Properties

Label 5160.2.a.ba
Level $5160$
Weight $2$
Character orbit 5160.a
Self dual yes
Analytic conductor $41.203$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5160,2,Mod(1,5160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5160.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5160 = 2^{3} \cdot 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5160.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,-6,0,-6,0,6,0,5,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.2028074430\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.50466704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 11x^{4} - x^{3} + 24x^{2} + 4x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - q^{5} + (\beta_{3} - 1) q^{7} + q^{9} + ( - \beta_{3} - \beta_{2} + 1) q^{11} + ( - \beta_{4} - \beta_1) q^{13} - q^{15} + ( - \beta_{5} + \beta_{2} + \beta_1 - 1) q^{17} + (2 \beta_{4} - \beta_{3} + \beta_{2} + \cdots - 2) q^{19}+ \cdots + ( - \beta_{3} - \beta_{2} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{5} - 6 q^{7} + 6 q^{9} + 5 q^{11} - 3 q^{13} - 6 q^{15} - 3 q^{17} - 6 q^{19} - 6 q^{21} - 7 q^{23} + 6 q^{25} + 6 q^{27} - 4 q^{29} - 17 q^{31} + 5 q^{33} + 6 q^{35} - 14 q^{37} - 3 q^{39}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 11x^{4} - x^{3} + 24x^{2} + 4x - 14 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{4} - 2\nu^{3} - 8\nu^{2} + 4\nu + 10 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - 2\nu^{4} - 7\nu^{3} + 3\nu^{2} + 6\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{5} + 2\nu^{4} + 8\nu^{3} - 6\nu^{2} - 9\nu + 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\nu^{5} + 5\nu^{4} + 13\nu^{3} - 15\nu^{2} - 13\nu + 11 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\nu^{5} - 5\nu^{4} - 14\nu^{3} + 18\nu^{2} + 18\nu - 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + 2\beta_{4} + 2\beta_{2} - \beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{5} + 9\beta_{4} + 5\beta_{3} + 11\beta_{2} - 3\beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{5} + 15\beta_{4} + 3\beta_{3} + 17\beta_{2} - 6\beta _1 + 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 65\beta_{5} + 111\beta_{4} + 41\beta_{3} + 135\beta_{2} - 42\beta _1 + 152 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.67992
−1.85336
3.61202
0.830335
−1.17983
1.27075
0 1.00000 0 −1.00000 0 −4.43270 0 1.00000 0
1.2 0 1.00000 0 −1.00000 0 −3.39379 0 1.00000 0
1.3 0 1.00000 0 −1.00000 0 −2.18105 0 1.00000 0
1.4 0 1.00000 0 −1.00000 0 −0.473915 0 1.00000 0
1.5 0 1.00000 0 −1.00000 0 1.28941 0 1.00000 0
1.6 0 1.00000 0 −1.00000 0 3.19205 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(43\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5160.2.a.ba 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5160.2.a.ba 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5160))\):

\( T_{7}^{6} + 6T_{7}^{5} - 6T_{7}^{4} - 74T_{7}^{3} - 48T_{7}^{2} + 128T_{7} + 64 \) Copy content Toggle raw display
\( T_{11}^{6} - 5T_{11}^{5} - 19T_{11}^{4} + 59T_{11}^{3} + 122T_{11}^{2} - 132T_{11} - 184 \) Copy content Toggle raw display
\( T_{13}^{6} + 3T_{13}^{5} - 51T_{13}^{4} - 149T_{13}^{3} + 486T_{13}^{2} + 884T_{13} - 1736 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{6} - 5 T^{5} + \cdots - 184 \) Copy content Toggle raw display
$13$ \( T^{6} + 3 T^{5} + \cdots - 1736 \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{5} + \cdots + 3184 \) Copy content Toggle raw display
$19$ \( T^{6} + 6 T^{5} + \cdots - 14992 \) Copy content Toggle raw display
$23$ \( T^{6} + 7 T^{5} + \cdots + 4064 \) Copy content Toggle raw display
$29$ \( T^{6} + 4 T^{5} + \cdots - 14912 \) Copy content Toggle raw display
$31$ \( T^{6} + 17 T^{5} + \cdots - 3584 \) Copy content Toggle raw display
$37$ \( T^{6} + 14 T^{5} + \cdots - 128 \) Copy content Toggle raw display
$41$ \( T^{6} + 5 T^{5} + \cdots - 824 \) Copy content Toggle raw display
$43$ \( (T + 1)^{6} \) Copy content Toggle raw display
$47$ \( T^{6} + 20 T^{5} + \cdots + 8576 \) Copy content Toggle raw display
$53$ \( T^{6} + 13 T^{5} + \cdots - 275024 \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + \cdots - 2048 \) Copy content Toggle raw display
$61$ \( T^{6} + 12 T^{5} + \cdots + 66112 \) Copy content Toggle raw display
$67$ \( T^{6} + 3 T^{5} + \cdots - 375872 \) Copy content Toggle raw display
$71$ \( T^{6} + 6 T^{5} + \cdots - 12928 \) Copy content Toggle raw display
$73$ \( T^{6} + 8 T^{5} + \cdots - 231424 \) Copy content Toggle raw display
$79$ \( T^{6} + 28 T^{5} + \cdots - 243712 \) Copy content Toggle raw display
$83$ \( T^{6} - T^{5} + \cdots - 224000 \) Copy content Toggle raw display
$89$ \( T^{6} - 2 T^{5} + \cdots + 71312 \) Copy content Toggle raw display
$97$ \( T^{6} + 19 T^{5} + \cdots + 414632 \) Copy content Toggle raw display
show more
show less