Properties

Label 512.2.i.a.161.1
Level $512$
Weight $2$
Character 512.161
Analytic conductor $4.088$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [512,2,Mod(33,512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("512.33"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(512, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 512 = 2^{9} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 512.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08834058349\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 161.1
Character \(\chi\) \(=\) 512.161
Dual form 512.2.i.a.353.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.98137 - 0.593031i) q^{3} +(-0.914126 + 1.36809i) q^{5} +(-2.65574 + 1.10004i) q^{7} +(5.76522 + 2.38803i) q^{9} +(0.246413 + 1.23880i) q^{11} +(-0.319413 - 0.478036i) q^{13} +(3.53666 - 3.53666i) q^{15} +(-3.38390 - 3.38390i) q^{17} +(4.19561 - 2.80342i) q^{19} +(8.57011 - 1.70470i) q^{21} +(-0.178010 + 0.429755i) q^{23} +(0.877384 + 2.11819i) q^{25} +(-8.18962 - 5.47213i) q^{27} +(1.02242 - 5.14005i) q^{29} -10.0065i q^{31} -3.83945i q^{33} +(0.922728 - 4.63887i) q^{35} +(-0.447703 - 0.299146i) q^{37} +(0.668798 + 1.61462i) q^{39} +(2.44115 - 5.89346i) q^{41} +(3.80641 - 0.757142i) q^{43} +(-8.53718 + 5.70436i) q^{45} +(5.99084 + 5.99084i) q^{47} +(0.893127 - 0.893127i) q^{49} +(8.08188 + 12.0954i) q^{51} +(-0.810472 - 4.07452i) q^{53} +(-1.92004 - 0.795307i) q^{55} +(-14.1712 + 5.86989i) q^{57} +(-1.03615 + 1.55070i) q^{59} +(6.47490 + 1.28794i) q^{61} -17.9379 q^{63} +0.945978 q^{65} +(6.01983 + 1.19742i) q^{67} +(0.785572 - 1.17569i) q^{69} +(4.20400 - 1.74136i) q^{71} +(-0.911379 - 0.377506i) q^{73} +(-1.35965 - 6.83542i) q^{75} +(-2.01715 - 3.01887i) q^{77} +(-0.152459 + 0.152459i) q^{79} +(7.93360 + 7.93360i) q^{81} +(-5.16472 + 3.45096i) q^{83} +(7.72277 - 1.53615i) q^{85} +(-6.09641 + 14.7180i) q^{87} +(1.48745 + 3.59102i) q^{89} +(1.37414 + 0.918171i) q^{91} +(-5.93418 + 29.8331i) q^{93} +8.30263i q^{95} -13.7742i q^{97} +(-1.53767 + 7.73041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{3} + 8 q^{5} + 8 q^{7} - 8 q^{9} - 8 q^{11} + 8 q^{13} + 8 q^{15} - 8 q^{17} - 8 q^{19} + 8 q^{21} + 8 q^{23} - 8 q^{25} - 8 q^{27} + 8 q^{29} - 8 q^{35} + 8 q^{37} + 8 q^{39} - 8 q^{41} - 8 q^{43}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/512\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(511\)
\(\chi(n)\) \(e\left(\frac{11}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.98137 0.593031i −1.72129 0.342386i −0.767088 0.641542i \(-0.778295\pi\)
−0.954204 + 0.299155i \(0.903295\pi\)
\(4\) 0 0
\(5\) −0.914126 + 1.36809i −0.408810 + 0.611827i −0.977553 0.210688i \(-0.932430\pi\)
0.568744 + 0.822515i \(0.307430\pi\)
\(6\) 0 0
\(7\) −2.65574 + 1.10004i −1.00378 + 0.415778i −0.823181 0.567779i \(-0.807803\pi\)
−0.180596 + 0.983557i \(0.557803\pi\)
\(8\) 0 0
\(9\) 5.76522 + 2.38803i 1.92174 + 0.796011i
\(10\) 0 0
\(11\) 0.246413 + 1.23880i 0.0742963 + 0.373513i 0.999989 0.00476447i \(-0.00151658\pi\)
−0.925692 + 0.378277i \(0.876517\pi\)
\(12\) 0 0
\(13\) −0.319413 0.478036i −0.0885893 0.132583i 0.784528 0.620093i \(-0.212905\pi\)
−0.873117 + 0.487510i \(0.837905\pi\)
\(14\) 0 0
\(15\) 3.53666 3.53666i 0.913162 0.913162i
\(16\) 0 0
\(17\) −3.38390 3.38390i −0.820715 0.820715i 0.165495 0.986211i \(-0.447078\pi\)
−0.986211 + 0.165495i \(0.947078\pi\)
\(18\) 0 0
\(19\) 4.19561 2.80342i 0.962539 0.643148i 0.0282261 0.999602i \(-0.491014\pi\)
0.934313 + 0.356453i \(0.116014\pi\)
\(20\) 0 0
\(21\) 8.57011 1.70470i 1.87015 0.371996i
\(22\) 0 0
\(23\) −0.178010 + 0.429755i −0.0371177 + 0.0896101i −0.941351 0.337428i \(-0.890443\pi\)
0.904234 + 0.427038i \(0.140443\pi\)
\(24\) 0 0
\(25\) 0.877384 + 2.11819i 0.175477 + 0.423638i
\(26\) 0 0
\(27\) −8.18962 5.47213i −1.57609 1.05311i
\(28\) 0 0
\(29\) 1.02242 5.14005i 0.189858 0.954483i −0.761914 0.647678i \(-0.775740\pi\)
0.951773 0.306805i \(-0.0992598\pi\)
\(30\) 0 0
\(31\) 10.0065i 1.79722i −0.438743 0.898612i \(-0.644576\pi\)
0.438743 0.898612i \(-0.355424\pi\)
\(32\) 0 0
\(33\) 3.83945i 0.668363i
\(34\) 0 0
\(35\) 0.922728 4.63887i 0.155969 0.784111i
\(36\) 0 0
\(37\) −0.447703 0.299146i −0.0736019 0.0491792i 0.518225 0.855244i \(-0.326593\pi\)
−0.591827 + 0.806065i \(0.701593\pi\)
\(38\) 0 0
\(39\) 0.668798 + 1.61462i 0.107093 + 0.258546i
\(40\) 0 0
\(41\) 2.44115 5.89346i 0.381244 0.920404i −0.610482 0.792030i \(-0.709024\pi\)
0.991726 0.128374i \(-0.0409757\pi\)
\(42\) 0 0
\(43\) 3.80641 0.757142i 0.580472 0.115463i 0.103883 0.994589i \(-0.466873\pi\)
0.476589 + 0.879126i \(0.341873\pi\)
\(44\) 0 0
\(45\) −8.53718 + 5.70436i −1.27265 + 0.850355i
\(46\) 0 0
\(47\) 5.99084 + 5.99084i 0.873854 + 0.873854i 0.992890 0.119036i \(-0.0379804\pi\)
−0.119036 + 0.992890i \(0.537980\pi\)
\(48\) 0 0
\(49\) 0.893127 0.893127i 0.127590 0.127590i
\(50\) 0 0
\(51\) 8.08188 + 12.0954i 1.13169 + 1.69369i
\(52\) 0 0
\(53\) −0.810472 4.07452i −0.111327 0.559678i −0.995679 0.0928581i \(-0.970400\pi\)
0.884353 0.466820i \(-0.154600\pi\)
\(54\) 0 0
\(55\) −1.92004 0.795307i −0.258898 0.107239i
\(56\) 0 0
\(57\) −14.1712 + 5.86989i −1.87702 + 0.777486i
\(58\) 0 0
\(59\) −1.03615 + 1.55070i −0.134895 + 0.201884i −0.892767 0.450519i \(-0.851239\pi\)
0.757872 + 0.652403i \(0.226239\pi\)
\(60\) 0 0
\(61\) 6.47490 + 1.28794i 0.829026 + 0.164903i 0.591323 0.806435i \(-0.298606\pi\)
0.237702 + 0.971338i \(0.423606\pi\)
\(62\) 0 0
\(63\) −17.9379 −2.25996
\(64\) 0 0
\(65\) 0.945978 0.117334
\(66\) 0 0
\(67\) 6.01983 + 1.19742i 0.735439 + 0.146288i 0.548579 0.836099i \(-0.315169\pi\)
0.186860 + 0.982387i \(0.440169\pi\)
\(68\) 0 0
\(69\) 0.785572 1.17569i 0.0945718 0.141537i
\(70\) 0 0
\(71\) 4.20400 1.74136i 0.498924 0.206661i −0.119007 0.992893i \(-0.537971\pi\)
0.617931 + 0.786232i \(0.287971\pi\)
\(72\) 0 0
\(73\) −0.911379 0.377506i −0.106669 0.0441837i 0.328711 0.944431i \(-0.393386\pi\)
−0.435380 + 0.900247i \(0.643386\pi\)
\(74\) 0 0
\(75\) −1.35965 6.83542i −0.156999 0.789286i
\(76\) 0 0
\(77\) −2.01715 3.01887i −0.229875 0.344033i
\(78\) 0 0
\(79\) −0.152459 + 0.152459i −0.0171530 + 0.0171530i −0.715631 0.698478i \(-0.753861\pi\)
0.698478 + 0.715631i \(0.253861\pi\)
\(80\) 0 0
\(81\) 7.93360 + 7.93360i 0.881511 + 0.881511i
\(82\) 0 0
\(83\) −5.16472 + 3.45096i −0.566902 + 0.378792i −0.805741 0.592267i \(-0.798233\pi\)
0.238840 + 0.971059i \(0.423233\pi\)
\(84\) 0 0
\(85\) 7.72277 1.53615i 0.837652 0.166619i
\(86\) 0 0
\(87\) −6.09641 + 14.7180i −0.653604 + 1.57794i
\(88\) 0 0
\(89\) 1.48745 + 3.59102i 0.157669 + 0.380648i 0.982898 0.184151i \(-0.0589537\pi\)
−0.825228 + 0.564799i \(0.808954\pi\)
\(90\) 0 0
\(91\) 1.37414 + 0.918171i 0.144049 + 0.0962505i
\(92\) 0 0
\(93\) −5.93418 + 29.8331i −0.615345 + 3.09355i
\(94\) 0 0
\(95\) 8.30263i 0.851832i
\(96\) 0 0
\(97\) 13.7742i 1.39856i −0.714849 0.699279i \(-0.753505\pi\)
0.714849 0.699279i \(-0.246495\pi\)
\(98\) 0 0
\(99\) −1.53767 + 7.73041i −0.154542 + 0.776936i
\(100\) 0 0
\(101\) −3.34129 2.23258i −0.332470 0.222150i 0.378118 0.925757i \(-0.376571\pi\)
−0.710589 + 0.703608i \(0.751571\pi\)
\(102\) 0 0
\(103\) −3.02140 7.29430i −0.297707 0.718728i −0.999977 0.00681740i \(-0.997830\pi\)
0.702270 0.711911i \(-0.252170\pi\)
\(104\) 0 0
\(105\) −5.50198 + 13.2830i −0.536938 + 1.29628i
\(106\) 0 0
\(107\) −5.40913 + 1.07594i −0.522920 + 0.104015i −0.449490 0.893285i \(-0.648394\pi\)
−0.0734296 + 0.997300i \(0.523394\pi\)
\(108\) 0 0
\(109\) 3.62995 2.42545i 0.347686 0.232316i −0.369448 0.929251i \(-0.620453\pi\)
0.717134 + 0.696935i \(0.245453\pi\)
\(110\) 0 0
\(111\) 1.15736 + 1.15736i 0.109852 + 0.109852i
\(112\) 0 0
\(113\) −11.6929 + 11.6929i −1.09998 + 1.09998i −0.105567 + 0.994412i \(0.533666\pi\)
−0.994412 + 0.105567i \(0.966334\pi\)
\(114\) 0 0
\(115\) −0.425218 0.636384i −0.0396518 0.0593431i
\(116\) 0 0
\(117\) −0.699923 3.51875i −0.0647079 0.325309i
\(118\) 0 0
\(119\) 12.7092 + 5.26432i 1.16505 + 0.482580i
\(120\) 0 0
\(121\) 8.68876 3.59900i 0.789888 0.327182i
\(122\) 0 0
\(123\) −10.7730 + 16.1229i −0.971366 + 1.45375i
\(124\) 0 0
\(125\) −11.7687 2.34095i −1.05263 0.209381i
\(126\) 0 0
\(127\) 21.9517 1.94790 0.973949 0.226767i \(-0.0728154\pi\)
0.973949 + 0.226767i \(0.0728154\pi\)
\(128\) 0 0
\(129\) −11.7973 −1.03870
\(130\) 0 0
\(131\) −7.05871 1.40406i −0.616722 0.122674i −0.123164 0.992386i \(-0.539304\pi\)
−0.493558 + 0.869713i \(0.664304\pi\)
\(132\) 0 0
\(133\) −8.05858 + 12.0605i −0.698768 + 1.04578i
\(134\) 0 0
\(135\) 14.9727 6.20189i 1.28864 0.533774i
\(136\) 0 0
\(137\) 10.2318 + 4.23815i 0.874161 + 0.362089i 0.774229 0.632905i \(-0.218138\pi\)
0.0999315 + 0.994994i \(0.468138\pi\)
\(138\) 0 0
\(139\) −0.752410 3.78262i −0.0638186 0.320838i 0.935668 0.352882i \(-0.114798\pi\)
−0.999486 + 0.0320443i \(0.989798\pi\)
\(140\) 0 0
\(141\) −14.3081 21.4136i −1.20496 1.80335i
\(142\) 0 0
\(143\) 0.513484 0.513484i 0.0429397 0.0429397i
\(144\) 0 0
\(145\) 6.09741 + 6.09741i 0.506362 + 0.506362i
\(146\) 0 0
\(147\) −3.19239 + 2.13309i −0.263304 + 0.175934i
\(148\) 0 0
\(149\) −21.8201 + 4.34028i −1.78757 + 0.355569i −0.974114 0.226059i \(-0.927416\pi\)
−0.813455 + 0.581628i \(0.802416\pi\)
\(150\) 0 0
\(151\) −2.99065 + 7.22006i −0.243375 + 0.587560i −0.997614 0.0690406i \(-0.978006\pi\)
0.754239 + 0.656600i \(0.228006\pi\)
\(152\) 0 0
\(153\) −11.4281 27.5898i −0.923904 2.23050i
\(154\) 0 0
\(155\) 13.6898 + 9.14722i 1.09959 + 0.734723i
\(156\) 0 0
\(157\) 4.09955 20.6098i 0.327180 1.64484i −0.370790 0.928717i \(-0.620913\pi\)
0.697970 0.716127i \(-0.254087\pi\)
\(158\) 0 0
\(159\) 12.6283i 1.00149i
\(160\) 0 0
\(161\) 1.33714i 0.105381i
\(162\) 0 0
\(163\) 3.99966 20.1077i 0.313278 1.57495i −0.428015 0.903772i \(-0.640787\pi\)
0.741293 0.671182i \(-0.234213\pi\)
\(164\) 0 0
\(165\) 5.25270 + 3.50974i 0.408922 + 0.273233i
\(166\) 0 0
\(167\) −5.57052 13.4484i −0.431060 1.04067i −0.978946 0.204118i \(-0.934567\pi\)
0.547886 0.836553i \(-0.315433\pi\)
\(168\) 0 0
\(169\) 4.84839 11.7051i 0.372953 0.900389i
\(170\) 0 0
\(171\) 30.8833 6.14307i 2.36170 0.469772i
\(172\) 0 0
\(173\) 15.4616 10.3311i 1.17552 0.785459i 0.194796 0.980844i \(-0.437595\pi\)
0.980727 + 0.195384i \(0.0625954\pi\)
\(174\) 0 0
\(175\) −4.66021 4.66021i −0.352279 0.352279i
\(176\) 0 0
\(177\) 4.00874 4.00874i 0.301315 0.301315i
\(178\) 0 0
\(179\) −5.99376 8.97030i −0.447995 0.670472i 0.536896 0.843648i \(-0.319597\pi\)
−0.984891 + 0.173177i \(0.944597\pi\)
\(180\) 0 0
\(181\) −0.698076 3.50946i −0.0518876 0.260856i 0.946130 0.323786i \(-0.104956\pi\)
−0.998018 + 0.0629294i \(0.979956\pi\)
\(182\) 0 0
\(183\) −18.5403 7.67963i −1.37054 0.567694i
\(184\) 0 0
\(185\) 0.818514 0.339039i 0.0601783 0.0249267i
\(186\) 0 0
\(187\) 3.35814 5.02581i 0.245572 0.367524i
\(188\) 0 0
\(189\) 27.7691 + 5.52362i 2.01991 + 0.401784i
\(190\) 0 0
\(191\) 0.722126 0.0522512 0.0261256 0.999659i \(-0.491683\pi\)
0.0261256 + 0.999659i \(0.491683\pi\)
\(192\) 0 0
\(193\) −5.30778 −0.382063 −0.191031 0.981584i \(-0.561183\pi\)
−0.191031 + 0.981584i \(0.561183\pi\)
\(194\) 0 0
\(195\) −2.82031 0.560994i −0.201966 0.0401736i
\(196\) 0 0
\(197\) −8.28629 + 12.4013i −0.590373 + 0.883556i −0.999583 0.0288843i \(-0.990805\pi\)
0.409209 + 0.912441i \(0.365805\pi\)
\(198\) 0 0
\(199\) 0.443861 0.183853i 0.0314644 0.0130330i −0.366896 0.930262i \(-0.619579\pi\)
0.398360 + 0.917229i \(0.369579\pi\)
\(200\) 0 0
\(201\) −17.2372 7.13989i −1.21582 0.503609i
\(202\) 0 0
\(203\) 2.93900 + 14.7753i 0.206277 + 1.03703i
\(204\) 0 0
\(205\) 5.83124 + 8.72707i 0.407272 + 0.609525i
\(206\) 0 0
\(207\) −2.05254 + 2.05254i −0.142661 + 0.142661i
\(208\) 0 0
\(209\) 4.50673 + 4.50673i 0.311737 + 0.311737i
\(210\) 0 0
\(211\) −12.2014 + 8.15273i −0.839980 + 0.561257i −0.899475 0.436972i \(-0.856051\pi\)
0.0594948 + 0.998229i \(0.481051\pi\)
\(212\) 0 0
\(213\) −13.5664 + 2.69852i −0.929551 + 0.184899i
\(214\) 0 0
\(215\) −2.44370 + 5.89962i −0.166659 + 0.402351i
\(216\) 0 0
\(217\) 11.0076 + 26.5748i 0.747246 + 1.80401i
\(218\) 0 0
\(219\) 2.49328 + 1.66596i 0.168480 + 0.112575i
\(220\) 0 0
\(221\) −0.536762 + 2.69848i −0.0361065 + 0.181520i
\(222\) 0 0
\(223\) 20.5439i 1.37572i −0.725843 0.687860i \(-0.758550\pi\)
0.725843 0.687860i \(-0.241450\pi\)
\(224\) 0 0
\(225\) 14.3071i 0.953804i
\(226\) 0 0
\(227\) 3.83215 19.2655i 0.254348 1.27870i −0.616582 0.787290i \(-0.711483\pi\)
0.870931 0.491406i \(-0.163517\pi\)
\(228\) 0 0
\(229\) 18.1422 + 12.1223i 1.19887 + 0.801061i 0.984447 0.175680i \(-0.0562123\pi\)
0.214425 + 0.976740i \(0.431212\pi\)
\(230\) 0 0
\(231\) 4.22357 + 10.1966i 0.277891 + 0.670887i
\(232\) 0 0
\(233\) −1.49754 + 3.61539i −0.0981074 + 0.236852i −0.965312 0.261100i \(-0.915915\pi\)
0.867204 + 0.497953i \(0.165915\pi\)
\(234\) 0 0
\(235\) −13.6724 + 2.71960i −0.891887 + 0.177407i
\(236\) 0 0
\(237\) 0.544950 0.364124i 0.0353983 0.0236524i
\(238\) 0 0
\(239\) −4.87803 4.87803i −0.315534 0.315534i 0.531515 0.847049i \(-0.321623\pi\)
−0.847049 + 0.531515i \(0.821623\pi\)
\(240\) 0 0
\(241\) 1.70539 1.70539i 0.109854 0.109854i −0.650043 0.759897i \(-0.725249\pi\)
0.759897 + 0.650043i \(0.225249\pi\)
\(242\) 0 0
\(243\) −2.53170 3.78895i −0.162409 0.243062i
\(244\) 0 0
\(245\) 0.405444 + 2.03831i 0.0259029 + 0.130223i
\(246\) 0 0
\(247\) −2.68027 1.11020i −0.170541 0.0706405i
\(248\) 0 0
\(249\) 17.4444 7.22572i 1.10550 0.457912i
\(250\) 0 0
\(251\) −0.380597 + 0.569604i −0.0240231 + 0.0359531i −0.843287 0.537464i \(-0.819382\pi\)
0.819264 + 0.573417i \(0.194382\pi\)
\(252\) 0 0
\(253\) −0.576245 0.114622i −0.0362282 0.00720625i
\(254\) 0 0
\(255\) −23.9354 −1.49889
\(256\) 0 0
\(257\) 24.3404 1.51831 0.759156 0.650908i \(-0.225612\pi\)
0.759156 + 0.650908i \(0.225612\pi\)
\(258\) 0 0
\(259\) 1.51806 + 0.301960i 0.0943275 + 0.0187629i
\(260\) 0 0
\(261\) 18.1691 27.1919i 1.12464 1.68314i
\(262\) 0 0
\(263\) −9.60085 + 3.97680i −0.592014 + 0.245220i −0.658517 0.752566i \(-0.728816\pi\)
0.0665030 + 0.997786i \(0.478816\pi\)
\(264\) 0 0
\(265\) 6.31516 + 2.61583i 0.387937 + 0.160689i
\(266\) 0 0
\(267\) −2.30505 11.5883i −0.141067 0.709190i
\(268\) 0 0
\(269\) 17.3303 + 25.9367i 1.05665 + 1.58139i 0.785513 + 0.618845i \(0.212399\pi\)
0.271136 + 0.962541i \(0.412601\pi\)
\(270\) 0 0
\(271\) −11.8443 + 11.8443i −0.719491 + 0.719491i −0.968501 0.249010i \(-0.919895\pi\)
0.249010 + 0.968501i \(0.419895\pi\)
\(272\) 0 0
\(273\) −3.55231 3.55231i −0.214996 0.214996i
\(274\) 0 0
\(275\) −2.40782 + 1.60885i −0.145197 + 0.0970176i
\(276\) 0 0
\(277\) 25.5130 5.07485i 1.53293 0.304918i 0.644741 0.764401i \(-0.276965\pi\)
0.888187 + 0.459483i \(0.151965\pi\)
\(278\) 0 0
\(279\) 23.8959 57.6898i 1.43061 3.45380i
\(280\) 0 0
\(281\) −9.37710 22.6383i −0.559391 1.35049i −0.910249 0.414061i \(-0.864110\pi\)
0.350858 0.936429i \(-0.385890\pi\)
\(282\) 0 0
\(283\) −19.3155 12.9062i −1.14819 0.767195i −0.172210 0.985060i \(-0.555091\pi\)
−0.975979 + 0.217865i \(0.930091\pi\)
\(284\) 0 0
\(285\) 4.92372 24.7532i 0.291656 1.46625i
\(286\) 0 0
\(287\) 18.3369i 1.08239i
\(288\) 0 0
\(289\) 5.90150i 0.347147i
\(290\) 0 0
\(291\) −8.16852 + 41.0659i −0.478847 + 2.40733i
\(292\) 0 0
\(293\) −23.5455 15.7326i −1.37554 0.919109i −0.375573 0.926793i \(-0.622554\pi\)
−0.999970 + 0.00768446i \(0.997554\pi\)
\(294\) 0 0
\(295\) −1.17433 2.83507i −0.0683719 0.165064i
\(296\) 0 0
\(297\) 4.76086 11.4937i 0.276253 0.666934i
\(298\) 0 0
\(299\) 0.262297 0.0521741i 0.0151690 0.00301731i
\(300\) 0 0
\(301\) −9.27596 + 6.19800i −0.534657 + 0.357247i
\(302\) 0 0
\(303\) 8.63761 + 8.63761i 0.496218 + 0.496218i
\(304\) 0 0
\(305\) −7.68088 + 7.68088i −0.439806 + 0.439806i
\(306\) 0 0
\(307\) −6.01712 9.00525i −0.343415 0.513957i 0.619054 0.785348i \(-0.287516\pi\)
−0.962469 + 0.271392i \(0.912516\pi\)
\(308\) 0 0
\(309\) 4.68215 + 23.5388i 0.266358 + 1.33907i
\(310\) 0 0
\(311\) 6.91332 + 2.86359i 0.392018 + 0.162379i 0.569981 0.821658i \(-0.306951\pi\)
−0.177963 + 0.984037i \(0.556951\pi\)
\(312\) 0 0
\(313\) −20.9463 + 8.67625i −1.18396 + 0.490411i −0.885783 0.464101i \(-0.846378\pi\)
−0.298174 + 0.954511i \(0.596378\pi\)
\(314\) 0 0
\(315\) 16.3975 24.5406i 0.923894 1.38271i
\(316\) 0 0
\(317\) 12.9479 + 2.57551i 0.727229 + 0.144655i 0.544802 0.838565i \(-0.316605\pi\)
0.182427 + 0.983219i \(0.441605\pi\)
\(318\) 0 0
\(319\) 6.61944 0.370617
\(320\) 0 0
\(321\) 16.7647 0.935712
\(322\) 0 0
\(323\) −23.6840 4.71104i −1.31781 0.262129i
\(324\) 0 0
\(325\) 0.732323 1.09600i 0.0406220 0.0607951i
\(326\) 0 0
\(327\) −12.2606 + 5.07850i −0.678012 + 0.280842i
\(328\) 0 0
\(329\) −22.5003 9.31994i −1.24048 0.513825i
\(330\) 0 0
\(331\) 0.994900 + 5.00170i 0.0546846 + 0.274918i 0.998447 0.0557056i \(-0.0177408\pi\)
−0.943763 + 0.330624i \(0.892741\pi\)
\(332\) 0 0
\(333\) −1.86674 2.79377i −0.102297 0.153098i
\(334\) 0 0
\(335\) −7.14106 + 7.14106i −0.390158 + 0.390158i
\(336\) 0 0
\(337\) −9.51763 9.51763i −0.518459 0.518459i 0.398646 0.917105i \(-0.369480\pi\)
−0.917105 + 0.398646i \(0.869480\pi\)
\(338\) 0 0
\(339\) 41.7952 27.9267i 2.27000 1.51677i
\(340\) 0 0
\(341\) 12.3961 2.46574i 0.671286 0.133527i
\(342\) 0 0
\(343\) 6.31088 15.2358i 0.340755 0.822656i
\(344\) 0 0
\(345\) 0.890336 + 2.14946i 0.0479341 + 0.115723i
\(346\) 0 0
\(347\) 24.8873 + 16.6292i 1.33602 + 0.892701i 0.998812 0.0487284i \(-0.0155169\pi\)
0.337210 + 0.941430i \(0.390517\pi\)
\(348\) 0 0
\(349\) −2.77238 + 13.9377i −0.148402 + 0.746067i 0.832874 + 0.553462i \(0.186694\pi\)
−0.981276 + 0.192605i \(0.938306\pi\)
\(350\) 0 0
\(351\) 5.66280i 0.302258i
\(352\) 0 0
\(353\) 22.9803i 1.22312i 0.791199 + 0.611558i \(0.209457\pi\)
−0.791199 + 0.611558i \(0.790543\pi\)
\(354\) 0 0
\(355\) −1.46066 + 7.34326i −0.0775240 + 0.389740i
\(356\) 0 0
\(357\) −34.7689 23.2318i −1.84016 1.22956i
\(358\) 0 0
\(359\) −2.63107 6.35196i −0.138862 0.335244i 0.839115 0.543954i \(-0.183073\pi\)
−0.977978 + 0.208710i \(0.933073\pi\)
\(360\) 0 0
\(361\) 2.47302 5.97039i 0.130159 0.314231i
\(362\) 0 0
\(363\) −28.0387 + 5.57725i −1.47165 + 0.292730i
\(364\) 0 0
\(365\) 1.34958 0.901757i 0.0706400 0.0472001i
\(366\) 0 0
\(367\) 2.41091 + 2.41091i 0.125848 + 0.125848i 0.767226 0.641377i \(-0.221637\pi\)
−0.641377 + 0.767226i \(0.721637\pi\)
\(368\) 0 0
\(369\) 28.1476 28.1476i 1.46530 1.46530i
\(370\) 0 0
\(371\) 6.63456 + 9.92931i 0.344449 + 0.515504i
\(372\) 0 0
\(373\) −2.78301 13.9911i −0.144099 0.724433i −0.983498 0.180918i \(-0.942093\pi\)
0.839400 0.543515i \(-0.182907\pi\)
\(374\) 0 0
\(375\) 33.6987 + 13.9585i 1.74019 + 0.720812i
\(376\) 0 0
\(377\) −2.78370 + 1.15305i −0.143368 + 0.0593849i
\(378\) 0 0
\(379\) 14.2902 21.3867i 0.734036 1.09856i −0.257187 0.966362i \(-0.582796\pi\)
0.991223 0.132201i \(-0.0422044\pi\)
\(380\) 0 0
\(381\) −65.4461 13.0180i −3.35290 0.666934i
\(382\) 0 0
\(383\) −21.5847 −1.10293 −0.551463 0.834199i \(-0.685930\pi\)
−0.551463 + 0.834199i \(0.685930\pi\)
\(384\) 0 0
\(385\) 5.97401 0.304464
\(386\) 0 0
\(387\) 23.7529 + 4.72474i 1.20743 + 0.240172i
\(388\) 0 0
\(389\) −3.94394 + 5.90253i −0.199966 + 0.299270i −0.917877 0.396864i \(-0.870098\pi\)
0.717911 + 0.696135i \(0.245098\pi\)
\(390\) 0 0
\(391\) 2.05662 0.851878i 0.104007 0.0430813i
\(392\) 0 0
\(393\) 20.2119 + 8.37206i 1.01956 + 0.422315i
\(394\) 0 0
\(395\) −0.0692105 0.347944i −0.00348236 0.0175070i
\(396\) 0 0
\(397\) 7.40790 + 11.0867i 0.371792 + 0.556426i 0.969439 0.245334i \(-0.0788975\pi\)
−0.597647 + 0.801759i \(0.703898\pi\)
\(398\) 0 0
\(399\) 31.1778 31.1778i 1.56084 1.56084i
\(400\) 0 0
\(401\) −8.50260 8.50260i −0.424600 0.424600i 0.462184 0.886784i \(-0.347066\pi\)
−0.886784 + 0.462184i \(0.847066\pi\)
\(402\) 0 0
\(403\) −4.78347 + 3.19622i −0.238282 + 0.159215i
\(404\) 0 0
\(405\) −18.1061 + 3.60154i −0.899702 + 0.178962i
\(406\) 0 0
\(407\) 0.260262 0.628329i 0.0129007 0.0311451i
\(408\) 0 0
\(409\) 10.8420 + 26.1750i 0.536104 + 1.29427i 0.927423 + 0.374014i \(0.122019\pi\)
−0.391320 + 0.920255i \(0.627981\pi\)
\(410\) 0 0
\(411\) −27.9914 18.7032i −1.38071 0.922563i
\(412\) 0 0
\(413\) 1.04590 5.25807i 0.0514651 0.258733i
\(414\) 0 0
\(415\) 10.2204i 0.501699i
\(416\) 0 0
\(417\) 11.7236i 0.574106i
\(418\) 0 0
\(419\) −4.06419 + 20.4320i −0.198549 + 0.998171i 0.745032 + 0.667028i \(0.232434\pi\)
−0.943581 + 0.331142i \(0.892566\pi\)
\(420\) 0 0
\(421\) 18.4939 + 12.3572i 0.901337 + 0.602254i 0.917553 0.397614i \(-0.130162\pi\)
−0.0162157 + 0.999869i \(0.505162\pi\)
\(422\) 0 0
\(423\) 20.2322 + 48.8449i 0.983723 + 2.37492i
\(424\) 0 0
\(425\) 4.19876 10.1367i 0.203670 0.491703i
\(426\) 0 0
\(427\) −18.6125 + 3.70225i −0.900720 + 0.179164i
\(428\) 0 0
\(429\) −1.83540 + 1.22637i −0.0886137 + 0.0592098i
\(430\) 0 0
\(431\) −9.16945 9.16945i −0.441677 0.441677i 0.450898 0.892575i \(-0.351104\pi\)
−0.892575 + 0.450898i \(0.851104\pi\)
\(432\) 0 0
\(433\) 9.06306 9.06306i 0.435543 0.435543i −0.454966 0.890509i \(-0.650349\pi\)
0.890509 + 0.454966i \(0.150349\pi\)
\(434\) 0 0
\(435\) −14.5627 21.7946i −0.698226 1.04497i
\(436\) 0 0
\(437\) 0.457921 + 2.30212i 0.0219053 + 0.110125i
\(438\) 0 0
\(439\) −37.3964 15.4901i −1.78483 0.739301i −0.991436 0.130594i \(-0.958312\pi\)
−0.793395 0.608707i \(-0.791688\pi\)
\(440\) 0 0
\(441\) 7.28190 3.01626i 0.346757 0.143631i
\(442\) 0 0
\(443\) −0.953921 + 1.42764i −0.0453222 + 0.0678294i −0.853439 0.521193i \(-0.825487\pi\)
0.808117 + 0.589023i \(0.200487\pi\)
\(444\) 0 0
\(445\) −6.27255 1.24769i −0.297347 0.0591460i
\(446\) 0 0
\(447\) 67.6275 3.19867
\(448\) 0 0
\(449\) −24.6119 −1.16151 −0.580754 0.814079i \(-0.697242\pi\)
−0.580754 + 0.814079i \(0.697242\pi\)
\(450\) 0 0
\(451\) 7.90236 + 1.57188i 0.372108 + 0.0740168i
\(452\) 0 0
\(453\) 13.1979 19.7521i 0.620093 0.928034i
\(454\) 0 0
\(455\) −2.51227 + 1.04062i −0.117777 + 0.0487849i
\(456\) 0 0
\(457\) 0.962960 + 0.398871i 0.0450454 + 0.0186584i 0.405092 0.914276i \(-0.367239\pi\)
−0.360047 + 0.932934i \(0.617239\pi\)
\(458\) 0 0
\(459\) 9.19571 + 46.2300i 0.429219 + 2.15783i
\(460\) 0 0
\(461\) 7.72794 + 11.5657i 0.359926 + 0.538667i 0.966602 0.256282i \(-0.0824975\pi\)
−0.606676 + 0.794949i \(0.707498\pi\)
\(462\) 0 0
\(463\) −8.29596 + 8.29596i −0.385546 + 0.385546i −0.873095 0.487549i \(-0.837891\pi\)
0.487549 + 0.873095i \(0.337891\pi\)
\(464\) 0 0
\(465\) −35.3897 35.3897i −1.64116 1.64116i
\(466\) 0 0
\(467\) −0.240041 + 0.160391i −0.0111078 + 0.00742199i −0.561112 0.827740i \(-0.689626\pi\)
0.550004 + 0.835162i \(0.314626\pi\)
\(468\) 0 0
\(469\) −17.3043 + 3.44205i −0.799040 + 0.158939i
\(470\) 0 0
\(471\) −24.4445 + 59.0143i −1.12634 + 2.71924i
\(472\) 0 0
\(473\) 1.87590 + 4.52882i 0.0862539 + 0.208235i
\(474\) 0 0
\(475\) 9.61934 + 6.42743i 0.441365 + 0.294911i
\(476\) 0 0
\(477\) 5.05753 25.4259i 0.231568 1.16417i
\(478\) 0 0
\(479\) 27.3994i 1.25191i −0.779860 0.625954i \(-0.784710\pi\)
0.779860 0.625954i \(-0.215290\pi\)
\(480\) 0 0
\(481\) 0.309569i 0.0141151i
\(482\) 0 0
\(483\) −0.792964 + 3.98650i −0.0360811 + 0.181392i
\(484\) 0 0
\(485\) 18.8443 + 12.5913i 0.855675 + 0.571744i
\(486\) 0 0
\(487\) 11.7477 + 28.3614i 0.532338 + 1.28518i 0.929971 + 0.367633i \(0.119832\pi\)
−0.397633 + 0.917544i \(0.630168\pi\)
\(488\) 0 0
\(489\) −23.8489 + 57.5764i −1.07849 + 2.60369i
\(490\) 0 0
\(491\) 1.43618 0.285675i 0.0648141 0.0128923i −0.162577 0.986696i \(-0.551981\pi\)
0.227391 + 0.973804i \(0.426981\pi\)
\(492\) 0 0
\(493\) −20.8531 + 13.9336i −0.939178 + 0.627539i
\(494\) 0 0
\(495\) −9.17024 9.17024i −0.412172 0.412172i
\(496\) 0 0
\(497\) −9.24919 + 9.24919i −0.414883 + 0.414883i
\(498\) 0 0
\(499\) 8.33594 + 12.4756i 0.373168 + 0.558485i 0.969760 0.244059i \(-0.0784791\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(500\) 0 0
\(501\) 8.63244 + 43.3982i 0.385669 + 1.93889i
\(502\) 0 0
\(503\) 9.56425 + 3.96164i 0.426449 + 0.176641i 0.585577 0.810617i \(-0.300868\pi\)
−0.159128 + 0.987258i \(0.550868\pi\)
\(504\) 0 0
\(505\) 6.10871 2.53031i 0.271834 0.112597i
\(506\) 0 0
\(507\) −21.3963 + 32.0218i −0.950242 + 1.42214i
\(508\) 0 0
\(509\) 1.27790 + 0.254190i 0.0566419 + 0.0112668i 0.223330 0.974743i \(-0.428307\pi\)
−0.166688 + 0.986010i \(0.553307\pi\)
\(510\) 0 0
\(511\) 2.83566 0.125442
\(512\) 0 0
\(513\) −49.7011 −2.19436
\(514\) 0 0
\(515\) 12.7412 + 2.53437i 0.561443 + 0.111678i
\(516\) 0 0
\(517\) −5.94524 + 8.89768i −0.261471 + 0.391320i
\(518\) 0 0
\(519\) −52.2233 + 21.6316i −2.29235 + 0.949522i
\(520\) 0 0
\(521\) −30.4733 12.6225i −1.33506 0.553001i −0.402967 0.915215i \(-0.632021\pi\)
−0.932095 + 0.362214i \(0.882021\pi\)
\(522\) 0 0
\(523\) 0.709853 + 3.56867i 0.0310397 + 0.156047i 0.993197 0.116448i \(-0.0371510\pi\)
−0.962157 + 0.272496i \(0.912151\pi\)
\(524\) 0 0
\(525\) 11.1302 + 16.6574i 0.485760 + 0.726991i
\(526\) 0 0
\(527\) −33.8610 + 33.8610i −1.47501 + 1.47501i
\(528\) 0 0
\(529\) 16.1105 + 16.1105i 0.700455 + 0.700455i
\(530\) 0 0
\(531\) −9.67673 + 6.46579i −0.419934 + 0.280591i
\(532\) 0 0
\(533\) −3.59702 + 0.715492i −0.155804 + 0.0309914i
\(534\) 0 0
\(535\) 3.47264 8.38370i 0.150135 0.362459i
\(536\) 0 0
\(537\) 12.5499 + 30.2982i 0.541570 + 1.30747i
\(538\) 0 0
\(539\) 1.32649 + 0.886330i 0.0571358 + 0.0381769i
\(540\) 0 0
\(541\) −0.728776 + 3.66380i −0.0313325 + 0.157519i −0.993284 0.115701i \(-0.963089\pi\)
0.961952 + 0.273220i \(0.0880887\pi\)
\(542\) 0 0
\(543\) 10.8770i 0.466776i
\(544\) 0 0
\(545\) 7.18326i 0.307697i
\(546\) 0 0
\(547\) 2.21811 11.1512i 0.0948394 0.476790i −0.903952 0.427635i \(-0.859347\pi\)
0.998791 0.0491555i \(-0.0156530\pi\)
\(548\) 0 0
\(549\) 34.2536 + 22.8875i 1.46191 + 0.976815i
\(550\) 0 0
\(551\) −10.1200 24.4319i −0.431128 1.04083i
\(552\) 0 0
\(553\) 0.237181 0.572605i 0.0100859 0.0243496i
\(554\) 0 0
\(555\) −2.64135 + 0.525397i −0.112119 + 0.0223019i
\(556\) 0 0
\(557\) 15.2399 10.1830i 0.645734 0.431466i −0.189107 0.981956i \(-0.560559\pi\)
0.834841 + 0.550491i \(0.185559\pi\)
\(558\) 0 0
\(559\) −1.57776 1.57776i −0.0667321 0.0667321i
\(560\) 0 0
\(561\) −12.9923 + 12.9923i −0.548536 + 0.548536i
\(562\) 0 0
\(563\) 2.21898 + 3.32093i 0.0935187 + 0.139961i 0.875279 0.483619i \(-0.160678\pi\)
−0.781760 + 0.623579i \(0.785678\pi\)
\(564\) 0 0
\(565\) −5.30813 26.6858i −0.223315 1.12268i
\(566\) 0 0
\(567\) −29.7969 12.3423i −1.25135 0.518327i
\(568\) 0 0
\(569\) 27.7449 11.4923i 1.16313 0.481783i 0.284213 0.958761i \(-0.408268\pi\)
0.878915 + 0.476978i \(0.158268\pi\)
\(570\) 0 0
\(571\) 17.3752 26.0038i 0.727128 1.08822i −0.265152 0.964207i \(-0.585422\pi\)
0.992280 0.124017i \(-0.0395777\pi\)
\(572\) 0 0
\(573\) −2.15292 0.428243i −0.0899396 0.0178901i
\(574\) 0 0
\(575\) −1.06649 −0.0444756
\(576\) 0 0
\(577\) −4.61192 −0.191997 −0.0959984 0.995381i \(-0.530604\pi\)
−0.0959984 + 0.995381i \(0.530604\pi\)
\(578\) 0 0
\(579\) 15.8244 + 3.14768i 0.657642 + 0.130813i
\(580\) 0 0
\(581\) 9.91996 14.8463i 0.411549 0.615927i
\(582\) 0 0
\(583\) 4.84781 2.00803i 0.200776 0.0831640i
\(584\) 0 0
\(585\) 5.45377 + 2.25903i 0.225486 + 0.0933992i
\(586\) 0 0
\(587\) −4.06182 20.4202i −0.167649 0.842831i −0.969459 0.245252i \(-0.921129\pi\)
0.801810 0.597579i \(-0.203871\pi\)
\(588\) 0 0
\(589\) −28.0525 41.9835i −1.15588 1.72990i
\(590\) 0 0
\(591\) 32.0588 32.0588i 1.31872 1.31872i
\(592\) 0 0
\(593\) −3.69463 3.69463i −0.151720 0.151720i 0.627166 0.778886i \(-0.284215\pi\)
−0.778886 + 0.627166i \(0.784215\pi\)
\(594\) 0 0
\(595\) −18.8199 + 12.5750i −0.771539 + 0.515526i
\(596\) 0 0
\(597\) −1.43234 + 0.284911i −0.0586218 + 0.0116606i
\(598\) 0 0
\(599\) 4.44136 10.7224i 0.181469 0.438105i −0.806801 0.590824i \(-0.798803\pi\)
0.988270 + 0.152719i \(0.0488028\pi\)
\(600\) 0 0
\(601\) −4.16840 10.0634i −0.170033 0.410495i 0.815776 0.578368i \(-0.196310\pi\)
−0.985809 + 0.167873i \(0.946310\pi\)
\(602\) 0 0
\(603\) 31.8462 + 21.2789i 1.29688 + 0.866546i
\(604\) 0 0
\(605\) −3.01888 + 15.1769i −0.122735 + 0.617030i
\(606\) 0 0
\(607\) 29.1457i 1.18299i 0.806310 + 0.591493i \(0.201461\pi\)
−0.806310 + 0.591493i \(0.798539\pi\)
\(608\) 0 0
\(609\) 45.7937i 1.85565i
\(610\) 0 0
\(611\) 0.950281 4.77739i 0.0384443 0.193272i
\(612\) 0 0
\(613\) 5.29850 + 3.54035i 0.214005 + 0.142993i 0.657953 0.753059i \(-0.271423\pi\)
−0.443948 + 0.896052i \(0.646423\pi\)
\(614\) 0 0
\(615\) −12.2096 29.4767i −0.492340 1.18862i
\(616\) 0 0
\(617\) 3.88763 9.38556i 0.156510 0.377849i −0.826102 0.563521i \(-0.809446\pi\)
0.982612 + 0.185673i \(0.0594464\pi\)
\(618\) 0 0
\(619\) −3.09719 + 0.616070i −0.124487 + 0.0247620i −0.256940 0.966427i \(-0.582714\pi\)
0.132454 + 0.991189i \(0.457714\pi\)
\(620\) 0 0
\(621\) 3.80951 2.54544i 0.152871 0.102145i
\(622\) 0 0
\(623\) −7.90057 7.90057i −0.316530 0.316530i
\(624\) 0 0
\(625\) 5.85477 5.85477i 0.234191 0.234191i
\(626\) 0 0
\(627\) −10.7636 16.1089i −0.429856 0.643326i
\(628\) 0 0
\(629\) 0.502703 + 2.52726i 0.0200441 + 0.100768i
\(630\) 0 0
\(631\) 29.9605 + 12.4100i 1.19271 + 0.494036i 0.888636 0.458613i \(-0.151653\pi\)
0.304073 + 0.952649i \(0.401653\pi\)
\(632\) 0 0
\(633\) 41.2117 17.0705i 1.63802 0.678490i
\(634\) 0 0
\(635\) −20.0666 + 30.0318i −0.796319 + 1.19178i
\(636\) 0 0
\(637\) −0.712223 0.141670i −0.0282193 0.00561317i
\(638\) 0 0
\(639\) 28.3954 1.12331
\(640\) 0 0
\(641\) 27.6811 1.09334 0.546668 0.837349i \(-0.315896\pi\)
0.546668 + 0.837349i \(0.315896\pi\)
\(642\) 0 0
\(643\) 42.4514 + 8.44410i 1.67412 + 0.333003i 0.938733 0.344646i \(-0.112001\pi\)
0.735386 + 0.677649i \(0.237001\pi\)
\(644\) 0 0
\(645\) 10.7842 16.1397i 0.424629 0.635502i
\(646\) 0 0
\(647\) 35.3075 14.6248i 1.38808 0.574962i 0.441451 0.897285i \(-0.354464\pi\)
0.946630 + 0.322324i \(0.104464\pi\)
\(648\) 0 0
\(649\) −2.17633 0.901466i −0.0854285 0.0353856i
\(650\) 0 0
\(651\) −17.0581 85.7570i −0.668560 3.36108i
\(652\) 0 0
\(653\) −13.3150 19.9272i −0.521055 0.779813i 0.473853 0.880604i \(-0.342863\pi\)
−0.994908 + 0.100791i \(0.967863\pi\)
\(654\) 0 0
\(655\) 8.37343 8.37343i 0.327177 0.327177i
\(656\) 0 0
\(657\) −4.35281 4.35281i −0.169819 0.169819i
\(658\) 0 0
\(659\) 17.2984 11.5584i 0.673852 0.450253i −0.170988 0.985273i \(-0.554696\pi\)
0.844839 + 0.535020i \(0.179696\pi\)
\(660\) 0 0
\(661\) −14.9381 + 2.97137i −0.581025 + 0.115573i −0.476848 0.878986i \(-0.658221\pi\)
−0.104177 + 0.994559i \(0.533221\pi\)
\(662\) 0 0
\(663\) 3.20057 7.72685i 0.124300 0.300086i
\(664\) 0 0
\(665\) −9.13327 22.0497i −0.354173 0.855049i
\(666\) 0 0
\(667\) 2.02696 + 1.35437i 0.0784842 + 0.0524415i
\(668\) 0 0
\(669\) −12.1832 + 61.2489i −0.471028 + 2.36802i
\(670\) 0 0
\(671\) 8.33848i 0.321903i
\(672\) 0 0
\(673\) 33.8371i 1.30432i −0.758080 0.652162i \(-0.773862\pi\)
0.758080 0.652162i \(-0.226138\pi\)
\(674\) 0 0
\(675\) 4.40558 22.1483i 0.169571 0.852490i
\(676\) 0 0
\(677\) −28.0419 18.7370i −1.07774 0.720121i −0.115768 0.993276i \(-0.536933\pi\)
−0.961970 + 0.273155i \(0.911933\pi\)
\(678\) 0 0
\(679\) 15.1522 + 36.5807i 0.581489 + 1.40384i
\(680\) 0 0
\(681\) −22.8501 + 55.1649i −0.875616 + 2.11392i
\(682\) 0 0
\(683\) 14.0115 2.78707i 0.536137 0.106644i 0.0804066 0.996762i \(-0.474378\pi\)
0.455730 + 0.890118i \(0.349378\pi\)
\(684\) 0 0
\(685\) −15.1513 + 10.1238i −0.578901 + 0.386809i
\(686\) 0 0
\(687\) −46.8998 46.8998i −1.78934 1.78934i
\(688\) 0 0
\(689\) −1.68889 + 1.68889i −0.0643415 + 0.0643415i
\(690\) 0 0
\(691\) 10.9236 + 16.3483i 0.415552 + 0.621918i 0.978909 0.204296i \(-0.0654904\pi\)
−0.563357 + 0.826214i \(0.690490\pi\)
\(692\) 0 0
\(693\) −4.42013 22.2215i −0.167907 0.844125i
\(694\) 0 0
\(695\) 5.86275 + 2.42843i 0.222387 + 0.0921156i
\(696\) 0 0
\(697\) −28.2035 + 11.6823i −1.06828 + 0.442497i
\(698\) 0 0
\(699\) 6.60877 9.89072i 0.249967 0.374101i
\(700\) 0 0
\(701\) −11.0341 2.19482i −0.416753 0.0828974i −0.0177402 0.999843i \(-0.505647\pi\)
−0.399013 + 0.916945i \(0.630647\pi\)
\(702\) 0 0
\(703\) −2.71702 −0.102474
\(704\) 0 0
\(705\) 42.3751 1.59594
\(706\) 0 0
\(707\) 11.3295 + 2.25358i 0.426091 + 0.0847548i
\(708\) 0 0
\(709\) 23.4418 35.0831i 0.880374 1.31757i −0.0671017 0.997746i \(-0.521375\pi\)
0.947476 0.319827i \(-0.103625\pi\)
\(710\) 0 0
\(711\) −1.24304 + 0.514884i −0.0466176 + 0.0193097i
\(712\) 0 0
\(713\) 4.30035 + 1.78127i 0.161050 + 0.0667089i
\(714\) 0 0
\(715\) 0.233101 + 1.17188i 0.00871749 + 0.0438258i
\(716\) 0 0
\(717\) 11.6504 + 17.4360i 0.435091 + 0.651160i
\(718\) 0 0
\(719\) 9.10621 9.10621i 0.339604 0.339604i −0.516614 0.856218i \(-0.672808\pi\)
0.856218 + 0.516614i \(0.172808\pi\)
\(720\) 0 0
\(721\) 16.0481 + 16.0481i 0.597663 + 0.597663i
\(722\) 0 0
\(723\) −6.09576 + 4.07305i −0.226704 + 0.151479i
\(724\) 0 0
\(725\) 11.7847 2.34411i 0.437671 0.0870582i
\(726\) 0 0
\(727\) −8.28934 + 20.0122i −0.307435 + 0.742213i 0.692352 + 0.721560i \(0.256574\pi\)
−0.999787 + 0.0206529i \(0.993426\pi\)
\(728\) 0 0
\(729\) −7.57994 18.2996i −0.280739 0.677763i
\(730\) 0 0
\(731\) −15.4426 10.3184i −0.571165 0.381640i
\(732\) 0 0
\(733\) 1.86746 9.38837i 0.0689763 0.346767i −0.930850 0.365401i \(-0.880932\pi\)
0.999826 + 0.0186340i \(0.00593174\pi\)
\(734\) 0 0
\(735\) 6.31738i 0.233020i
\(736\) 0 0
\(737\) 7.75244i 0.285565i
\(738\) 0 0
\(739\) −3.72209 + 18.7122i −0.136919 + 0.688340i 0.849956 + 0.526854i \(0.176629\pi\)
−0.986875 + 0.161486i \(0.948371\pi\)
\(740\) 0 0
\(741\) 7.33247 + 4.89940i 0.269365 + 0.179984i
\(742\) 0 0
\(743\) 2.74886 + 6.63633i 0.100846 + 0.243463i 0.966248 0.257615i \(-0.0829368\pi\)
−0.865402 + 0.501079i \(0.832937\pi\)
\(744\) 0 0
\(745\) 14.0084 33.8193i 0.513228 1.23904i
\(746\) 0 0
\(747\) −38.0168 + 7.56200i −1.39096 + 0.276679i
\(748\) 0 0
\(749\) 13.1817 8.80771i 0.481648 0.321827i
\(750\) 0 0
\(751\) 1.88191 + 1.88191i 0.0686719 + 0.0686719i 0.740609 0.671937i \(-0.234537\pi\)
−0.671937 + 0.740609i \(0.734537\pi\)
\(752\) 0 0
\(753\) 1.47249 1.47249i 0.0536606 0.0536606i
\(754\) 0 0
\(755\) −7.14383 10.6915i −0.259991 0.389104i
\(756\) 0 0
\(757\) −7.70412 38.7312i −0.280011 1.40771i −0.823034 0.567992i \(-0.807720\pi\)
0.543023 0.839718i \(-0.317280\pi\)
\(758\) 0 0
\(759\) 1.65002 + 0.683463i 0.0598921 + 0.0248081i
\(760\) 0 0
\(761\) −7.53878 + 3.12266i −0.273280 + 0.113196i −0.515115 0.857121i \(-0.672251\pi\)
0.241835 + 0.970317i \(0.422251\pi\)
\(762\) 0 0
\(763\) −6.97211 + 10.4345i −0.252407 + 0.377754i
\(764\) 0 0
\(765\) 48.1919 + 9.58596i 1.74238 + 0.346581i
\(766\) 0 0
\(767\) 1.07225 0.0387167
\(768\) 0 0
\(769\) 3.77877 0.136266 0.0681330 0.997676i \(-0.478296\pi\)
0.0681330 + 0.997676i \(0.478296\pi\)
\(770\) 0 0
\(771\) −72.5677 14.4346i −2.61346 0.519850i
\(772\) 0 0
\(773\) 2.84091 4.25173i 0.102181 0.152924i −0.776856 0.629678i \(-0.783187\pi\)
0.879037 + 0.476754i \(0.158187\pi\)
\(774\) 0 0
\(775\) 21.1957 8.77956i 0.761373 0.315371i
\(776\) 0 0
\(777\) −4.34681 1.80051i −0.155941 0.0645929i
\(778\) 0 0
\(779\) −6.27971 31.5702i −0.224994 1.13112i
\(780\) 0 0
\(781\) 3.19312 + 4.77884i 0.114259 + 0.171000i
\(782\) 0 0
\(783\) −36.5002 + 36.5002i −1.30441 + 1.30441i
\(784\) 0 0
\(785\) 24.4485 + 24.4485i 0.872605 + 0.872605i
\(786\) 0 0
\(787\) −25.7884 + 17.2312i −0.919257 + 0.614228i −0.922596 0.385767i \(-0.873937\pi\)
0.00333965 + 0.999994i \(0.498937\pi\)
\(788\) 0 0
\(789\) 30.9820 6.16271i 1.10299 0.219398i
\(790\) 0 0
\(791\) 18.1907 43.9162i 0.646786 1.56148i
\(792\) 0 0
\(793\) −1.45249 3.50662i −0.0515793 0.124524i
\(794\) 0 0
\(795\) −17.2765 11.5438i −0.612736 0.409417i
\(796\) 0 0
\(797\) −0.860359 + 4.32532i −0.0304755 + 0.153211i −0.993027 0.117889i \(-0.962387\pi\)
0.962551 + 0.271100i \(0.0873873\pi\)
\(798\) 0 0
\(799\) 40.5448i 1.43437i
\(800\) 0 0
\(801\) 24.2551i 0.857013i
\(802\) 0 0
\(803\) 0.243079 1.22204i 0.00857807 0.0431249i
\(804\) 0 0
\(805\) 1.82932 + 1.22231i 0.0644751 + 0.0430809i
\(806\) 0 0
\(807\) −36.2868 87.6041i −1.27736 3.08381i
\(808\) 0 0
\(809\) −4.29079 + 10.3589i −0.150856 + 0.364199i −0.981184 0.193077i \(-0.938153\pi\)
0.830327 + 0.557276i \(0.188153\pi\)
\(810\) 0 0
\(811\) 3.92167 0.780069i 0.137709 0.0273919i −0.125755 0.992061i \(-0.540135\pi\)
0.263463 + 0.964669i \(0.415135\pi\)
\(812\) 0 0
\(813\) 42.3363 28.2882i 1.48480 0.992110i
\(814\) 0 0
\(815\) 23.8528 + 23.8528i 0.835528 + 0.835528i
\(816\) 0 0
\(817\) 13.8476 13.8476i 0.484467 0.484467i
\(818\) 0 0
\(819\) 5.72960 + 8.57495i 0.200208 + 0.299633i
\(820\) 0 0
\(821\) 7.39036 + 37.1538i 0.257925 + 1.29668i 0.864895 + 0.501953i \(0.167385\pi\)
−0.606970 + 0.794725i \(0.707615\pi\)
\(822\) 0 0
\(823\) −13.1154 5.43259i −0.457175 0.189368i 0.142197 0.989838i \(-0.454583\pi\)
−0.599373 + 0.800470i \(0.704583\pi\)
\(824\) 0 0
\(825\) 8.13270 3.36867i 0.283144 0.117282i
\(826\) 0 0
\(827\) 13.3036 19.9102i 0.462611 0.692347i −0.524674 0.851303i \(-0.675813\pi\)
0.987286 + 0.158956i \(0.0508129\pi\)
\(828\) 0 0
\(829\) −12.2166 2.43003i −0.424299 0.0843983i −0.0216779 0.999765i \(-0.506901\pi\)
−0.402621 + 0.915367i \(0.631901\pi\)
\(830\) 0 0
\(831\) −79.0731 −2.74302
\(832\) 0 0
\(833\) −6.04450 −0.209430
\(834\) 0 0
\(835\) 23.4908 + 4.67260i 0.812932 + 0.161702i
\(836\) 0 0
\(837\) −54.7570 + 81.9497i −1.89268 + 2.83259i
\(838\) 0 0
\(839\) 26.8826 11.1351i 0.928089 0.384427i 0.133136 0.991098i \(-0.457495\pi\)
0.794953 + 0.606671i \(0.207495\pi\)
\(840\) 0 0
\(841\) 1.41778 + 0.587262i 0.0488888 + 0.0202504i
\(842\) 0 0
\(843\) 14.5314 + 73.0540i 0.500486 + 2.51612i
\(844\) 0 0
\(845\) 11.5815 + 17.3329i 0.398415 + 0.596270i
\(846\) 0 0
\(847\) −19.1161 + 19.1161i −0.656836 + 0.656836i
\(848\) 0 0
\(849\) 49.9329 + 49.9329i 1.71369 + 1.71369i
\(850\) 0 0
\(851\) 0.208255 0.139152i 0.00713889 0.00477006i
\(852\) 0 0
\(853\) −29.6923 + 5.90616i −1.01664 + 0.202223i −0.675165 0.737666i \(-0.735928\pi\)
−0.341479 + 0.939889i \(0.610928\pi\)
\(854\) 0 0
\(855\) −19.8270 + 47.8665i −0.678068 + 1.63700i
\(856\) 0 0
\(857\) −0.425175 1.02646i −0.0145237 0.0350633i 0.916451 0.400146i \(-0.131041\pi\)
−0.930975 + 0.365083i \(0.881041\pi\)
\(858\) 0 0
\(859\) −40.2028 26.8627i −1.37170 0.916543i −0.371773 0.928324i \(-0.621250\pi\)
−0.999931 + 0.0117809i \(0.996250\pi\)
\(860\) 0 0
\(861\) 10.8743 54.6690i 0.370596 1.86311i
\(862\) 0 0
\(863\) 54.0259i 1.83906i 0.393018 + 0.919531i \(0.371431\pi\)
−0.393018 + 0.919531i \(0.628569\pi\)
\(864\) 0 0
\(865\) 30.5967i 1.04032i
\(866\) 0 0
\(867\) 3.49977 17.5945i 0.118858 0.597542i
\(868\) 0 0
\(869\) −0.226435 0.151299i −0.00768127 0.00513246i
\(870\) 0 0
\(871\) −1.35040 3.26016i −0.0457567 0.110466i
\(872\) 0 0
\(873\) 32.8932 79.4113i 1.11327 2.68766i
\(874\) 0 0
\(875\) 33.8299 6.72919i 1.14366 0.227488i
\(876\) 0 0
\(877\) −25.7807 + 17.2261i −0.870552 + 0.581684i −0.908635 0.417590i \(-0.862875\pi\)
0.0380835 + 0.999275i \(0.487875\pi\)
\(878\) 0 0
\(879\) 60.8679 + 60.8679i 2.05302 + 2.05302i
\(880\) 0 0
\(881\) 24.7406 24.7406i 0.833533 0.833533i −0.154465 0.987998i \(-0.549365\pi\)
0.987998 + 0.154465i \(0.0493655\pi\)
\(882\) 0 0
\(883\) −17.5606 26.2813i −0.590962 0.884436i 0.408639 0.912696i \(-0.366003\pi\)
−0.999601 + 0.0282597i \(0.991003\pi\)
\(884\) 0 0
\(885\) 1.81981 + 9.14880i 0.0611722 + 0.307534i
\(886\) 0 0
\(887\) 15.7202 + 6.51152i 0.527833 + 0.218635i 0.630654 0.776064i \(-0.282787\pi\)
−0.102821 + 0.994700i \(0.532787\pi\)
\(888\) 0 0
\(889\) −58.2981 + 24.1479i −1.95525 + 0.809893i
\(890\) 0 0
\(891\) −7.87321 + 11.7831i −0.263763 + 0.394749i
\(892\) 0 0
\(893\) 41.9301 + 8.34041i 1.40314 + 0.279101i
\(894\) 0 0
\(895\) 17.7512 0.593357
\(896\) 0 0
\(897\) −0.812945 −0.0271434
\(898\) 0 0
\(899\) −51.4340 10.2309i −1.71542 0.341218i
\(900\) 0 0
\(901\) −11.0452 + 16.5303i −0.367968 + 0.550704i
\(902\) 0 0
\(903\) 31.3306 12.9776i 1.04262 0.431867i
\(904\) 0 0
\(905\) 5.43938 + 2.25306i 0.180811 + 0.0748944i
\(906\) 0 0
\(907\) 7.39593 + 37.1818i 0.245578 + 1.23460i 0.884943 + 0.465699i \(0.154197\pi\)
−0.639365 + 0.768903i \(0.720803\pi\)
\(908\) 0 0
\(909\) −13.9318 20.8504i −0.462088 0.691564i
\(910\) 0 0
\(911\) 30.6254 30.6254i 1.01467 1.01467i 0.0147749 0.999891i \(-0.495297\pi\)
0.999891 0.0147749i \(-0.00470317\pi\)
\(912\) 0 0
\(913\) −5.54770 5.54770i −0.183602 0.183602i
\(914\) 0 0
\(915\) 27.4545 18.3445i 0.907618 0.606451i
\(916\) 0 0
\(917\) 20.2907 4.03606i 0.670057 0.133283i
\(918\) 0 0
\(919\) −3.89489 + 9.40310i −0.128481 + 0.310180i −0.975010 0.222163i \(-0.928688\pi\)
0.846529 + 0.532343i \(0.178688\pi\)
\(920\) 0 0
\(921\) 12.5988 + 30.4163i 0.415146 + 1.00225i
\(922\) 0 0
\(923\) −2.17524 1.45345i −0.0715990 0.0478409i
\(924\) 0 0
\(925\) 0.240840 1.21079i 0.00791878 0.0398104i
\(926\) 0 0
\(927\) 49.2684i 1.61819i
\(928\) 0 0
\(929\) 0.932872i 0.0306066i 0.999883 + 0.0153033i \(0.00487137\pi\)
−0.999883 + 0.0153033i \(0.995129\pi\)
\(930\) 0 0
\(931\) 1.24341 6.25102i 0.0407510 0.204869i
\(932\) 0 0
\(933\) −18.9129 12.6372i −0.619182 0.413724i
\(934\) 0 0
\(935\) 3.80598 + 9.18845i 0.124469 + 0.300494i
\(936\) 0 0
\(937\) 9.77432 23.5973i 0.319313 0.770890i −0.679978 0.733233i \(-0.738010\pi\)
0.999291 0.0376573i \(-0.0119895\pi\)
\(938\) 0 0
\(939\) 67.5940 13.4453i 2.20585 0.438770i
\(940\) 0 0
\(941\) −14.0830 + 9.40994i −0.459092 + 0.306755i −0.763525 0.645778i \(-0.776533\pi\)
0.304433 + 0.952534i \(0.401533\pi\)
\(942\) 0 0
\(943\) 2.09819 + 2.09819i 0.0683266 + 0.0683266i
\(944\) 0 0
\(945\) −32.9413 + 32.9413i −1.07158 + 1.07158i
\(946\) 0 0
\(947\) 13.0115 + 19.4731i 0.422818 + 0.632791i 0.980327 0.197379i \(-0.0632430\pi\)
−0.557510 + 0.830171i \(0.688243\pi\)
\(948\) 0 0
\(949\) 0.110645 + 0.556252i 0.00359170 + 0.0180567i
\(950\) 0 0
\(951\) −37.0752 15.3571i −1.20225 0.497987i
\(952\) 0 0
\(953\) 44.5204 18.4410i 1.44216 0.597361i 0.481838 0.876261i \(-0.339970\pi\)
0.960320 + 0.278899i \(0.0899695\pi\)
\(954\) 0 0
\(955\) −0.660114 + 0.987930i −0.0213608 + 0.0319687i
\(956\) 0 0
\(957\) −19.7350 3.92553i −0.637941 0.126894i
\(958\) 0 0
\(959\) −31.8352 −1.02801
\(960\) 0 0
\(961\) −69.1305 −2.23002
\(962\) 0 0
\(963\) −33.7542 6.71413i −1.08771 0.216360i
\(964\) 0 0
\(965\) 4.85198 7.26150i 0.156191 0.233756i
\(966\) 0 0
\(967\) −25.4255 + 10.5316i −0.817629 + 0.338673i −0.751993 0.659171i \(-0.770907\pi\)
−0.0656353 + 0.997844i \(0.520907\pi\)
\(968\) 0 0
\(969\) 67.8169 + 28.0907i 2.17859 + 0.902402i
\(970\) 0 0
\(971\) 3.37327 + 16.9586i 0.108254 + 0.544227i 0.996408 + 0.0846822i \(0.0269875\pi\)
−0.888154 + 0.459545i \(0.848012\pi\)
\(972\) 0 0
\(973\) 6.15926 + 9.21798i 0.197457 + 0.295515i
\(974\) 0 0
\(975\) −2.83328 + 2.83328i −0.0907377 + 0.0907377i
\(976\) 0 0
\(977\) −26.1853 26.1853i −0.837743 0.837743i 0.150818 0.988562i \(-0.451809\pi\)
−0.988562 + 0.150818i \(0.951809\pi\)
\(978\) 0 0
\(979\) −4.08204 + 2.72753i −0.130463 + 0.0871723i
\(980\) 0 0
\(981\) 26.7195 5.31485i 0.853089 0.169690i
\(982\) 0 0
\(983\) 0.628339 1.51695i 0.0200409 0.0483831i −0.913542 0.406744i \(-0.866664\pi\)
0.933583 + 0.358361i \(0.116664\pi\)
\(984\) 0 0
\(985\) −9.39134 22.6727i −0.299233 0.722412i
\(986\) 0 0
\(987\) 61.5547 + 41.1295i 1.95931 + 1.30917i
\(988\) 0 0
\(989\) −0.352195 + 1.77060i −0.0111991 + 0.0563019i
\(990\) 0 0
\(991\) 0.482249i 0.0153191i 0.999971 + 0.00765957i \(0.00243814\pi\)
−0.999971 + 0.00765957i \(0.997562\pi\)
\(992\) 0 0
\(993\) 15.5019i 0.491938i
\(994\) 0 0
\(995\) −0.154218 + 0.775305i −0.00488903 + 0.0245788i
\(996\) 0 0
\(997\) 5.71075 + 3.81580i 0.180861 + 0.120848i 0.642705 0.766114i \(-0.277812\pi\)
−0.461844 + 0.886961i \(0.652812\pi\)
\(998\) 0 0
\(999\) 2.02955 + 4.89978i 0.0642123 + 0.155022i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 512.2.i.a.161.1 56
4.3 odd 2 512.2.i.b.161.7 56
8.3 odd 2 64.2.i.a.29.6 56
8.5 even 2 256.2.i.a.209.7 56
24.11 even 2 576.2.bd.a.541.2 56
64.11 odd 16 512.2.i.b.353.7 56
64.21 even 16 256.2.i.a.49.7 56
64.43 odd 16 64.2.i.a.53.6 yes 56
64.53 even 16 inner 512.2.i.a.353.1 56
192.107 even 16 576.2.bd.a.181.2 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.29.6 56 8.3 odd 2
64.2.i.a.53.6 yes 56 64.43 odd 16
256.2.i.a.49.7 56 64.21 even 16
256.2.i.a.209.7 56 8.5 even 2
512.2.i.a.161.1 56 1.1 even 1 trivial
512.2.i.a.353.1 56 64.53 even 16 inner
512.2.i.b.161.7 56 4.3 odd 2
512.2.i.b.353.7 56 64.11 odd 16
576.2.bd.a.181.2 56 192.107 even 16
576.2.bd.a.541.2 56 24.11 even 2