(0.740045\pi\)
\(62\) −7.29086 −0.925940
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.212134 0.0263119
\(66\) 0 0
\(67\) −5.88713 −0.719227 −0.359613 0.933101i \(-0.617091\pi\)
−0.359613 + 0.933101i \(0.617091\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.204393 −0.0244296
\(71\) −15.4047 −1.82820 −0.914099 0.405492i \(-0.867100\pi\)
−0.914099 + 0.405492i \(0.867100\pi\)
\(72\) 0 0
\(73\) −12.5963 −1.47428 −0.737141 0.675739i \(-0.763825\pi\)
−0.737141 + 0.675739i \(0.763825\pi\)
\(74\) 3.67499 0.427209
\(75\) 0 0
\(76\) 4.82295 0.553230
\(77\) −10.3473 −1.17918
\(78\) 0 0
\(79\) 13.9932 1.57436 0.787179 0.616725i \(-0.211541\pi\)
0.787179 + 0.616725i \(0.211541\pi\)
\(80\) −0.120615 −0.0134851
\(81\) 0 0
\(82\) 3.14796 0.347634
\(83\) 14.8871 1.63407 0.817037 0.576585i \(-0.195615\pi\)
0.817037 + 0.576585i \(0.195615\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.73917 0.726703
\(87\) 0 0
\(88\) −6.10607 −0.650909
\(89\) −16.4979 −1.74878 −0.874389 0.485225i \(-0.838738\pi\)
−0.874389 + 0.485225i \(0.838738\pi\)
\(90\) 0 0
\(91\) −2.98040 −0.312431
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −5.43376 −0.560450
\(95\) −0.581719 −0.0596831
\(96\) 0 0
\(97\) −9.08647 −0.922591 −0.461295 0.887247i \(-0.652615\pi\)
−0.461295 + 0.887247i \(0.652615\pi\)
\(98\) −4.12836 −0.417027
\(99\) 0 0
\(100\) −4.98545 −0.498545
\(101\) −2.24897 −0.223781 −0.111890 0.993721i \(-0.535691\pi\)
−0.111890 + 0.993721i \(0.535691\pi\)
\(102\) 0 0
\(103\) 18.3259 1.80571 0.902854 0.429947i \(-0.141468\pi\)
0.902854 + 0.429947i \(0.141468\pi\)
\(104\) −1.75877 −0.172462
\(105\) 0 0
\(106\) −4.71688 −0.458144
\(107\) −14.1138 −1.36443 −0.682217 0.731150i \(-0.738984\pi\)
−0.682217 + 0.731150i \(0.738984\pi\)
\(108\) 0 0
\(109\) −6.69459 −0.641226 −0.320613 0.947210i \(-0.603889\pi\)
−0.320613 + 0.947210i \(0.603889\pi\)
\(110\) 0.736482 0.0702208
\(111\) 0 0
\(112\) 1.69459 0.160124
\(113\) 4.58172 0.431012 0.215506 0.976503i \(-0.430860\pi\)
0.215506 + 0.976503i \(0.430860\pi\)
\(114\) 0 0
\(115\) 0.723689 0.0674843
\(116\) 3.90167 0.362261
\(117\) 0 0
\(118\) −2.12061 −0.195218
\(119\) 0 0
\(120\) 0 0
\(121\) 26.2841 2.38946
\(122\) −10.6946 −0.968243
\(123\) 0 0
\(124\) −7.29086 −0.654738
\(125\) 1.20439 0.107724
\(126\) 0 0
\(127\) −4.30541 −0.382043 −0.191022 0.981586i \(-0.561180\pi\)
−0.191022 + 0.981586i \(0.561180\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0.212134 0.0186054
\(131\) 15.0155 1.31191 0.655954 0.754801i \(-0.272266\pi\)
0.655954 + 0.754801i \(0.272266\pi\)
\(132\) 0 0
\(133\) 8.17293 0.708683
\(134\) −5.88713 −0.508570
\(135\) 0 0
\(136\) 0 0
\(137\) 6.82295 0.582924 0.291462 0.956582i \(-0.405858\pi\)
0.291462 + 0.956582i \(0.405858\pi\)
\(138\) 0 0
\(139\) −16.9067 −1.43401 −0.717005 0.697068i \(-0.754488\pi\)
−0.717005 + 0.697068i \(0.754488\pi\)
\(140\) −0.204393 −0.0172744
\(141\) 0 0
\(142\) −15.4047 −1.29273
\(143\) 10.7392 0.898055
\(144\) 0 0
\(145\) −0.470599 −0.0390812
\(146\) −12.5963 −1.04247
\(147\) 0 0
\(148\) 3.67499 0.302083
\(149\) −11.2831 −0.924349 −0.462175 0.886789i \(-0.652931\pi\)
−0.462175 + 0.886789i \(0.652931\pi\)
\(150\) 0 0
\(151\) 23.1702 1.88557 0.942784 0.333404i \(-0.108197\pi\)
0.942784 + 0.333404i \(0.108197\pi\)
\(152\) 4.82295 0.391193
\(153\) 0 0
\(154\) −10.3473 −0.833809
\(155\) 0.879385 0.0706339
\(156\) 0 0
\(157\) 5.38919 0.430104 0.215052 0.976603i \(-0.431008\pi\)
0.215052 + 0.976603i \(0.431008\pi\)
\(158\) 13.9932 1.11324
\(159\) 0 0
\(160\) −0.120615 −0.00953543
\(161\) −10.1676 −0.801316
\(162\) 0 0
\(163\) −17.8871 −1.40103 −0.700514 0.713639i \(-0.747046\pi\)
−0.700514 + 0.713639i \(0.747046\pi\)
\(164\) 3.14796 0.245814
\(165\) 0 0
\(166\) 14.8871 1.15547
\(167\) −5.84255 −0.452110 −0.226055 0.974115i \(-0.572583\pi\)
−0.226055 + 0.974115i \(0.572583\pi\)
\(168\) 0 0
\(169\) −9.90673 −0.762056
\(170\) 0 0
\(171\) 0 0
\(172\) 6.73917 0.513857
\(173\) 5.41147 0.411427 0.205713 0.978612i \(-0.434049\pi\)
0.205713 + 0.978612i \(0.434049\pi\)
\(174\) 0 0
\(175\) −8.44831 −0.638632
\(176\) −6.10607 −0.460262
\(177\) 0 0
\(178\) −16.4979 −1.23657
\(179\) −7.24123 −0.541235 −0.270617 0.962687i \(-0.587228\pi\)
−0.270617 + 0.962687i \(0.587228\pi\)
\(180\) 0 0
\(181\) −0.157451 −0.0117033 −0.00585163 0.999983i \(-0.501863\pi\)
−0.00585163 + 0.999983i \(0.501863\pi\)
\(182\) −2.98040 −0.220922
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) −0.443258 −0.0325890
\(186\) 0 0
\(187\) 0 0
\(188\) −5.43376 −0.396298
\(189\) 0 0
\(190\) −0.581719 −0.0422023
\(191\) 6.90673 0.499753 0.249877 0.968278i \(-0.419610\pi\)
0.249877 + 0.968278i \(0.419610\pi\)
\(192\) 0 0
\(193\) −11.5253 −0.829608 −0.414804 0.909911i \(-0.636150\pi\)
−0.414804 + 0.909911i \(0.636150\pi\)
\(194\) −9.08647 −0.652370
\(195\) 0 0
\(196\) −4.12836 −0.294883
\(197\) −6.71419 −0.478366 −0.239183 0.970974i \(-0.576880\pi\)
−0.239183 + 0.970974i \(0.576880\pi\)
\(198\) 0 0
\(199\) 7.22937 0.512476 0.256238 0.966614i \(-0.417517\pi\)
0.256238 + 0.966614i \(0.417517\pi\)
\(200\) −4.98545 −0.352525
\(201\) 0 0
\(202\) −2.24897 −0.158237
\(203\) 6.61175 0.464054
\(204\) 0 0
\(205\) −0.379690 −0.0265187
\(206\) 18.3259 1.27683
\(207\) 0 0
\(208\) −1.75877 −0.121949
\(209\) −29.4492 −2.03705
\(210\) 0 0
\(211\) 10.5371 0.725407 0.362703 0.931905i \(-0.381854\pi\)
0.362703 + 0.931905i \(0.381854\pi\)
\(212\) −4.71688 −0.323957
\(213\) 0 0
\(214\) −14.1138 −0.964800
\(215\) −0.812843 −0.0554355
\(216\) 0 0
\(217\) −12.3550 −0.838715
\(218\) −6.69459 −0.453415
\(219\) 0 0
\(220\) 0.736482 0.0496536
\(221\) 0 0
\(222\) 0 0
\(223\) −11.0027 −0.736795 −0.368397 0.929668i \(-0.620093\pi\)
−0.368397 + 0.929668i \(0.620093\pi\)
\(224\) 1.69459 0.113225
\(225\) 0 0
\(226\) 4.58172 0.304771
\(227\) −0.758770 −0.0503614 −0.0251807 0.999683i \(-0.508016\pi\)
−0.0251807 + 0.999683i \(0.508016\pi\)
\(228\) 0 0
\(229\) 24.5817 1.62441 0.812203 0.583375i \(-0.198268\pi\)
0.812203 + 0.583375i \(0.198268\pi\)
\(230\) 0.723689 0.0477186
\(231\) 0 0
\(232\) 3.90167 0.256157
\(233\) −5.67499 −0.371781 −0.185891 0.982570i \(-0.559517\pi\)
−0.185891 + 0.982570i \(0.559517\pi\)
\(234\) 0 0
\(235\) 0.655392 0.0427531
\(236\) −2.12061 −0.138040
\(237\) 0 0
\(238\) 0 0
\(239\) −25.5175 −1.65059 −0.825296 0.564700i \(-0.808992\pi\)
−0.825296 + 0.564700i \(0.808992\pi\)
\(240\) 0 0
\(241\) 20.4320 1.31614 0.658071 0.752956i \(-0.271373\pi\)
0.658071 + 0.752956i \(0.271373\pi\)
\(242\) 26.2841 1.68960
\(243\) 0 0
\(244\) −10.6946 −0.684651
\(245\) 0.497941 0.0318123
\(246\) 0 0
\(247\) −8.48246 −0.539726
\(248\) −7.29086 −0.462970
\(249\) 0 0
\(250\) 1.20439 0.0761725
\(251\) −7.50299 −0.473585 −0.236792 0.971560i \(-0.576096\pi\)
−0.236792 + 0.971560i \(0.576096\pi\)
\(252\) 0 0
\(253\) 36.6364 2.30331
\(254\) −4.30541 −0.270145
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.3851 1.14683 0.573414 0.819265i \(-0.305618\pi\)
0.573414 + 0.819265i \(0.305618\pi\)
\(258\) 0 0
\(259\) 6.22762 0.386965
\(260\) 0.212134 0.0131560
\(261\) 0 0
\(262\) 15.0155 0.927660
\(263\) 3.01960 0.186197 0.0930983 0.995657i \(-0.470323\pi\)
0.0930983 + 0.995657i \(0.470323\pi\)
\(264\) 0 0
\(265\) 0.568926 0.0349488
\(266\) 8.17293 0.501115
\(267\) 0 0
\(268\) −5.88713 −0.359613
\(269\) 10.8452 0.661246 0.330623 0.943763i \(-0.392741\pi\)
0.330623 + 0.943763i \(0.392741\pi\)
\(270\) 0 0
\(271\) −17.6159 −1.07009 −0.535044 0.844824i \(-0.679705\pi\)
−0.535044 + 0.844824i \(0.679705\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 6.82295 0.412189
\(275\) 30.4415 1.83569
\(276\) 0 0
\(277\) 1.10338 0.0662956 0.0331478 0.999450i \(-0.489447\pi\)
0.0331478 + 0.999450i \(0.489447\pi\)
\(278\) −16.9067 −1.01400
\(279\) 0 0
\(280\) −0.204393 −0.0122148
\(281\) −6.28581 −0.374980 −0.187490 0.982267i \(-0.560035\pi\)
−0.187490 + 0.982267i \(0.560035\pi\)
\(282\) 0 0
\(283\) 3.27631 0.194757 0.0973783 0.995247i \(-0.468954\pi\)
0.0973783 + 0.995247i \(0.468954\pi\)
\(284\) −15.4047 −0.914099
\(285\) 0 0
\(286\) 10.7392 0.635020
\(287\) 5.33450 0.314886
\(288\) 0 0
\(289\) 0 0
\(290\) −0.470599 −0.0276346
\(291\) 0 0
\(292\) −12.5963 −0.737141
\(293\) −5.76651 −0.336883 −0.168442 0.985712i \(-0.553873\pi\)
−0.168442 + 0.985712i \(0.553873\pi\)
\(294\) 0 0
\(295\) 0.255777 0.0148919
\(296\) 3.67499 0.213605
\(297\) 0 0
\(298\) −11.2831 −0.653614
\(299\) 10.5526 0.610274
\(300\) 0 0
\(301\) 11.4201 0.658246
\(302\) 23.1702 1.33330
\(303\) 0 0
\(304\) 4.82295 0.276615
\(305\) 1.28993 0.0738609
\(306\) 0 0
\(307\) −1.26083 −0.0719594 −0.0359797 0.999353i \(-0.511455\pi\)
−0.0359797 + 0.999353i \(0.511455\pi\)
\(308\) −10.3473 −0.589592
\(309\) 0 0
\(310\) 0.879385 0.0499457
\(311\) −4.77837 −0.270957 −0.135478 0.990780i \(-0.543257\pi\)
−0.135478 + 0.990780i \(0.543257\pi\)
\(312\) 0 0
\(313\) −6.25671 −0.353650 −0.176825 0.984242i \(-0.556583\pi\)
−0.176825 + 0.984242i \(0.556583\pi\)
\(314\) 5.38919 0.304129
\(315\) 0 0
\(316\) 13.9932 0.787179
\(317\) 26.1925 1.47112 0.735560 0.677460i \(-0.236919\pi\)
0.735560 + 0.677460i \(0.236919\pi\)
\(318\) 0 0
\(319\) −23.8239 −1.33388
\(320\) −0.120615 −0.00674257
\(321\) 0 0
\(322\) −10.1676 −0.566616
\(323\) 0 0
\(324\) 0 0
\(325\) 8.76827 0.486376
\(326\) −17.8871 −0.990676
\(327\) 0 0
\(328\) 3.14796 0.173817
\(329\) −9.20801 −0.507654
\(330\) 0 0
\(331\) −12.5817 −0.691554 −0.345777 0.938317i \(-0.612385\pi\)
−0.345777 + 0.938317i \(0.612385\pi\)
\(332\) 14.8871 0.817037
\(333\) 0 0
\(334\) −5.84255 −0.319690
\(335\) 0.710074 0.0387955
\(336\) 0 0
\(337\) −23.2175 −1.26474 −0.632369 0.774667i \(-0.717917\pi\)
−0.632369 + 0.774667i \(0.717917\pi\)
\(338\) −9.90673 −0.538855
\(339\) 0 0
\(340\) 0 0
\(341\) 44.5185 2.41081
\(342\) 0 0
\(343\) −18.8580 −1.01824
\(344\) 6.73917 0.363352
\(345\) 0 0
\(346\) 5.41147 0.290923
\(347\) 10.7706 0.578198 0.289099 0.957299i \(-0.406644\pi\)
0.289099 + 0.957299i \(0.406644\pi\)
\(348\) 0 0
\(349\) −29.9864 −1.60513 −0.802567 0.596562i \(-0.796533\pi\)
−0.802567 + 0.596562i \(0.796533\pi\)
\(350\) −8.44831 −0.451581
\(351\) 0 0
\(352\) −6.10607 −0.325454
\(353\) 29.6459 1.57789 0.788946 0.614463i \(-0.210627\pi\)
0.788946 + 0.614463i \(0.210627\pi\)
\(354\) 0 0
\(355\) 1.85803 0.0986140
\(356\) −16.4979 −0.874389
\(357\) 0 0
\(358\) −7.24123 −0.382711
\(359\) 18.7101 0.987480 0.493740 0.869610i \(-0.335629\pi\)
0.493740 + 0.869610i \(0.335629\pi\)
\(360\) 0 0
\(361\) 4.26083 0.224254
\(362\) −0.157451 −0.00827546
\(363\) 0 0
\(364\) −2.98040 −0.156215
\(365\) 1.51930 0.0795236
\(366\) 0 0
\(367\) 5.84018 0.304855 0.152428 0.988315i \(-0.451291\pi\)
0.152428 + 0.988315i \(0.451291\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) −0.443258 −0.0230439
\(371\) −7.99319 −0.414986
\(372\) 0 0
\(373\) −10.6209 −0.549930 −0.274965 0.961454i \(-0.588666\pi\)
−0.274965 + 0.961454i \(0.588666\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −5.43376 −0.280225
\(377\) −6.86215 −0.353419
\(378\) 0 0
\(379\) −0.340489 −0.0174898 −0.00874488 0.999962i \(-0.502784\pi\)
−0.00874488 + 0.999962i \(0.502784\pi\)
\(380\) −0.581719 −0.0298415
\(381\) 0 0
\(382\) 6.90673 0.353379
\(383\) 30.8776 1.57777 0.788887 0.614539i \(-0.210658\pi\)
0.788887 + 0.614539i \(0.210658\pi\)
\(384\) 0 0
\(385\) 1.24804 0.0636058
\(386\) −11.5253 −0.586621
\(387\) 0 0
\(388\) −9.08647 −0.461295
\(389\) 3.25166 0.164866 0.0824328 0.996597i \(-0.473731\pi\)
0.0824328 + 0.996597i \(0.473731\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.12836 −0.208513
\(393\) 0 0
\(394\) −6.71419 −0.338256
\(395\) −1.68779 −0.0849217
\(396\) 0 0
\(397\) −18.3405 −0.920483 −0.460241 0.887794i \(-0.652237\pi\)
−0.460241 + 0.887794i \(0.652237\pi\)
\(398\) 7.22937 0.362376
\(399\) 0 0
\(400\) −4.98545 −0.249273
\(401\) 18.7101 0.934337 0.467168 0.884168i \(-0.345274\pi\)
0.467168 + 0.884168i \(0.345274\pi\)
\(402\) 0 0
\(403\) 12.8229 0.638757
\(404\) −2.24897 −0.111890
\(405\) 0 0
\(406\) 6.61175 0.328136
\(407\) −22.4397 −1.11230
\(408\) 0 0
\(409\) −5.94862 −0.294140 −0.147070 0.989126i \(-0.546984\pi\)
−0.147070 + 0.989126i \(0.546984\pi\)
\(410\) −0.379690 −0.0187515
\(411\) 0 0
\(412\) 18.3259 0.902854
\(413\) −3.59358 −0.176828
\(414\) 0 0
\(415\) −1.79561 −0.0881429
\(416\) −1.75877 −0.0862308
\(417\) 0 0
\(418\) −29.4492 −1.44041
\(419\) 12.8990 0.630157 0.315078 0.949066i \(-0.397969\pi\)
0.315078 + 0.949066i \(0.397969\pi\)
\(420\) 0 0
\(421\) −27.2472 −1.32795 −0.663974 0.747756i \(-0.731131\pi\)
−0.663974 + 0.747756i \(0.731131\pi\)
\(422\) 10.5371 0.512940
\(423\) 0 0
\(424\) −4.71688 −0.229072
\(425\) 0 0
\(426\) 0 0
\(427\) −18.1230 −0.877032
\(428\) −14.1138 −0.682217
\(429\) 0 0
\(430\) −0.812843 −0.0391988
\(431\) 12.0547 0.580654 0.290327 0.956928i \(-0.406236\pi\)
0.290327 + 0.956928i \(0.406236\pi\)
\(432\) 0 0
\(433\) −10.6031 −0.509551 −0.254776 0.967000i \(-0.582002\pi\)
−0.254776 + 0.967000i \(0.582002\pi\)
\(434\) −12.3550 −0.593061
\(435\) 0 0
\(436\) −6.69459 −0.320613
\(437\) −28.9377 −1.38428
\(438\) 0 0
\(439\) 7.09327 0.338543 0.169272 0.985569i \(-0.445858\pi\)
0.169272 + 0.985569i \(0.445858\pi\)
\(440\) 0.736482 0.0351104
\(441\) 0 0
\(442\) 0 0
\(443\) 0.206148 0.00979437 0.00489718 0.999988i \(-0.498441\pi\)
0.00489718 + 0.999988i \(0.498441\pi\)
\(444\) 0 0
\(445\) 1.98990 0.0943301
\(446\) −11.0027 −0.520992
\(447\) 0 0
\(448\) 1.69459 0.0800620
\(449\) −33.1343 −1.56371 −0.781853 0.623463i \(-0.785725\pi\)
−0.781853 + 0.623463i \(0.785725\pi\)
\(450\) 0 0
\(451\) −19.2216 −0.905111
\(452\) 4.58172 0.215506
\(453\) 0 0
\(454\) −0.758770 −0.0356109
\(455\) 0.359480 0.0168527
\(456\) 0 0
\(457\) −11.9463 −0.558822 −0.279411 0.960172i \(-0.590139\pi\)
−0.279411 + 0.960172i \(0.590139\pi\)
\(458\) 24.5817 1.14863
\(459\) 0 0
\(460\) 0.723689 0.0337422
\(461\) −25.5185 −1.18851 −0.594257 0.804275i \(-0.702554\pi\)
−0.594257 + 0.804275i \(0.702554\pi\)
\(462\) 0 0
\(463\) −36.5449 −1.69838 −0.849192 0.528084i \(-0.822911\pi\)
−0.849192 + 0.528084i \(0.822911\pi\)
\(464\) 3.90167 0.181131
\(465\) 0 0
\(466\) −5.67499 −0.262889
\(467\) −20.7246 −0.959021 −0.479511 0.877536i \(-0.659186\pi\)
−0.479511 + 0.877536i \(0.659186\pi\)
\(468\) 0 0
\(469\) −9.97628 −0.460662
\(470\) 0.655392 0.0302310
\(471\) 0 0
\(472\) −2.12061 −0.0976092
\(473\) −41.1498 −1.89207
\(474\) 0 0
\(475\) −24.0446 −1.10324
\(476\) 0 0
\(477\) 0 0
\(478\) −25.5175 −1.16715
\(479\) 31.6168 1.44461 0.722304 0.691575i \(-0.243083\pi\)
0.722304 + 0.691575i \(0.243083\pi\)
\(480\) 0 0
\(481\) −6.46347 −0.294709
\(482\) 20.4320 0.930652
\(483\) 0 0
\(484\) 26.2841 1.19473
\(485\) 1.09596 0.0497651
\(486\) 0 0
\(487\) 21.2841 0.964472 0.482236 0.876041i \(-0.339825\pi\)
0.482236 + 0.876041i \(0.339825\pi\)
\(488\) −10.6946 −0.484121
\(489\) 0 0
\(490\) 0.497941 0.0224947
\(491\) 19.5253 0.881164 0.440582 0.897712i \(-0.354772\pi\)
0.440582 + 0.897712i \(0.354772\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.48246 −0.381644
\(495\) 0 0
\(496\) −7.29086 −0.327369
\(497\) −26.1046 −1.17095
\(498\) 0 0
\(499\) 22.5972 1.01159 0.505795 0.862654i \(-0.331199\pi\)
0.505795 + 0.862654i \(0.331199\pi\)
\(500\) 1.20439 0.0538621
\(501\) 0 0
\(502\) −7.50299 −0.334875
\(503\) 13.3054 0.593259 0.296629 0.954993i \(-0.404137\pi\)
0.296629 + 0.954993i \(0.404137\pi\)
\(504\) 0 0
\(505\) 0.271259 0.0120709
\(506\) 36.6364 1.62869
\(507\) 0 0
\(508\) −4.30541 −0.191022
\(509\) −40.9760 −1.81623 −0.908114 0.418724i \(-0.862478\pi\)
−0.908114 + 0.418724i \(0.862478\pi\)
\(510\) 0 0
\(511\) −21.3455 −0.944271
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.3851 0.810931
\(515\) −2.21038 −0.0974009
\(516\) 0 0
\(517\) 33.1789 1.45921
\(518\) 6.22762 0.273626
\(519\) 0 0
\(520\) 0.212134 0.00930268
\(521\) 39.0951 1.71279 0.856395 0.516322i \(-0.172699\pi\)
0.856395 + 0.516322i \(0.172699\pi\)
\(522\) 0 0
\(523\) 18.0702 0.790153 0.395077 0.918648i \(-0.370718\pi\)
0.395077 + 0.918648i \(0.370718\pi\)
\(524\) 15.0155 0.655954
\(525\) 0 0
\(526\) 3.01960 0.131661
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0.568926 0.0247125
\(531\) 0 0
\(532\) 8.17293 0.354342
\(533\) −5.53653 −0.239814
\(534\) 0 0
\(535\) 1.70233 0.0735983
\(536\) −5.88713 −0.254285
\(537\) 0 0
\(538\) 10.8452 0.467571
\(539\) 25.2080 1.08579
\(540\) 0 0
\(541\) −22.5270 −0.968513 −0.484256 0.874926i \(-0.660910\pi\)
−0.484256 + 0.874926i \(0.660910\pi\)
\(542\) −17.6159 −0.756666
\(543\) 0 0
\(544\) 0 0
\(545\) 0.807467 0.0345881
\(546\) 0 0
\(547\) 2.53714 0.108480 0.0542402 0.998528i \(-0.482726\pi\)
0.0542402 + 0.998528i \(0.482726\pi\)
\(548\) 6.82295 0.291462
\(549\) 0 0
\(550\) 30.4415 1.29803
\(551\) 18.8176 0.801656
\(552\) 0 0
\(553\) 23.7128 1.00837
\(554\) 1.10338 0.0468781
\(555\) 0 0
\(556\) −16.9067 −0.717005
\(557\) −24.9317 −1.05639 −0.528195 0.849123i \(-0.677131\pi\)
−0.528195 + 0.849123i \(0.677131\pi\)
\(558\) 0 0
\(559\) −11.8527 −0.501314
\(560\) −0.204393 −0.00863718
\(561\) 0 0
\(562\) −6.28581 −0.265151
\(563\) 31.3354 1.32063 0.660316 0.750988i \(-0.270423\pi\)
0.660316 + 0.750988i \(0.270423\pi\)
\(564\) 0 0
\(565\) −0.552623 −0.0232490
\(566\) 3.27631 0.137714
\(567\) 0 0
\(568\) −15.4047 −0.646365
\(569\) 22.9121 0.960525 0.480263 0.877125i \(-0.340541\pi\)
0.480263 + 0.877125i \(0.340541\pi\)
\(570\) 0 0
\(571\) −10.5425 −0.441191 −0.220595 0.975365i \(-0.570800\pi\)
−0.220595 + 0.975365i \(0.570800\pi\)
\(572\) 10.7392 0.449027
\(573\) 0 0
\(574\) 5.33450 0.222658
\(575\) 29.9127 1.24745
\(576\) 0 0
\(577\) 30.9418 1.28812 0.644062 0.764973i \(-0.277248\pi\)
0.644062 + 0.764973i \(0.277248\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −0.470599 −0.0195406
\(581\) 25.2276 1.04662
\(582\) 0 0
\(583\) 28.8016 1.19284
\(584\) −12.5963 −0.521237
\(585\) 0 0
\(586\) −5.76651 −0.238212
\(587\) 18.7861 0.775386 0.387693 0.921789i \(-0.373272\pi\)
0.387693 + 0.921789i \(0.373272\pi\)
\(588\) 0 0
\(589\) −35.1634 −1.44888
\(590\) 0.255777 0.0105302
\(591\) 0 0
\(592\) 3.67499 0.151041
\(593\) 15.8817 0.652185 0.326093 0.945338i \(-0.394268\pi\)
0.326093 + 0.945338i \(0.394268\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11.2831 −0.462175
\(597\) 0 0
\(598\) 10.5526 0.431529
\(599\) −2.86215 −0.116944 −0.0584721 0.998289i \(-0.518623\pi\)
−0.0584721 + 0.998289i \(0.518623\pi\)
\(600\) 0 0
\(601\) −16.7929 −0.684997 −0.342499 0.939518i \(-0.611273\pi\)
−0.342499 + 0.939518i \(0.611273\pi\)
\(602\) 11.4201 0.465451
\(603\) 0 0
\(604\) 23.1702 0.942784
\(605\) −3.17024 −0.128889
\(606\) 0 0
\(607\) −11.7151 −0.475502 −0.237751 0.971326i \(-0.576410\pi\)
−0.237751 + 0.971326i \(0.576410\pi\)
\(608\) 4.82295 0.195596
\(609\) 0 0
\(610\) 1.28993 0.0522276
\(611\) 9.55674 0.386624
\(612\) 0 0
\(613\) −14.8675 −0.600494 −0.300247 0.953862i \(-0.597069\pi\)
−0.300247 + 0.953862i \(0.597069\pi\)
\(614\) −1.26083 −0.0508830
\(615\) 0 0
\(616\) −10.3473 −0.416904
\(617\) 49.0607 1.97511 0.987554 0.157280i \(-0.0502725\pi\)
0.987554 + 0.157280i \(0.0502725\pi\)
\(618\) 0 0
\(619\) −4.17293 −0.167724 −0.0838622 0.996477i \(-0.526726\pi\)
−0.0838622 + 0.996477i \(0.526726\pi\)
\(620\) 0.879385 0.0353170
\(621\) 0 0
\(622\) −4.77837 −0.191595
\(623\) −27.9573 −1.12009
\(624\) 0 0
\(625\) 24.7820 0.991280
\(626\) −6.25671 −0.250068
\(627\) 0 0
\(628\) 5.38919 0.215052
\(629\) 0 0
\(630\) 0 0
\(631\) 16.2267 0.645974 0.322987 0.946403i \(-0.395313\pi\)
0.322987 + 0.946403i \(0.395313\pi\)
\(632\) 13.9932 0.556619
\(633\) 0 0
\(634\) 26.1925 1.04024
\(635\) 0.519296 0.0206076
\(636\) 0 0
\(637\) 7.26083 0.287685
\(638\) −23.8239 −0.943197
\(639\) 0 0
\(640\) −0.120615 −0.00476772
\(641\) 5.83244 0.230368 0.115184 0.993344i \(-0.463254\pi\)
0.115184 + 0.993344i \(0.463254\pi\)
\(642\) 0 0
\(643\) −5.14796 −0.203016 −0.101508 0.994835i \(-0.532367\pi\)
−0.101508 + 0.994835i \(0.532367\pi\)
\(644\) −10.1676 −0.400658
\(645\) 0 0
\(646\) 0 0
\(647\) 5.59121 0.219813 0.109907 0.993942i \(-0.464945\pi\)
0.109907 + 0.993942i \(0.464945\pi\)
\(648\) 0 0
\(649\) 12.9486 0.508278
\(650\) 8.76827 0.343920
\(651\) 0 0
\(652\) −17.8871 −0.700514
\(653\) 15.8716 0.621105 0.310553 0.950556i \(-0.399486\pi\)
0.310553 + 0.950556i \(0.399486\pi\)
\(654\) 0 0
\(655\) −1.81109 −0.0707651
\(656\) 3.14796 0.122907
\(657\) 0 0
\(658\) −9.20801 −0.358966
\(659\) −26.0033 −1.01294 −0.506472 0.862256i \(-0.669051\pi\)
−0.506472 + 0.862256i \(0.669051\pi\)
\(660\) 0 0
\(661\) 11.7980 0.458888 0.229444 0.973322i \(-0.426309\pi\)
0.229444 + 0.973322i \(0.426309\pi\)
\(662\) −12.5817 −0.489002
\(663\) 0 0
\(664\) 14.8871 0.577733
\(665\) −0.985776 −0.0382268
\(666\) 0 0
\(667\) −23.4100 −0.906441
\(668\) −5.84255 −0.226055
\(669\) 0 0
\(670\) 0.710074 0.0274326
\(671\) 65.3019 2.52095
\(672\) 0 0
\(673\) 47.9026 1.84651 0.923255 0.384188i \(-0.125519\pi\)
0.923255 + 0.384188i \(0.125519\pi\)
\(674\) −23.2175 −0.894305
\(675\) 0 0
\(676\) −9.90673 −0.381028
\(677\) −40.4303 −1.55386 −0.776930 0.629586i \(-0.783224\pi\)
−0.776930 + 0.629586i \(0.783224\pi\)
\(678\) 0 0
\(679\) −15.3979 −0.590916
\(680\) 0 0
\(681\) 0 0
\(682\) 44.5185 1.70470
\(683\) −8.08141 −0.309227 −0.154613 0.987975i \(-0.549413\pi\)
−0.154613 + 0.987975i \(0.549413\pi\)
\(684\) 0 0
\(685\) −0.822948 −0.0314432
\(686\) −18.8580 −0.720003
\(687\) 0 0
\(688\) 6.73917 0.256928
\(689\) 8.29591 0.316049
\(690\) 0 0
\(691\) −2.34049 −0.0890364 −0.0445182 0.999009i \(-0.514175\pi\)
−0.0445182 + 0.999009i \(0.514175\pi\)
\(692\) 5.41147 0.205713
\(693\) 0 0
\(694\) 10.7706 0.408848
\(695\) 2.03920 0.0773513
\(696\) 0 0
\(697\) 0 0
\(698\) −29.9864 −1.13500
\(699\) 0 0
\(700\) −8.44831 −0.319316
\(701\) −19.5534 −0.738523 −0.369262 0.929325i \(-0.620389\pi\)
−0.369262 + 0.929325i \(0.620389\pi\)
\(702\) 0 0
\(703\) 17.7243 0.668485
\(704\) −6.10607 −0.230131
\(705\) 0 0
\(706\) 29.6459 1.11574
\(707\) −3.81109 −0.143331
\(708\) 0 0
\(709\) 35.2472 1.32374 0.661868 0.749620i \(-0.269764\pi\)
0.661868 + 0.749620i \(0.269764\pi\)
\(710\) 1.85803 0.0697306
\(711\) 0 0
\(712\) −16.4979 −0.618286
\(713\) 43.7452 1.63827
\(714\) 0 0
\(715\) −1.29530 −0.0484416
\(716\) −7.24123 −0.270617
\(717\) 0 0
\(718\) 18.7101 0.698254
\(719\) −11.6013 −0.432656 −0.216328 0.976321i \(-0.569408\pi\)
−0.216328 + 0.976321i \(0.569408\pi\)
\(720\) 0 0
\(721\) 31.0550 1.15655
\(722\) 4.26083 0.158572
\(723\) 0 0
\(724\) −0.157451 −0.00585163
\(725\) −19.4516 −0.722415
\(726\) 0 0
\(727\) 41.7083 1.54688 0.773438 0.633872i \(-0.218535\pi\)
0.773438 + 0.633872i \(0.218535\pi\)
\(728\) −2.98040 −0.110461
\(729\) 0 0
\(730\) 1.51930 0.0562317
\(731\) 0 0
\(732\) 0 0
\(733\) −46.2877 −1.70967 −0.854837 0.518896i \(-0.826343\pi\)
−0.854837 + 0.518896i \(0.826343\pi\)
\(734\) 5.84018 0.215565
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 35.9472 1.32413
\(738\) 0 0
\(739\) 31.2080 1.14801 0.574003 0.818853i \(-0.305390\pi\)
0.574003 + 0.818853i \(0.305390\pi\)
\(740\) −0.443258 −0.0162945
\(741\) 0 0
\(742\) −7.99319 −0.293439
\(743\) 30.5134 1.11943 0.559714 0.828686i \(-0.310911\pi\)
0.559714 + 0.828686i \(0.310911\pi\)
\(744\) 0 0
\(745\) 1.36091 0.0498599
\(746\) −10.6209 −0.388859
\(747\) 0 0
\(748\) 0 0
\(749\) −23.9172 −0.873914
\(750\) 0 0
\(751\) 30.4320 1.11048 0.555240 0.831690i \(-0.312626\pi\)
0.555240 + 0.831690i \(0.312626\pi\)
\(752\) −5.43376 −0.198149
\(753\) 0 0
\(754\) −6.86215 −0.249905
\(755\) −2.79467 −0.101709
\(756\) 0 0
\(757\) 17.5567 0.638111 0.319055 0.947736i \(-0.396634\pi\)
0.319055 + 0.947736i \(0.396634\pi\)
\(758\) −0.340489 −0.0123671
\(759\) 0 0
\(760\) −0.581719 −0.0211012
\(761\) 4.69459 0.170179 0.0850894 0.996373i \(-0.472882\pi\)
0.0850894 + 0.996373i \(0.472882\pi\)
\(762\) 0 0
\(763\) −11.3446 −0.410702
\(764\) 6.90673 0.249877
\(765\) 0 0
\(766\) 30.8776 1.11565
\(767\) 3.72967 0.134671
\(768\) 0 0
\(769\) 2.36184 0.0851703 0.0425851 0.999093i \(-0.486441\pi\)
0.0425851 + 0.999093i \(0.486441\pi\)
\(770\) 1.24804 0.0449761
\(771\) 0 0
\(772\) −11.5253 −0.414804
\(773\) −29.4561 −1.05946 −0.529730 0.848166i \(-0.677707\pi\)
−0.529730 + 0.848166i \(0.677707\pi\)
\(774\) 0 0
\(775\) 36.3482 1.30567
\(776\) −9.08647 −0.326185
\(777\) 0 0
\(778\) 3.25166 0.116578
\(779\) 15.1824 0.543967
\(780\) 0 0
\(781\) 94.0619 3.36580
\(782\) 0 0
\(783\) 0 0
\(784\) −4.12836 −0.147441
\(785\) −0.650015 −0.0232000
\(786\) 0 0
\(787\) −55.6715 −1.98447 −0.992237 0.124361i \(-0.960312\pi\)
−0.992237 + 0.124361i \(0.960312\pi\)
\(788\) −6.71419 −0.239183
\(789\) 0 0
\(790\) −1.68779 −0.0600487
\(791\) 7.76415 0.276061
\(792\) 0 0
\(793\) 18.8093 0.667939
\(794\) −18.3405 −0.650880
\(795\) 0 0
\(796\) 7.22937 0.256238
\(797\) 19.7802 0.700652 0.350326 0.936628i \(-0.386071\pi\)
0.350326 + 0.936628i \(0.386071\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.98545 −0.176262
\(801\) 0 0
\(802\) 18.7101 0.660676
\(803\) 76.9136 2.71422
\(804\) 0 0
\(805\) 1.22636 0.0432234
\(806\) 12.8229 0.451669
\(807\) 0 0
\(808\) −2.24897 −0.0791185
\(809\) −20.9222 −0.735586 −0.367793 0.929908i \(-0.619886\pi\)
−0.367793 + 0.929908i \(0.619886\pi\)
\(810\) 0 0
\(811\) −0.896622 −0.0314846 −0.0157423 0.999876i \(-0.505011\pi\)
−0.0157423 + 0.999876i \(0.505011\pi\)
\(812\) 6.61175 0.232027
\(813\) 0 0
\(814\) −22.4397 −0.786513
\(815\) 2.15745 0.0755722
\(816\) 0 0
\(817\) 32.5027 1.13712
\(818\) −5.94862 −0.207988
\(819\) 0 0
\(820\) −0.379690 −0.0132593
\(821\) 37.6851 1.31522 0.657609 0.753359i \(-0.271568\pi\)
0.657609 + 0.753359i \(0.271568\pi\)
\(822\) 0 0
\(823\) −22.1607 −0.772475 −0.386238 0.922399i \(-0.626226\pi\)
−0.386238 + 0.922399i \(0.626226\pi\)
\(824\) 18.3259 0.638414
\(825\) 0 0
\(826\) −3.59358 −0.125037
\(827\) −30.8016 −1.07108 −0.535538 0.844511i \(-0.679891\pi\)
−0.535538 + 0.844511i \(0.679891\pi\)
\(828\) 0 0
\(829\) 18.5716 0.645019 0.322509 0.946566i \(-0.395474\pi\)
0.322509 + 0.946566i \(0.395474\pi\)
\(830\) −1.79561 −0.0623264
\(831\) 0 0
\(832\) −1.75877 −0.0609744
\(833\) 0 0
\(834\) 0 0
\(835\) 0.704698 0.0243871
\(836\) −29.4492 −1.01852
\(837\) 0 0
\(838\) 12.8990 0.445588
\(839\) 27.9763 0.965848 0.482924 0.875662i \(-0.339575\pi\)
0.482924 + 0.875662i \(0.339575\pi\)
\(840\) 0 0
\(841\) −13.7769 −0.475067
\(842\) −27.2472 −0.939001
\(843\) 0 0
\(844\) 10.5371 0.362703
\(845\) 1.19490 0.0411057
\(846\) 0 0
\(847\) 44.5408 1.53044
\(848\) −4.71688 −0.161978
\(849\) 0 0
\(850\) 0 0
\(851\) −22.0500 −0.755863
\(852\) 0 0
\(853\) 10.6500 0.364650 0.182325 0.983238i \(-0.441638\pi\)
0.182325 + 0.983238i \(0.441638\pi\)
\(854\) −18.1230 −0.620156
\(855\) 0 0
\(856\) −14.1138 −0.482400
\(857\) −42.3560 −1.44685 −0.723426 0.690402i \(-0.757434\pi\)
−0.723426 + 0.690402i \(0.757434\pi\)
\(858\) 0 0
\(859\) 52.2039 1.78117 0.890587 0.454813i \(-0.150294\pi\)
0.890587 + 0.454813i \(0.150294\pi\)
\(860\) −0.812843 −0.0277177
\(861\) 0 0
\(862\) 12.0547 0.410584
\(863\) −48.2330 −1.64187 −0.820935 0.571022i \(-0.806547\pi\)
−0.820935 + 0.571022i \(0.806547\pi\)
\(864\) 0 0
\(865\) −0.652704 −0.0221926
\(866\) −10.6031 −0.360307
\(867\) 0 0
\(868\) −12.3550 −0.419357
\(869\) −85.4434 −2.89847
\(870\) 0 0
\(871\) 10.3541 0.350835
\(872\) −6.69459 −0.226708
\(873\) 0 0
\(874\) −28.9377 −0.978832
\(875\) 2.04096 0.0689969
\(876\) 0 0
\(877\) −29.4884 −0.995754 −0.497877 0.867248i \(-0.665887\pi\)
−0.497877 + 0.867248i \(0.665887\pi\)
\(878\) 7.09327 0.239386
\(879\) 0 0
\(880\) 0.736482 0.0248268
\(881\) −6.92034 −0.233152 −0.116576 0.993182i \(-0.537192\pi\)
−0.116576 + 0.993182i \(0.537192\pi\)
\(882\) 0 0
\(883\) −19.0405 −0.640762 −0.320381 0.947289i \(-0.603811\pi\)
−0.320381 + 0.947289i \(0.603811\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.206148 0.00692566
\(887\) 7.36009 0.247128 0.123564 0.992337i \(-0.460568\pi\)
0.123564 + 0.992337i \(0.460568\pi\)
\(888\) 0 0
\(889\) −7.29591 −0.244697
\(890\) 1.98990 0.0667014
\(891\) 0 0
\(892\) −11.0027 −0.368397
\(893\) −26.2068 −0.876976
\(894\) 0 0
\(895\) 0.873399 0.0291945
\(896\) 1.69459 0.0566124
\(897\) 0 0
\(898\) −33.1343 −1.10571
\(899\) −28.4466 −0.948746
\(900\) 0 0
\(901\) 0 0
\(902\) −19.2216 −0.640010
\(903\) 0 0
\(904\) 4.58172 0.152386
\(905\) 0.0189910 0.000631281 0
\(906\) 0 0
\(907\) 42.7837 1.42061 0.710306 0.703894i \(-0.248557\pi\)
0.710306 + 0.703894i \(0.248557\pi\)
\(908\) −0.758770 −0.0251807
\(909\) 0 0
\(910\) 0.359480 0.0119167
\(911\) −0.508045 −0.0168323 −0.00841615 0.999965i \(-0.502679\pi\)
−0.00841615 + 0.999965i \(0.502679\pi\)
\(912\) 0 0
\(913\) −90.9018 −3.00841
\(914\) −11.9463 −0.395147
\(915\) 0 0
\(916\) 24.5817 0.812203
\(917\) 25.4451 0.840272
\(918\) 0 0
\(919\) 8.20801 0.270757 0.135379 0.990794i \(-0.456775\pi\)
0.135379 + 0.990794i \(0.456775\pi\)
\(920\) 0.723689 0.0238593
\(921\) 0 0
\(922\) −25.5185 −0.840406
\(923\) 27.0933 0.891786
\(924\) 0 0
\(925\) −18.3215 −0.602407
\(926\) −36.5449 −1.20094
\(927\) 0 0
\(928\) 3.90167 0.128079
\(929\) −1.85616 −0.0608987 −0.0304494 0.999536i \(-0.509694\pi\)
−0.0304494 + 0.999536i \(0.509694\pi\)
\(930\) 0 0
\(931\) −19.9108 −0.652552
\(932\) −5.67499 −0.185891
\(933\) 0 0
\(934\) −20.7246 −0.678130
\(935\) 0 0
\(936\) 0 0
\(937\) −8.40104 −0.274450 −0.137225 0.990540i \(-0.543818\pi\)
−0.137225 + 0.990540i \(0.543818\pi\)
\(938\) −9.97628 −0.325737
\(939\) 0 0
\(940\) 0.655392 0.0213765
\(941\) 32.9459 1.07401 0.537003 0.843580i \(-0.319556\pi\)
0.537003 + 0.843580i \(0.319556\pi\)
\(942\) 0 0
\(943\) −18.8877 −0.615069
\(944\) −2.12061 −0.0690201
\(945\) 0 0
\(946\) −41.1498 −1.33790
\(947\) 19.6182 0.637507 0.318753 0.947838i \(-0.396736\pi\)
0.318753 + 0.947838i \(0.396736\pi\)
\(948\) 0 0
\(949\) 22.1539 0.719147
\(950\) −24.0446 −0.780109
\(951\) 0 0
\(952\) 0 0
\(953\) 51.5931 1.67126 0.835632 0.549290i \(-0.185102\pi\)
0.835632 + 0.549290i \(0.185102\pi\)
\(954\) 0 0
\(955\) −0.833053 −0.0269570
\(956\) −25.5175 −0.825296
\(957\) 0 0
\(958\) 31.6168 1.02149
\(959\) 11.5621 0.373360
\(960\) 0 0
\(961\) 22.1566 0.714730
\(962\) −6.46347 −0.208391
\(963\) 0 0
\(964\) 20.4320 0.658071
\(965\) 1.39012 0.0447495
\(966\) 0 0
\(967\) −39.7475 −1.27819 −0.639097 0.769126i \(-0.720692\pi\)
−0.639097 + 0.769126i \(0.720692\pi\)
\(968\) 26.2841 0.844801
\(969\) 0 0
\(970\) 1.09596 0.0351892
\(971\) −39.5398 −1.26889 −0.634447 0.772967i \(-0.718772\pi\)
−0.634447 + 0.772967i \(0.718772\pi\)
\(972\) 0 0
\(973\) −28.6500 −0.918477
\(974\) 21.2841 0.681985
\(975\) 0 0
\(976\) −10.6946 −0.342326
\(977\) −10.3696 −0.331752 −0.165876 0.986147i \(-0.553045\pi\)
−0.165876 + 0.986147i \(0.553045\pi\)
\(978\) 0 0
\(979\) 100.738 3.21959
\(980\) 0.497941 0.0159061
\(981\) 0 0
\(982\) 19.5253 0.623077
\(983\) −3.18243 −0.101504 −0.0507519 0.998711i \(-0.516162\pi\)
−0.0507519 + 0.998711i \(0.516162\pi\)
\(984\) 0 0
\(985\) 0.809831 0.0258034
\(986\) 0 0
\(987\) 0 0
\(988\) −8.48246 −0.269863
\(989\) −40.4350 −1.28576
\(990\) 0 0
\(991\) −13.6946 −0.435023 −0.217512 0.976058i \(-0.569794\pi\)
−0.217512 + 0.976058i \(0.569794\pi\)
\(992\) −7.29086 −0.231485
\(993\) 0 0
\(994\) −26.1046 −0.827989
\(995\) −0.871969 −0.0276433
\(996\) 0 0
\(997\) 0.964918 0.0305593 0.0152796 0.999883i \(-0.495136\pi\)
0.0152796 + 0.999883i \(0.495136\pi\)
\(998\) 22.5972 0.715302
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5202.2.a.bm.1.3 3
3.2 odd 2 1734.2.a.q.1.1 yes 3
17.16 even 2 5202.2.a.bp.1.1 3
51.2 odd 8 1734.2.f.n.1483.6 12
51.8 odd 8 1734.2.f.n.829.1 12
51.26 odd 8 1734.2.f.n.829.6 12
51.32 odd 8 1734.2.f.n.1483.1 12
51.38 odd 4 1734.2.b.j.577.3 6
51.47 odd 4 1734.2.b.j.577.4 6
51.50 odd 2 1734.2.a.p.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1734.2.a.p.1.3 3 51.50 odd 2
1734.2.a.q.1.1 yes 3 3.2 odd 2
1734.2.b.j.577.3 6 51.38 odd 4
1734.2.b.j.577.4 6 51.47 odd 4
1734.2.f.n.829.1 12 51.8 odd 8
1734.2.f.n.829.6 12 51.26 odd 8
1734.2.f.n.1483.1 12 51.32 odd 8
1734.2.f.n.1483.6 12 51.2 odd 8
5202.2.a.bm.1.3 3 1.1 even 1 trivial
5202.2.a.bp.1.1 3 17.16 even 2