Properties

Label 511.2.a.f.1.7
Level $511$
Weight $2$
Character 511.1
Self dual yes
Analytic conductor $4.080$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [511,2,Mod(1,511)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("511.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(511, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 511 = 7 \cdot 73 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 511.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.08035554329\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} - 9x^{8} + 50x^{7} + 4x^{6} - 194x^{5} + 123x^{4} + 224x^{3} - 231x^{2} + 11x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.62440\) of defining polynomial
Character \(\chi\) \(=\) 511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.62440 q^{2} +3.20819 q^{3} +0.638683 q^{4} -0.880948 q^{5} +5.21139 q^{6} -1.00000 q^{7} -2.21133 q^{8} +7.29249 q^{9} -1.43101 q^{10} +4.50130 q^{11} +2.04902 q^{12} -0.617862 q^{13} -1.62440 q^{14} -2.82625 q^{15} -4.86945 q^{16} -6.73844 q^{17} +11.8459 q^{18} +2.49810 q^{19} -0.562647 q^{20} -3.20819 q^{21} +7.31193 q^{22} +2.73834 q^{23} -7.09436 q^{24} -4.22393 q^{25} -1.00366 q^{26} +13.7711 q^{27} -0.638683 q^{28} -4.21227 q^{29} -4.59097 q^{30} +0.662962 q^{31} -3.48730 q^{32} +14.4410 q^{33} -10.9459 q^{34} +0.880948 q^{35} +4.65759 q^{36} -8.47222 q^{37} +4.05792 q^{38} -1.98222 q^{39} +1.94806 q^{40} +3.58769 q^{41} -5.21139 q^{42} +1.49723 q^{43} +2.87491 q^{44} -6.42430 q^{45} +4.44817 q^{46} -5.90627 q^{47} -15.6221 q^{48} +1.00000 q^{49} -6.86136 q^{50} -21.6182 q^{51} -0.394618 q^{52} -2.68808 q^{53} +22.3698 q^{54} -3.96542 q^{55} +2.21133 q^{56} +8.01438 q^{57} -6.84242 q^{58} -11.1140 q^{59} -1.80508 q^{60} -5.21745 q^{61} +1.07692 q^{62} -7.29249 q^{63} +4.07413 q^{64} +0.544305 q^{65} +23.4581 q^{66} +13.3696 q^{67} -4.30373 q^{68} +8.78513 q^{69} +1.43101 q^{70} +10.8752 q^{71} -16.1261 q^{72} +1.00000 q^{73} -13.7623 q^{74} -13.5512 q^{75} +1.59550 q^{76} -4.50130 q^{77} -3.21992 q^{78} +7.70239 q^{79} +4.28973 q^{80} +22.3029 q^{81} +5.82786 q^{82} +11.1885 q^{83} -2.04902 q^{84} +5.93622 q^{85} +2.43210 q^{86} -13.5138 q^{87} -9.95385 q^{88} +8.04790 q^{89} -10.4357 q^{90} +0.617862 q^{91} +1.74893 q^{92} +2.12691 q^{93} -9.59416 q^{94} -2.20070 q^{95} -11.1879 q^{96} -18.6092 q^{97} +1.62440 q^{98} +32.8257 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - q^{3} + 14 q^{4} + q^{5} + 2 q^{6} - 10 q^{7} + 6 q^{8} + 39 q^{9} - 6 q^{10} + 5 q^{11} + q^{12} - q^{13} - 4 q^{14} + q^{15} + 14 q^{16} + 8 q^{17} + 26 q^{18} + 2 q^{19} - 16 q^{20}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.62440 1.14863 0.574313 0.818636i \(-0.305269\pi\)
0.574313 + 0.818636i \(0.305269\pi\)
\(3\) 3.20819 1.85225 0.926125 0.377217i \(-0.123119\pi\)
0.926125 + 0.377217i \(0.123119\pi\)
\(4\) 0.638683 0.319342
\(5\) −0.880948 −0.393972 −0.196986 0.980406i \(-0.563115\pi\)
−0.196986 + 0.980406i \(0.563115\pi\)
\(6\) 5.21139 2.12754
\(7\) −1.00000 −0.377964
\(8\) −2.21133 −0.781822
\(9\) 7.29249 2.43083
\(10\) −1.43101 −0.452527
\(11\) 4.50130 1.35719 0.678597 0.734511i \(-0.262588\pi\)
0.678597 + 0.734511i \(0.262588\pi\)
\(12\) 2.04902 0.591501
\(13\) −0.617862 −0.171364 −0.0856821 0.996323i \(-0.527307\pi\)
−0.0856821 + 0.996323i \(0.527307\pi\)
\(14\) −1.62440 −0.434140
\(15\) −2.82625 −0.729735
\(16\) −4.86945 −1.21736
\(17\) −6.73844 −1.63431 −0.817156 0.576417i \(-0.804450\pi\)
−0.817156 + 0.576417i \(0.804450\pi\)
\(18\) 11.8459 2.79211
\(19\) 2.49810 0.573104 0.286552 0.958065i \(-0.407491\pi\)
0.286552 + 0.958065i \(0.407491\pi\)
\(20\) −0.562647 −0.125812
\(21\) −3.20819 −0.700085
\(22\) 7.31193 1.55891
\(23\) 2.73834 0.570984 0.285492 0.958381i \(-0.407843\pi\)
0.285492 + 0.958381i \(0.407843\pi\)
\(24\) −7.09436 −1.44813
\(25\) −4.22393 −0.844786
\(26\) −1.00366 −0.196833
\(27\) 13.7711 2.65025
\(28\) −0.638683 −0.120700
\(29\) −4.21227 −0.782198 −0.391099 0.920349i \(-0.627905\pi\)
−0.391099 + 0.920349i \(0.627905\pi\)
\(30\) −4.59097 −0.838192
\(31\) 0.662962 0.119071 0.0595357 0.998226i \(-0.481038\pi\)
0.0595357 + 0.998226i \(0.481038\pi\)
\(32\) −3.48730 −0.616473
\(33\) 14.4410 2.51386
\(34\) −10.9459 −1.87721
\(35\) 0.880948 0.148907
\(36\) 4.65759 0.776265
\(37\) −8.47222 −1.39282 −0.696412 0.717642i \(-0.745221\pi\)
−0.696412 + 0.717642i \(0.745221\pi\)
\(38\) 4.05792 0.658282
\(39\) −1.98222 −0.317409
\(40\) 1.94806 0.308016
\(41\) 3.58769 0.560304 0.280152 0.959956i \(-0.409615\pi\)
0.280152 + 0.959956i \(0.409615\pi\)
\(42\) −5.21139 −0.804135
\(43\) 1.49723 0.228325 0.114162 0.993462i \(-0.463582\pi\)
0.114162 + 0.993462i \(0.463582\pi\)
\(44\) 2.87491 0.433409
\(45\) −6.42430 −0.957679
\(46\) 4.44817 0.655847
\(47\) −5.90627 −0.861518 −0.430759 0.902467i \(-0.641754\pi\)
−0.430759 + 0.902467i \(0.641754\pi\)
\(48\) −15.6221 −2.25486
\(49\) 1.00000 0.142857
\(50\) −6.86136 −0.970343
\(51\) −21.6182 −3.02715
\(52\) −0.394618 −0.0547237
\(53\) −2.68808 −0.369236 −0.184618 0.982810i \(-0.559105\pi\)
−0.184618 + 0.982810i \(0.559105\pi\)
\(54\) 22.3698 3.04415
\(55\) −3.96542 −0.534696
\(56\) 2.21133 0.295501
\(57\) 8.01438 1.06153
\(58\) −6.84242 −0.898454
\(59\) −11.1140 −1.44692 −0.723460 0.690366i \(-0.757449\pi\)
−0.723460 + 0.690366i \(0.757449\pi\)
\(60\) −1.80508 −0.233035
\(61\) −5.21745 −0.668027 −0.334013 0.942568i \(-0.608403\pi\)
−0.334013 + 0.942568i \(0.608403\pi\)
\(62\) 1.07692 0.136769
\(63\) −7.29249 −0.918767
\(64\) 4.07413 0.509266
\(65\) 0.544305 0.0675127
\(66\) 23.4581 2.88749
\(67\) 13.3696 1.63336 0.816681 0.577090i \(-0.195812\pi\)
0.816681 + 0.577090i \(0.195812\pi\)
\(68\) −4.30373 −0.521904
\(69\) 8.78513 1.05761
\(70\) 1.43101 0.171039
\(71\) 10.8752 1.29064 0.645322 0.763911i \(-0.276723\pi\)
0.645322 + 0.763911i \(0.276723\pi\)
\(72\) −16.1261 −1.90048
\(73\) 1.00000 0.117041
\(74\) −13.7623 −1.59983
\(75\) −13.5512 −1.56475
\(76\) 1.59550 0.183016
\(77\) −4.50130 −0.512971
\(78\) −3.21992 −0.364585
\(79\) 7.70239 0.866586 0.433293 0.901253i \(-0.357351\pi\)
0.433293 + 0.901253i \(0.357351\pi\)
\(80\) 4.28973 0.479607
\(81\) 22.3029 2.47810
\(82\) 5.82786 0.643579
\(83\) 11.1885 1.22809 0.614047 0.789269i \(-0.289540\pi\)
0.614047 + 0.789269i \(0.289540\pi\)
\(84\) −2.04902 −0.223566
\(85\) 5.93622 0.643873
\(86\) 2.43210 0.262260
\(87\) −13.5138 −1.44883
\(88\) −9.95385 −1.06108
\(89\) 8.04790 0.853076 0.426538 0.904470i \(-0.359733\pi\)
0.426538 + 0.904470i \(0.359733\pi\)
\(90\) −10.4357 −1.10001
\(91\) 0.617862 0.0647696
\(92\) 1.74893 0.182339
\(93\) 2.12691 0.220550
\(94\) −9.59416 −0.989562
\(95\) −2.20070 −0.225787
\(96\) −11.1879 −1.14186
\(97\) −18.6092 −1.88948 −0.944740 0.327821i \(-0.893686\pi\)
−0.944740 + 0.327821i \(0.893686\pi\)
\(98\) 1.62440 0.164089
\(99\) 32.8257 3.29911
\(100\) −2.69775 −0.269775
\(101\) 10.8432 1.07893 0.539467 0.842007i \(-0.318626\pi\)
0.539467 + 0.842007i \(0.318626\pi\)
\(102\) −35.1167 −3.47707
\(103\) −12.8510 −1.26624 −0.633122 0.774052i \(-0.718227\pi\)
−0.633122 + 0.774052i \(0.718227\pi\)
\(104\) 1.36630 0.133976
\(105\) 2.82625 0.275814
\(106\) −4.36652 −0.424114
\(107\) 16.5272 1.59774 0.798872 0.601501i \(-0.205430\pi\)
0.798872 + 0.601501i \(0.205430\pi\)
\(108\) 8.79538 0.846336
\(109\) 12.5807 1.20501 0.602507 0.798114i \(-0.294169\pi\)
0.602507 + 0.798114i \(0.294169\pi\)
\(110\) −6.44143 −0.614166
\(111\) −27.1805 −2.57986
\(112\) 4.86945 0.460120
\(113\) −7.85071 −0.738533 −0.369266 0.929324i \(-0.620391\pi\)
−0.369266 + 0.929324i \(0.620391\pi\)
\(114\) 13.0186 1.21930
\(115\) −2.41234 −0.224952
\(116\) −2.69031 −0.249789
\(117\) −4.50575 −0.416557
\(118\) −18.0536 −1.66197
\(119\) 6.73844 0.617712
\(120\) 6.24976 0.570522
\(121\) 9.26173 0.841975
\(122\) −8.47525 −0.767313
\(123\) 11.5100 1.03782
\(124\) 0.423423 0.0380245
\(125\) 8.12581 0.726794
\(126\) −11.8459 −1.05532
\(127\) 6.26305 0.555756 0.277878 0.960616i \(-0.410369\pi\)
0.277878 + 0.960616i \(0.410369\pi\)
\(128\) 13.5926 1.20143
\(129\) 4.80339 0.422915
\(130\) 0.884170 0.0775468
\(131\) 3.52221 0.307737 0.153868 0.988091i \(-0.450827\pi\)
0.153868 + 0.988091i \(0.450827\pi\)
\(132\) 9.22325 0.802781
\(133\) −2.49810 −0.216613
\(134\) 21.7177 1.87612
\(135\) −12.1316 −1.04413
\(136\) 14.9009 1.27774
\(137\) −0.205413 −0.0175496 −0.00877481 0.999962i \(-0.502793\pi\)
−0.00877481 + 0.999962i \(0.502793\pi\)
\(138\) 14.2706 1.21479
\(139\) 19.9614 1.69310 0.846551 0.532308i \(-0.178675\pi\)
0.846551 + 0.532308i \(0.178675\pi\)
\(140\) 0.562647 0.0475524
\(141\) −18.9484 −1.59575
\(142\) 17.6656 1.48247
\(143\) −2.78119 −0.232574
\(144\) −35.5104 −2.95920
\(145\) 3.71079 0.308164
\(146\) 1.62440 0.134437
\(147\) 3.20819 0.264607
\(148\) −5.41107 −0.444787
\(149\) −6.38767 −0.523298 −0.261649 0.965163i \(-0.584266\pi\)
−0.261649 + 0.965163i \(0.584266\pi\)
\(150\) −22.0126 −1.79732
\(151\) 15.5945 1.26906 0.634531 0.772897i \(-0.281193\pi\)
0.634531 + 0.772897i \(0.281193\pi\)
\(152\) −5.52412 −0.448065
\(153\) −49.1400 −3.97273
\(154\) −7.31193 −0.589212
\(155\) −0.584035 −0.0469108
\(156\) −1.26601 −0.101362
\(157\) −16.0542 −1.28126 −0.640632 0.767848i \(-0.721328\pi\)
−0.640632 + 0.767848i \(0.721328\pi\)
\(158\) 12.5118 0.995384
\(159\) −8.62387 −0.683918
\(160\) 3.07213 0.242873
\(161\) −2.73834 −0.215812
\(162\) 36.2289 2.84641
\(163\) −6.75757 −0.529294 −0.264647 0.964345i \(-0.585255\pi\)
−0.264647 + 0.964345i \(0.585255\pi\)
\(164\) 2.29140 0.178928
\(165\) −12.7218 −0.990391
\(166\) 18.1746 1.41062
\(167\) −9.85473 −0.762582 −0.381291 0.924455i \(-0.624520\pi\)
−0.381291 + 0.924455i \(0.624520\pi\)
\(168\) 7.09436 0.547341
\(169\) −12.6182 −0.970634
\(170\) 9.64280 0.739569
\(171\) 18.2174 1.39312
\(172\) 0.956253 0.0729136
\(173\) 10.8787 0.827094 0.413547 0.910483i \(-0.364290\pi\)
0.413547 + 0.910483i \(0.364290\pi\)
\(174\) −21.9518 −1.66416
\(175\) 4.22393 0.319299
\(176\) −21.9189 −1.65220
\(177\) −35.6558 −2.68006
\(178\) 13.0730 0.979865
\(179\) 14.6558 1.09542 0.547712 0.836667i \(-0.315499\pi\)
0.547712 + 0.836667i \(0.315499\pi\)
\(180\) −4.10310 −0.305827
\(181\) −10.6633 −0.792600 −0.396300 0.918121i \(-0.629706\pi\)
−0.396300 + 0.918121i \(0.629706\pi\)
\(182\) 1.00366 0.0743960
\(183\) −16.7386 −1.23735
\(184\) −6.05537 −0.446408
\(185\) 7.46359 0.548734
\(186\) 3.45495 0.253330
\(187\) −30.3318 −2.21808
\(188\) −3.77224 −0.275119
\(189\) −13.7711 −1.00170
\(190\) −3.57482 −0.259345
\(191\) −20.7459 −1.50112 −0.750559 0.660803i \(-0.770216\pi\)
−0.750559 + 0.660803i \(0.770216\pi\)
\(192\) 13.0706 0.943288
\(193\) 9.84119 0.708384 0.354192 0.935173i \(-0.384756\pi\)
0.354192 + 0.935173i \(0.384756\pi\)
\(194\) −30.2289 −2.17031
\(195\) 1.74623 0.125050
\(196\) 0.638683 0.0456202
\(197\) −18.1915 −1.29609 −0.648045 0.761602i \(-0.724413\pi\)
−0.648045 + 0.761602i \(0.724413\pi\)
\(198\) 53.3221 3.78944
\(199\) 5.93354 0.420618 0.210309 0.977635i \(-0.432553\pi\)
0.210309 + 0.977635i \(0.432553\pi\)
\(200\) 9.34049 0.660472
\(201\) 42.8923 3.02539
\(202\) 17.6136 1.23929
\(203\) 4.21227 0.295643
\(204\) −13.8072 −0.966696
\(205\) −3.16057 −0.220744
\(206\) −20.8752 −1.45444
\(207\) 19.9693 1.38796
\(208\) 3.00865 0.208612
\(209\) 11.2447 0.777813
\(210\) 4.59097 0.316807
\(211\) 6.85068 0.471620 0.235810 0.971799i \(-0.424226\pi\)
0.235810 + 0.971799i \(0.424226\pi\)
\(212\) −1.71683 −0.117913
\(213\) 34.8896 2.39059
\(214\) 26.8468 1.83521
\(215\) −1.31898 −0.0899536
\(216\) −30.4524 −2.07203
\(217\) −0.662962 −0.0450048
\(218\) 20.4361 1.38411
\(219\) 3.20819 0.216789
\(220\) −2.53264 −0.170751
\(221\) 4.16343 0.280062
\(222\) −44.1521 −2.96329
\(223\) 7.00184 0.468878 0.234439 0.972131i \(-0.424675\pi\)
0.234439 + 0.972131i \(0.424675\pi\)
\(224\) 3.48730 0.233005
\(225\) −30.8030 −2.05353
\(226\) −12.7527 −0.848298
\(227\) −23.1349 −1.53551 −0.767757 0.640741i \(-0.778627\pi\)
−0.767757 + 0.640741i \(0.778627\pi\)
\(228\) 5.11865 0.338991
\(229\) −22.8691 −1.51123 −0.755615 0.655016i \(-0.772662\pi\)
−0.755615 + 0.655016i \(0.772662\pi\)
\(230\) −3.91861 −0.258385
\(231\) −14.4410 −0.950151
\(232\) 9.31470 0.611540
\(233\) 4.47629 0.293251 0.146626 0.989192i \(-0.453159\pi\)
0.146626 + 0.989192i \(0.453159\pi\)
\(234\) −7.31916 −0.478468
\(235\) 5.20312 0.339414
\(236\) −7.09833 −0.462062
\(237\) 24.7107 1.60513
\(238\) 10.9459 0.709520
\(239\) 4.17383 0.269983 0.134991 0.990847i \(-0.456899\pi\)
0.134991 + 0.990847i \(0.456899\pi\)
\(240\) 13.7623 0.888352
\(241\) −20.5892 −1.32627 −0.663134 0.748500i \(-0.730774\pi\)
−0.663134 + 0.748500i \(0.730774\pi\)
\(242\) 15.0448 0.967115
\(243\) 30.2386 1.93981
\(244\) −3.33230 −0.213329
\(245\) −0.880948 −0.0562817
\(246\) 18.6969 1.19207
\(247\) −1.54348 −0.0982094
\(248\) −1.46602 −0.0930927
\(249\) 35.8948 2.27474
\(250\) 13.1996 0.834815
\(251\) −3.02440 −0.190898 −0.0954492 0.995434i \(-0.530429\pi\)
−0.0954492 + 0.995434i \(0.530429\pi\)
\(252\) −4.65759 −0.293401
\(253\) 12.3261 0.774936
\(254\) 10.1737 0.638355
\(255\) 19.0445 1.19261
\(256\) 13.9316 0.870726
\(257\) −5.19840 −0.324268 −0.162134 0.986769i \(-0.551838\pi\)
−0.162134 + 0.986769i \(0.551838\pi\)
\(258\) 7.80263 0.485771
\(259\) 8.47222 0.526438
\(260\) 0.347638 0.0215596
\(261\) −30.7179 −1.90139
\(262\) 5.72148 0.353474
\(263\) 23.3937 1.44252 0.721258 0.692667i \(-0.243564\pi\)
0.721258 + 0.692667i \(0.243564\pi\)
\(264\) −31.9338 −1.96539
\(265\) 2.36806 0.145469
\(266\) −4.05792 −0.248807
\(267\) 25.8192 1.58011
\(268\) 8.53897 0.521600
\(269\) 5.15570 0.314348 0.157174 0.987571i \(-0.449762\pi\)
0.157174 + 0.987571i \(0.449762\pi\)
\(270\) −19.7067 −1.19931
\(271\) −24.2030 −1.47023 −0.735113 0.677945i \(-0.762871\pi\)
−0.735113 + 0.677945i \(0.762871\pi\)
\(272\) 32.8125 1.98955
\(273\) 1.98222 0.119969
\(274\) −0.333673 −0.0201579
\(275\) −19.0132 −1.14654
\(276\) 5.61092 0.337737
\(277\) 8.84019 0.531156 0.265578 0.964089i \(-0.414437\pi\)
0.265578 + 0.964089i \(0.414437\pi\)
\(278\) 32.4253 1.94474
\(279\) 4.83464 0.289442
\(280\) −1.94806 −0.116419
\(281\) 24.5106 1.46218 0.731091 0.682280i \(-0.239011\pi\)
0.731091 + 0.682280i \(0.239011\pi\)
\(282\) −30.7799 −1.83292
\(283\) 21.0649 1.25218 0.626089 0.779752i \(-0.284655\pi\)
0.626089 + 0.779752i \(0.284655\pi\)
\(284\) 6.94578 0.412156
\(285\) −7.06026 −0.418214
\(286\) −4.51776 −0.267141
\(287\) −3.58769 −0.211775
\(288\) −25.4311 −1.49854
\(289\) 28.4066 1.67097
\(290\) 6.02782 0.353966
\(291\) −59.7019 −3.49979
\(292\) 0.638683 0.0373761
\(293\) 21.5098 1.25661 0.628307 0.777966i \(-0.283748\pi\)
0.628307 + 0.777966i \(0.283748\pi\)
\(294\) 5.21139 0.303935
\(295\) 9.79086 0.570046
\(296\) 18.7348 1.08894
\(297\) 61.9880 3.59691
\(298\) −10.3761 −0.601074
\(299\) −1.69192 −0.0978462
\(300\) −8.65491 −0.499691
\(301\) −1.49723 −0.0862987
\(302\) 25.3317 1.45768
\(303\) 34.7869 1.99846
\(304\) −12.1644 −0.697675
\(305\) 4.59631 0.263184
\(306\) −79.8231 −4.56318
\(307\) −22.9024 −1.30711 −0.653554 0.756880i \(-0.726723\pi\)
−0.653554 + 0.756880i \(0.726723\pi\)
\(308\) −2.87491 −0.163813
\(309\) −41.2284 −2.34540
\(310\) −0.948708 −0.0538830
\(311\) 13.0193 0.738258 0.369129 0.929378i \(-0.379656\pi\)
0.369129 + 0.929378i \(0.379656\pi\)
\(312\) 4.38334 0.248157
\(313\) −17.7572 −1.00369 −0.501847 0.864956i \(-0.667346\pi\)
−0.501847 + 0.864956i \(0.667346\pi\)
\(314\) −26.0785 −1.47169
\(315\) 6.42430 0.361969
\(316\) 4.91939 0.276737
\(317\) 33.1991 1.86465 0.932324 0.361624i \(-0.117778\pi\)
0.932324 + 0.361624i \(0.117778\pi\)
\(318\) −14.0086 −0.785566
\(319\) −18.9607 −1.06160
\(320\) −3.58910 −0.200637
\(321\) 53.0224 2.95942
\(322\) −4.44817 −0.247887
\(323\) −16.8333 −0.936630
\(324\) 14.2445 0.791361
\(325\) 2.60981 0.144766
\(326\) −10.9770 −0.607960
\(327\) 40.3613 2.23199
\(328\) −7.93356 −0.438058
\(329\) 5.90627 0.325623
\(330\) −20.6653 −1.13759
\(331\) −22.5879 −1.24154 −0.620772 0.783991i \(-0.713181\pi\)
−0.620772 + 0.783991i \(0.713181\pi\)
\(332\) 7.14589 0.392182
\(333\) −61.7835 −3.38572
\(334\) −16.0081 −0.875922
\(335\) −11.7780 −0.643499
\(336\) 15.6221 0.852257
\(337\) −27.1088 −1.47671 −0.738354 0.674413i \(-0.764397\pi\)
−0.738354 + 0.674413i \(0.764397\pi\)
\(338\) −20.4971 −1.11490
\(339\) −25.1866 −1.36795
\(340\) 3.79136 0.205616
\(341\) 2.98419 0.161603
\(342\) 29.5923 1.60017
\(343\) −1.00000 −0.0539949
\(344\) −3.31085 −0.178509
\(345\) −7.73924 −0.416667
\(346\) 17.6714 0.950021
\(347\) 12.0004 0.644214 0.322107 0.946703i \(-0.395609\pi\)
0.322107 + 0.946703i \(0.395609\pi\)
\(348\) −8.63101 −0.462671
\(349\) 29.5953 1.58420 0.792099 0.610393i \(-0.208988\pi\)
0.792099 + 0.610393i \(0.208988\pi\)
\(350\) 6.86136 0.366755
\(351\) −8.50865 −0.454158
\(352\) −15.6974 −0.836673
\(353\) 16.1778 0.861057 0.430529 0.902577i \(-0.358327\pi\)
0.430529 + 0.902577i \(0.358327\pi\)
\(354\) −57.9194 −3.07838
\(355\) −9.58045 −0.508477
\(356\) 5.14006 0.272423
\(357\) 21.6182 1.14416
\(358\) 23.8069 1.25823
\(359\) −33.8537 −1.78673 −0.893365 0.449332i \(-0.851662\pi\)
−0.893365 + 0.449332i \(0.851662\pi\)
\(360\) 14.2062 0.748734
\(361\) −12.7595 −0.671552
\(362\) −17.3216 −0.910401
\(363\) 29.7134 1.55955
\(364\) 0.394618 0.0206836
\(365\) −0.880948 −0.0461109
\(366\) −27.1902 −1.42125
\(367\) 2.59216 0.135310 0.0676548 0.997709i \(-0.478448\pi\)
0.0676548 + 0.997709i \(0.478448\pi\)
\(368\) −13.3342 −0.695095
\(369\) 26.1632 1.36200
\(370\) 12.1239 0.630290
\(371\) 2.68808 0.139558
\(372\) 1.35842 0.0704308
\(373\) −30.7810 −1.59378 −0.796890 0.604125i \(-0.793523\pi\)
−0.796890 + 0.604125i \(0.793523\pi\)
\(374\) −49.2710 −2.54774
\(375\) 26.0691 1.34620
\(376\) 13.0607 0.673554
\(377\) 2.60260 0.134041
\(378\) −22.3698 −1.15058
\(379\) 14.2840 0.733721 0.366861 0.930276i \(-0.380433\pi\)
0.366861 + 0.930276i \(0.380433\pi\)
\(380\) −1.40555 −0.0721031
\(381\) 20.0931 1.02940
\(382\) −33.6996 −1.72422
\(383\) −36.6876 −1.87465 −0.937323 0.348461i \(-0.886704\pi\)
−0.937323 + 0.348461i \(0.886704\pi\)
\(384\) 43.6077 2.22535
\(385\) 3.96542 0.202096
\(386\) 15.9861 0.813669
\(387\) 10.9185 0.555019
\(388\) −11.8854 −0.603390
\(389\) 32.8493 1.66553 0.832763 0.553630i \(-0.186758\pi\)
0.832763 + 0.553630i \(0.186758\pi\)
\(390\) 2.83659 0.143636
\(391\) −18.4522 −0.933166
\(392\) −2.21133 −0.111689
\(393\) 11.2999 0.570005
\(394\) −29.5503 −1.48872
\(395\) −6.78540 −0.341411
\(396\) 20.9652 1.05354
\(397\) −18.4025 −0.923593 −0.461796 0.886986i \(-0.652795\pi\)
−0.461796 + 0.886986i \(0.652795\pi\)
\(398\) 9.63846 0.483132
\(399\) −8.01438 −0.401221
\(400\) 20.5682 1.02841
\(401\) 0.867103 0.0433011 0.0216505 0.999766i \(-0.493108\pi\)
0.0216505 + 0.999766i \(0.493108\pi\)
\(402\) 69.6744 3.47504
\(403\) −0.409619 −0.0204046
\(404\) 6.92534 0.344549
\(405\) −19.6477 −0.976302
\(406\) 6.84242 0.339584
\(407\) −38.1360 −1.89033
\(408\) 47.8049 2.36669
\(409\) −18.3204 −0.905885 −0.452942 0.891540i \(-0.649626\pi\)
−0.452942 + 0.891540i \(0.649626\pi\)
\(410\) −5.13404 −0.253552
\(411\) −0.659004 −0.0325063
\(412\) −8.20771 −0.404365
\(413\) 11.1140 0.546884
\(414\) 32.4382 1.59425
\(415\) −9.85647 −0.483835
\(416\) 2.15467 0.105641
\(417\) 64.0399 3.13605
\(418\) 18.2659 0.893416
\(419\) 34.6358 1.69207 0.846035 0.533127i \(-0.178983\pi\)
0.846035 + 0.533127i \(0.178983\pi\)
\(420\) 1.80508 0.0880788
\(421\) −22.1175 −1.07794 −0.538970 0.842325i \(-0.681186\pi\)
−0.538970 + 0.842325i \(0.681186\pi\)
\(422\) 11.1283 0.541715
\(423\) −43.0714 −2.09420
\(424\) 5.94422 0.288677
\(425\) 28.4627 1.38064
\(426\) 56.6747 2.74590
\(427\) 5.21745 0.252490
\(428\) 10.5556 0.510226
\(429\) −8.92257 −0.430786
\(430\) −2.14255 −0.103323
\(431\) 5.54252 0.266974 0.133487 0.991051i \(-0.457383\pi\)
0.133487 + 0.991051i \(0.457383\pi\)
\(432\) −67.0578 −3.22632
\(433\) −20.3386 −0.977409 −0.488704 0.872449i \(-0.662530\pi\)
−0.488704 + 0.872449i \(0.662530\pi\)
\(434\) −1.07692 −0.0516937
\(435\) 11.9049 0.570797
\(436\) 8.03509 0.384811
\(437\) 6.84066 0.327233
\(438\) 5.21139 0.249010
\(439\) 1.88008 0.0897312 0.0448656 0.998993i \(-0.485714\pi\)
0.0448656 + 0.998993i \(0.485714\pi\)
\(440\) 8.76883 0.418037
\(441\) 7.29249 0.347261
\(442\) 6.76308 0.321687
\(443\) 24.1949 1.14953 0.574767 0.818317i \(-0.305093\pi\)
0.574767 + 0.818317i \(0.305093\pi\)
\(444\) −17.3597 −0.823856
\(445\) −7.08978 −0.336088
\(446\) 11.3738 0.538565
\(447\) −20.4929 −0.969279
\(448\) −4.07413 −0.192485
\(449\) 4.03626 0.190483 0.0952414 0.995454i \(-0.469638\pi\)
0.0952414 + 0.995454i \(0.469638\pi\)
\(450\) −50.0364 −2.35874
\(451\) 16.1493 0.760441
\(452\) −5.01412 −0.235844
\(453\) 50.0301 2.35062
\(454\) −37.5803 −1.76373
\(455\) −0.544305 −0.0255174
\(456\) −17.7224 −0.829928
\(457\) −7.11969 −0.333045 −0.166522 0.986038i \(-0.553254\pi\)
−0.166522 + 0.986038i \(0.553254\pi\)
\(458\) −37.1485 −1.73584
\(459\) −92.7958 −4.33134
\(460\) −1.54072 −0.0718365
\(461\) −7.96449 −0.370943 −0.185472 0.982650i \(-0.559381\pi\)
−0.185472 + 0.982650i \(0.559381\pi\)
\(462\) −23.4581 −1.09137
\(463\) −8.83566 −0.410628 −0.205314 0.978696i \(-0.565822\pi\)
−0.205314 + 0.978696i \(0.565822\pi\)
\(464\) 20.5114 0.952219
\(465\) −1.87370 −0.0868906
\(466\) 7.27130 0.336836
\(467\) −10.9742 −0.507824 −0.253912 0.967227i \(-0.581717\pi\)
−0.253912 + 0.967227i \(0.581717\pi\)
\(468\) −2.87775 −0.133024
\(469\) −13.3696 −0.617352
\(470\) 8.45196 0.389860
\(471\) −51.5049 −2.37322
\(472\) 24.5767 1.13123
\(473\) 6.73947 0.309881
\(474\) 40.1402 1.84370
\(475\) −10.5518 −0.484150
\(476\) 4.30373 0.197261
\(477\) −19.6028 −0.897550
\(478\) 6.77998 0.310109
\(479\) 15.1286 0.691244 0.345622 0.938374i \(-0.387668\pi\)
0.345622 + 0.938374i \(0.387668\pi\)
\(480\) 9.85597 0.449861
\(481\) 5.23466 0.238680
\(482\) −33.4452 −1.52339
\(483\) −8.78513 −0.399737
\(484\) 5.91531 0.268878
\(485\) 16.3938 0.744402
\(486\) 49.1197 2.22811
\(487\) −20.6579 −0.936099 −0.468049 0.883702i \(-0.655043\pi\)
−0.468049 + 0.883702i \(0.655043\pi\)
\(488\) 11.5375 0.522278
\(489\) −21.6796 −0.980384
\(490\) −1.43101 −0.0646466
\(491\) 17.3728 0.784023 0.392012 0.919960i \(-0.371779\pi\)
0.392012 + 0.919960i \(0.371779\pi\)
\(492\) 7.35125 0.331420
\(493\) 28.3841 1.27836
\(494\) −2.50724 −0.112806
\(495\) −28.9177 −1.29976
\(496\) −3.22826 −0.144953
\(497\) −10.8752 −0.487817
\(498\) 58.3075 2.61282
\(499\) −24.8042 −1.11039 −0.555195 0.831720i \(-0.687357\pi\)
−0.555195 + 0.831720i \(0.687357\pi\)
\(500\) 5.18982 0.232096
\(501\) −31.6159 −1.41249
\(502\) −4.91284 −0.219271
\(503\) −31.3716 −1.39879 −0.699396 0.714734i \(-0.746548\pi\)
−0.699396 + 0.714734i \(0.746548\pi\)
\(504\) 16.1261 0.718312
\(505\) −9.55226 −0.425070
\(506\) 20.0226 0.890112
\(507\) −40.4817 −1.79786
\(508\) 4.00010 0.177476
\(509\) −15.0918 −0.668933 −0.334466 0.942408i \(-0.608556\pi\)
−0.334466 + 0.942408i \(0.608556\pi\)
\(510\) 30.9360 1.36987
\(511\) −1.00000 −0.0442374
\(512\) −4.55467 −0.201290
\(513\) 34.4016 1.51887
\(514\) −8.44430 −0.372462
\(515\) 11.3210 0.498865
\(516\) 3.06784 0.135054
\(517\) −26.5859 −1.16925
\(518\) 13.7623 0.604680
\(519\) 34.9010 1.53198
\(520\) −1.20364 −0.0527829
\(521\) −8.83021 −0.386858 −0.193429 0.981114i \(-0.561961\pi\)
−0.193429 + 0.981114i \(0.561961\pi\)
\(522\) −49.8982 −2.18399
\(523\) 5.17012 0.226074 0.113037 0.993591i \(-0.463942\pi\)
0.113037 + 0.993591i \(0.463942\pi\)
\(524\) 2.24957 0.0982731
\(525\) 13.5512 0.591422
\(526\) 38.0007 1.65691
\(527\) −4.46733 −0.194600
\(528\) −70.3199 −3.06028
\(529\) −15.5015 −0.673977
\(530\) 3.84668 0.167089
\(531\) −81.0487 −3.51721
\(532\) −1.59550 −0.0691735
\(533\) −2.21670 −0.0960160
\(534\) 41.9408 1.81495
\(535\) −14.5596 −0.629466
\(536\) −29.5646 −1.27700
\(537\) 47.0185 2.02900
\(538\) 8.37493 0.361069
\(539\) 4.50130 0.193885
\(540\) −7.74828 −0.333433
\(541\) 7.90173 0.339722 0.169861 0.985468i \(-0.445668\pi\)
0.169861 + 0.985468i \(0.445668\pi\)
\(542\) −39.3154 −1.68874
\(543\) −34.2100 −1.46809
\(544\) 23.4989 1.00751
\(545\) −11.0830 −0.474742
\(546\) 3.21992 0.137800
\(547\) 8.08897 0.345859 0.172930 0.984934i \(-0.444677\pi\)
0.172930 + 0.984934i \(0.444677\pi\)
\(548\) −0.131194 −0.00560433
\(549\) −38.0482 −1.62386
\(550\) −30.8851 −1.31694
\(551\) −10.5227 −0.448281
\(552\) −19.4268 −0.826859
\(553\) −7.70239 −0.327539
\(554\) 14.3600 0.610099
\(555\) 23.9446 1.01639
\(556\) 12.7490 0.540678
\(557\) −30.5737 −1.29545 −0.647724 0.761875i \(-0.724279\pi\)
−0.647724 + 0.761875i \(0.724279\pi\)
\(558\) 7.85340 0.332461
\(559\) −0.925080 −0.0391267
\(560\) −4.28973 −0.181274
\(561\) −97.3101 −4.10843
\(562\) 39.8151 1.67950
\(563\) −2.04178 −0.0860508 −0.0430254 0.999074i \(-0.513700\pi\)
−0.0430254 + 0.999074i \(0.513700\pi\)
\(564\) −12.1021 −0.509589
\(565\) 6.91607 0.290961
\(566\) 34.2179 1.43828
\(567\) −22.3029 −0.936634
\(568\) −24.0485 −1.00905
\(569\) 6.48920 0.272041 0.136021 0.990706i \(-0.456569\pi\)
0.136021 + 0.990706i \(0.456569\pi\)
\(570\) −11.4687 −0.480371
\(571\) −29.7786 −1.24620 −0.623098 0.782144i \(-0.714126\pi\)
−0.623098 + 0.782144i \(0.714126\pi\)
\(572\) −1.77630 −0.0742707
\(573\) −66.5567 −2.78045
\(574\) −5.82786 −0.243250
\(575\) −11.5666 −0.482359
\(576\) 29.7105 1.23794
\(577\) 24.1885 1.00698 0.503490 0.864001i \(-0.332049\pi\)
0.503490 + 0.864001i \(0.332049\pi\)
\(578\) 46.1437 1.91932
\(579\) 31.5724 1.31210
\(580\) 2.37002 0.0984097
\(581\) −11.1885 −0.464176
\(582\) −96.9799 −4.01995
\(583\) −12.0999 −0.501125
\(584\) −2.21133 −0.0915053
\(585\) 3.96934 0.164112
\(586\) 34.9405 1.44338
\(587\) 14.7506 0.608824 0.304412 0.952540i \(-0.401540\pi\)
0.304412 + 0.952540i \(0.401540\pi\)
\(588\) 2.04902 0.0845001
\(589\) 1.65615 0.0682403
\(590\) 15.9043 0.654770
\(591\) −58.3617 −2.40068
\(592\) 41.2550 1.69557
\(593\) 3.56494 0.146395 0.0731973 0.997317i \(-0.476680\pi\)
0.0731973 + 0.997317i \(0.476680\pi\)
\(594\) 100.693 4.13150
\(595\) −5.93622 −0.243361
\(596\) −4.07970 −0.167111
\(597\) 19.0359 0.779089
\(598\) −2.74836 −0.112389
\(599\) 11.5677 0.472642 0.236321 0.971675i \(-0.424058\pi\)
0.236321 + 0.971675i \(0.424058\pi\)
\(600\) 29.9661 1.22336
\(601\) 33.1217 1.35106 0.675532 0.737331i \(-0.263914\pi\)
0.675532 + 0.737331i \(0.263914\pi\)
\(602\) −2.43210 −0.0991249
\(603\) 97.4979 3.97042
\(604\) 9.95995 0.405265
\(605\) −8.15910 −0.331715
\(606\) 56.5079 2.29548
\(607\) 2.48973 0.101055 0.0505276 0.998723i \(-0.483910\pi\)
0.0505276 + 0.998723i \(0.483910\pi\)
\(608\) −8.71161 −0.353303
\(609\) 13.5138 0.547605
\(610\) 7.46625 0.302300
\(611\) 3.64926 0.147633
\(612\) −31.3849 −1.26866
\(613\) 21.2847 0.859680 0.429840 0.902905i \(-0.358570\pi\)
0.429840 + 0.902905i \(0.358570\pi\)
\(614\) −37.2027 −1.50138
\(615\) −10.1397 −0.408873
\(616\) 9.95385 0.401052
\(617\) 32.9482 1.32645 0.663223 0.748422i \(-0.269188\pi\)
0.663223 + 0.748422i \(0.269188\pi\)
\(618\) −66.9715 −2.69399
\(619\) −35.3623 −1.42133 −0.710665 0.703531i \(-0.751606\pi\)
−0.710665 + 0.703531i \(0.751606\pi\)
\(620\) −0.373014 −0.0149806
\(621\) 37.7100 1.51325
\(622\) 21.1486 0.847982
\(623\) −8.04790 −0.322432
\(624\) 9.65232 0.386402
\(625\) 13.9612 0.558449
\(626\) −28.8448 −1.15287
\(627\) 36.0752 1.44070
\(628\) −10.2535 −0.409161
\(629\) 57.0895 2.27631
\(630\) 10.4357 0.415766
\(631\) 1.03726 0.0412927 0.0206463 0.999787i \(-0.493428\pi\)
0.0206463 + 0.999787i \(0.493428\pi\)
\(632\) −17.0325 −0.677516
\(633\) 21.9783 0.873559
\(634\) 53.9287 2.14178
\(635\) −5.51742 −0.218952
\(636\) −5.50792 −0.218403
\(637\) −0.617862 −0.0244806
\(638\) −30.7998 −1.21938
\(639\) 79.3069 3.13733
\(640\) −11.9744 −0.473329
\(641\) −9.66180 −0.381618 −0.190809 0.981627i \(-0.561111\pi\)
−0.190809 + 0.981627i \(0.561111\pi\)
\(642\) 86.1297 3.39927
\(643\) 22.2556 0.877677 0.438838 0.898566i \(-0.355390\pi\)
0.438838 + 0.898566i \(0.355390\pi\)
\(644\) −1.74893 −0.0689177
\(645\) −4.23153 −0.166617
\(646\) −27.3441 −1.07584
\(647\) 23.6169 0.928476 0.464238 0.885711i \(-0.346328\pi\)
0.464238 + 0.885711i \(0.346328\pi\)
\(648\) −49.3190 −1.93743
\(649\) −50.0275 −1.96375
\(650\) 4.23938 0.166282
\(651\) −2.12691 −0.0833601
\(652\) −4.31595 −0.169026
\(653\) 6.39245 0.250156 0.125078 0.992147i \(-0.460082\pi\)
0.125078 + 0.992147i \(0.460082\pi\)
\(654\) 65.5630 2.56372
\(655\) −3.10288 −0.121240
\(656\) −17.4701 −0.682093
\(657\) 7.29249 0.284507
\(658\) 9.59416 0.374019
\(659\) −30.2307 −1.17762 −0.588810 0.808272i \(-0.700403\pi\)
−0.588810 + 0.808272i \(0.700403\pi\)
\(660\) −8.12521 −0.316273
\(661\) 28.6336 1.11372 0.556859 0.830607i \(-0.312006\pi\)
0.556859 + 0.830607i \(0.312006\pi\)
\(662\) −36.6919 −1.42607
\(663\) 13.3571 0.518746
\(664\) −24.7414 −0.960151
\(665\) 2.20070 0.0853394
\(666\) −100.361 −3.88892
\(667\) −11.5346 −0.446623
\(668\) −6.29405 −0.243524
\(669\) 22.4632 0.868479
\(670\) −19.1321 −0.739139
\(671\) −23.4853 −0.906642
\(672\) 11.1879 0.431583
\(673\) −2.52011 −0.0971430 −0.0485715 0.998820i \(-0.515467\pi\)
−0.0485715 + 0.998820i \(0.515467\pi\)
\(674\) −44.0355 −1.69619
\(675\) −58.1682 −2.23890
\(676\) −8.05906 −0.309964
\(677\) 37.9771 1.45958 0.729789 0.683673i \(-0.239618\pi\)
0.729789 + 0.683673i \(0.239618\pi\)
\(678\) −40.9131 −1.57126
\(679\) 18.6092 0.714156
\(680\) −13.1269 −0.503394
\(681\) −74.2210 −2.84416
\(682\) 4.84753 0.185622
\(683\) −20.7916 −0.795568 −0.397784 0.917479i \(-0.630221\pi\)
−0.397784 + 0.917479i \(0.630221\pi\)
\(684\) 11.6351 0.444880
\(685\) 0.180958 0.00691406
\(686\) −1.62440 −0.0620200
\(687\) −73.3683 −2.79917
\(688\) −7.29067 −0.277954
\(689\) 1.66086 0.0632739
\(690\) −12.5716 −0.478594
\(691\) −39.5238 −1.50356 −0.751778 0.659416i \(-0.770804\pi\)
−0.751778 + 0.659416i \(0.770804\pi\)
\(692\) 6.94806 0.264126
\(693\) −32.8257 −1.24694
\(694\) 19.4934 0.739961
\(695\) −17.5849 −0.667035
\(696\) 29.8833 1.13272
\(697\) −24.1755 −0.915711
\(698\) 48.0746 1.81965
\(699\) 14.3608 0.543175
\(700\) 2.69775 0.101966
\(701\) 21.2131 0.801207 0.400603 0.916252i \(-0.368800\pi\)
0.400603 + 0.916252i \(0.368800\pi\)
\(702\) −13.8215 −0.521658
\(703\) −21.1645 −0.798233
\(704\) 18.3389 0.691173
\(705\) 16.6926 0.628680
\(706\) 26.2793 0.989033
\(707\) −10.8432 −0.407799
\(708\) −22.7728 −0.855854
\(709\) 4.60680 0.173012 0.0865060 0.996251i \(-0.472430\pi\)
0.0865060 + 0.996251i \(0.472430\pi\)
\(710\) −15.5625 −0.584050
\(711\) 56.1696 2.10652
\(712\) −17.7965 −0.666953
\(713\) 1.81542 0.0679879
\(714\) 35.1167 1.31421
\(715\) 2.45008 0.0916278
\(716\) 9.36040 0.349815
\(717\) 13.3904 0.500075
\(718\) −54.9920 −2.05228
\(719\) 31.1662 1.16230 0.581152 0.813795i \(-0.302602\pi\)
0.581152 + 0.813795i \(0.302602\pi\)
\(720\) 31.2828 1.16584
\(721\) 12.8510 0.478595
\(722\) −20.7266 −0.771362
\(723\) −66.0542 −2.45658
\(724\) −6.81050 −0.253110
\(725\) 17.7923 0.660790
\(726\) 48.2665 1.79134
\(727\) −8.59039 −0.318600 −0.159300 0.987230i \(-0.550924\pi\)
−0.159300 + 0.987230i \(0.550924\pi\)
\(728\) −1.36630 −0.0506383
\(729\) 30.1025 1.11491
\(730\) −1.43101 −0.0529642
\(731\) −10.0890 −0.373154
\(732\) −10.6907 −0.395138
\(733\) −13.5761 −0.501444 −0.250722 0.968059i \(-0.580668\pi\)
−0.250722 + 0.968059i \(0.580668\pi\)
\(734\) 4.21071 0.155420
\(735\) −2.82625 −0.104248
\(736\) −9.54941 −0.351996
\(737\) 60.1808 2.21679
\(738\) 42.4996 1.56443
\(739\) −6.40748 −0.235703 −0.117851 0.993031i \(-0.537601\pi\)
−0.117851 + 0.993031i \(0.537601\pi\)
\(740\) 4.76687 0.175234
\(741\) −4.95179 −0.181908
\(742\) 4.36652 0.160300
\(743\) 25.6333 0.940394 0.470197 0.882562i \(-0.344183\pi\)
0.470197 + 0.882562i \(0.344183\pi\)
\(744\) −4.70329 −0.172431
\(745\) 5.62721 0.206165
\(746\) −50.0007 −1.83066
\(747\) 81.5918 2.98529
\(748\) −19.3724 −0.708325
\(749\) −16.5272 −0.603890
\(750\) 42.3468 1.54629
\(751\) −41.9192 −1.52965 −0.764826 0.644236i \(-0.777175\pi\)
−0.764826 + 0.644236i \(0.777175\pi\)
\(752\) 28.7603 1.04878
\(753\) −9.70285 −0.353592
\(754\) 4.22767 0.153963
\(755\) −13.7379 −0.499975
\(756\) −8.79538 −0.319885
\(757\) 41.3346 1.50233 0.751166 0.660114i \(-0.229492\pi\)
0.751166 + 0.660114i \(0.229492\pi\)
\(758\) 23.2030 0.842771
\(759\) 39.5445 1.43538
\(760\) 4.86646 0.176525
\(761\) −20.1311 −0.729753 −0.364877 0.931056i \(-0.618889\pi\)
−0.364877 + 0.931056i \(0.618889\pi\)
\(762\) 32.6392 1.18239
\(763\) −12.5807 −0.455452
\(764\) −13.2500 −0.479370
\(765\) 43.2898 1.56515
\(766\) −59.5954 −2.15327
\(767\) 6.86692 0.247950
\(768\) 44.6953 1.61280
\(769\) 17.3899 0.627095 0.313547 0.949573i \(-0.398483\pi\)
0.313547 + 0.949573i \(0.398483\pi\)
\(770\) 6.44143 0.232133
\(771\) −16.6775 −0.600624
\(772\) 6.28541 0.226217
\(773\) −20.6756 −0.743648 −0.371824 0.928303i \(-0.621268\pi\)
−0.371824 + 0.928303i \(0.621268\pi\)
\(774\) 17.7360 0.637509
\(775\) −2.80030 −0.100590
\(776\) 41.1510 1.47724
\(777\) 27.1805 0.975095
\(778\) 53.3605 1.91307
\(779\) 8.96242 0.321112
\(780\) 1.11529 0.0399338
\(781\) 48.9524 1.75165
\(782\) −29.9737 −1.07186
\(783\) −58.0076 −2.07302
\(784\) −4.86945 −0.173909
\(785\) 14.1429 0.504782
\(786\) 18.3556 0.654723
\(787\) 12.3077 0.438722 0.219361 0.975644i \(-0.429603\pi\)
0.219361 + 0.975644i \(0.429603\pi\)
\(788\) −11.6186 −0.413895
\(789\) 75.0514 2.67190
\(790\) −11.0222 −0.392153
\(791\) 7.85071 0.279139
\(792\) −72.5883 −2.57931
\(793\) 3.22367 0.114476
\(794\) −29.8930 −1.06086
\(795\) 7.59719 0.269444
\(796\) 3.78965 0.134321
\(797\) −31.4262 −1.11317 −0.556587 0.830789i \(-0.687890\pi\)
−0.556587 + 0.830789i \(0.687890\pi\)
\(798\) −13.0186 −0.460853
\(799\) 39.7991 1.40799
\(800\) 14.7301 0.520787
\(801\) 58.6892 2.07368
\(802\) 1.40852 0.0497367
\(803\) 4.50130 0.158848
\(804\) 27.3946 0.966134
\(805\) 2.41234 0.0850238
\(806\) −0.665386 −0.0234372
\(807\) 16.5405 0.582252
\(808\) −23.9777 −0.843534
\(809\) 15.0651 0.529661 0.264830 0.964295i \(-0.414684\pi\)
0.264830 + 0.964295i \(0.414684\pi\)
\(810\) −31.9158 −1.12141
\(811\) 47.6685 1.67387 0.836934 0.547304i \(-0.184346\pi\)
0.836934 + 0.547304i \(0.184346\pi\)
\(812\) 2.69031 0.0944112
\(813\) −77.6477 −2.72322
\(814\) −61.9482 −2.17128
\(815\) 5.95307 0.208527
\(816\) 105.269 3.68514
\(817\) 3.74022 0.130854
\(818\) −29.7597 −1.04052
\(819\) 4.50575 0.157444
\(820\) −2.01861 −0.0704928
\(821\) −28.6778 −1.00086 −0.500430 0.865777i \(-0.666825\pi\)
−0.500430 + 0.865777i \(0.666825\pi\)
\(822\) −1.07049 −0.0373376
\(823\) 24.2730 0.846102 0.423051 0.906106i \(-0.360959\pi\)
0.423051 + 0.906106i \(0.360959\pi\)
\(824\) 28.4177 0.989977
\(825\) −60.9979 −2.12368
\(826\) 18.0536 0.628165
\(827\) −49.1492 −1.70909 −0.854543 0.519381i \(-0.826162\pi\)
−0.854543 + 0.519381i \(0.826162\pi\)
\(828\) 12.7541 0.443235
\(829\) −13.0152 −0.452037 −0.226018 0.974123i \(-0.572571\pi\)
−0.226018 + 0.974123i \(0.572571\pi\)
\(830\) −16.0109 −0.555745
\(831\) 28.3610 0.983833
\(832\) −2.51725 −0.0872700
\(833\) −6.73844 −0.233473
\(834\) 104.027 3.60215
\(835\) 8.68151 0.300436
\(836\) 7.18181 0.248388
\(837\) 9.12973 0.315569
\(838\) 56.2625 1.94356
\(839\) 42.3855 1.46331 0.731655 0.681675i \(-0.238748\pi\)
0.731655 + 0.681675i \(0.238748\pi\)
\(840\) −6.24976 −0.215637
\(841\) −11.2568 −0.388166
\(842\) −35.9277 −1.23815
\(843\) 78.6348 2.70833
\(844\) 4.37542 0.150608
\(845\) 11.1160 0.382403
\(846\) −69.9653 −2.40546
\(847\) −9.26173 −0.318237
\(848\) 13.0895 0.449494
\(849\) 67.5802 2.31935
\(850\) 46.2349 1.58584
\(851\) −23.1998 −0.795280
\(852\) 22.2834 0.763416
\(853\) −2.19471 −0.0751455 −0.0375727 0.999294i \(-0.511963\pi\)
−0.0375727 + 0.999294i \(0.511963\pi\)
\(854\) 8.47525 0.290017
\(855\) −16.0486 −0.548849
\(856\) −36.5470 −1.24915
\(857\) −39.9409 −1.36435 −0.682177 0.731187i \(-0.738967\pi\)
−0.682177 + 0.731187i \(0.738967\pi\)
\(858\) −14.4939 −0.494812
\(859\) −28.1417 −0.960184 −0.480092 0.877218i \(-0.659397\pi\)
−0.480092 + 0.877218i \(0.659397\pi\)
\(860\) −0.842410 −0.0287259
\(861\) −11.5100 −0.392260
\(862\) 9.00329 0.306653
\(863\) 36.5123 1.24289 0.621446 0.783457i \(-0.286546\pi\)
0.621446 + 0.783457i \(0.286546\pi\)
\(864\) −48.0239 −1.63381
\(865\) −9.58359 −0.325852
\(866\) −33.0380 −1.12268
\(867\) 91.1337 3.09506
\(868\) −0.423423 −0.0143719
\(869\) 34.6708 1.17613
\(870\) 19.3384 0.655633
\(871\) −8.26060 −0.279900
\(872\) −27.8200 −0.942106
\(873\) −135.707 −4.59300
\(874\) 11.1120 0.375868
\(875\) −8.12581 −0.274702
\(876\) 2.04902 0.0692299
\(877\) −52.9376 −1.78757 −0.893787 0.448491i \(-0.851962\pi\)
−0.893787 + 0.448491i \(0.851962\pi\)
\(878\) 3.05400 0.103068
\(879\) 69.0074 2.32756
\(880\) 19.3094 0.650919
\(881\) −14.8074 −0.498875 −0.249437 0.968391i \(-0.580246\pi\)
−0.249437 + 0.968391i \(0.580246\pi\)
\(882\) 11.8459 0.398873
\(883\) −13.7091 −0.461347 −0.230674 0.973031i \(-0.574093\pi\)
−0.230674 + 0.973031i \(0.574093\pi\)
\(884\) 2.65911 0.0894356
\(885\) 31.4109 1.05587
\(886\) 39.3023 1.32039
\(887\) 16.4683 0.552951 0.276475 0.961021i \(-0.410834\pi\)
0.276475 + 0.961021i \(0.410834\pi\)
\(888\) 60.1049 2.01699
\(889\) −6.26305 −0.210056
\(890\) −11.5167 −0.386039
\(891\) 100.392 3.36326
\(892\) 4.47196 0.149732
\(893\) −14.7545 −0.493739
\(894\) −33.2887 −1.11334
\(895\) −12.9110 −0.431566
\(896\) −13.5926 −0.454097
\(897\) −5.42800 −0.181236
\(898\) 6.55650 0.218793
\(899\) −2.79257 −0.0931375
\(900\) −19.6733 −0.655778
\(901\) 18.1135 0.603447
\(902\) 26.2330 0.873462
\(903\) −4.80339 −0.159847
\(904\) 17.3605 0.577401
\(905\) 9.39385 0.312262
\(906\) 81.2691 2.69998
\(907\) 12.0473 0.400025 0.200012 0.979793i \(-0.435902\pi\)
0.200012 + 0.979793i \(0.435902\pi\)
\(908\) −14.7759 −0.490354
\(909\) 79.0736 2.62270
\(910\) −0.884170 −0.0293100
\(911\) −44.1292 −1.46207 −0.731033 0.682342i \(-0.760962\pi\)
−0.731033 + 0.682342i \(0.760962\pi\)
\(912\) −39.0256 −1.29227
\(913\) 50.3627 1.66676
\(914\) −11.5652 −0.382544
\(915\) 14.7458 0.487482
\(916\) −14.6061 −0.482599
\(917\) −3.52221 −0.116314
\(918\) −150.738 −4.97509
\(919\) −20.2317 −0.667381 −0.333691 0.942683i \(-0.608294\pi\)
−0.333691 + 0.942683i \(0.608294\pi\)
\(920\) 5.33447 0.175872
\(921\) −73.4752 −2.42109
\(922\) −12.9375 −0.426075
\(923\) −6.71935 −0.221170
\(924\) −9.22325 −0.303423
\(925\) 35.7861 1.17664
\(926\) −14.3527 −0.471658
\(927\) −93.7156 −3.07802
\(928\) 14.6894 0.482204
\(929\) 7.48985 0.245734 0.122867 0.992423i \(-0.460791\pi\)
0.122867 + 0.992423i \(0.460791\pi\)
\(930\) −3.04364 −0.0998048
\(931\) 2.49810 0.0818719
\(932\) 2.85893 0.0936474
\(933\) 41.7684 1.36744
\(934\) −17.8265 −0.583300
\(935\) 26.7207 0.873861
\(936\) 9.96369 0.325673
\(937\) −47.9671 −1.56702 −0.783508 0.621381i \(-0.786572\pi\)
−0.783508 + 0.621381i \(0.786572\pi\)
\(938\) −21.7177 −0.709107
\(939\) −56.9683 −1.85909
\(940\) 3.32315 0.108389
\(941\) −46.6694 −1.52138 −0.760689 0.649116i \(-0.775139\pi\)
−0.760689 + 0.649116i \(0.775139\pi\)
\(942\) −83.6647 −2.72594
\(943\) 9.82434 0.319925
\(944\) 54.1191 1.76143
\(945\) 12.1316 0.394642
\(946\) 10.9476 0.355937
\(947\) −35.1680 −1.14281 −0.571403 0.820670i \(-0.693601\pi\)
−0.571403 + 0.820670i \(0.693601\pi\)
\(948\) 15.7823 0.512586
\(949\) −0.617862 −0.0200567
\(950\) −17.1404 −0.556107
\(951\) 106.509 3.45379
\(952\) −14.9009 −0.482941
\(953\) −18.1085 −0.586591 −0.293296 0.956022i \(-0.594752\pi\)
−0.293296 + 0.956022i \(0.594752\pi\)
\(954\) −31.8428 −1.03095
\(955\) 18.2760 0.591399
\(956\) 2.66576 0.0862167
\(957\) −60.8295 −1.96634
\(958\) 24.5750 0.793981
\(959\) 0.205413 0.00663313
\(960\) −11.5145 −0.371629
\(961\) −30.5605 −0.985822
\(962\) 8.50320 0.274154
\(963\) 120.524 3.88384
\(964\) −13.1500 −0.423533
\(965\) −8.66958 −0.279084
\(966\) −14.2706 −0.459148
\(967\) −16.6255 −0.534641 −0.267320 0.963608i \(-0.586138\pi\)
−0.267320 + 0.963608i \(0.586138\pi\)
\(968\) −20.4807 −0.658275
\(969\) −54.0044 −1.73487
\(970\) 26.6301 0.855040
\(971\) 27.6146 0.886193 0.443097 0.896474i \(-0.353880\pi\)
0.443097 + 0.896474i \(0.353880\pi\)
\(972\) 19.3129 0.619462
\(973\) −19.9614 −0.639932
\(974\) −33.5567 −1.07523
\(975\) 8.37276 0.268143
\(976\) 25.4061 0.813231
\(977\) −41.1140 −1.31535 −0.657676 0.753301i \(-0.728460\pi\)
−0.657676 + 0.753301i \(0.728460\pi\)
\(978\) −35.2163 −1.12609
\(979\) 36.2260 1.15779
\(980\) −0.562647 −0.0179731
\(981\) 91.7446 2.92918
\(982\) 28.2204 0.900549
\(983\) −16.3109 −0.520238 −0.260119 0.965577i \(-0.583762\pi\)
−0.260119 + 0.965577i \(0.583762\pi\)
\(984\) −25.4524 −0.811392
\(985\) 16.0258 0.510623
\(986\) 46.1072 1.46835
\(987\) 18.9484 0.603136
\(988\) −0.985797 −0.0313624
\(989\) 4.09992 0.130370
\(990\) −46.9740 −1.49293
\(991\) 24.4159 0.775596 0.387798 0.921744i \(-0.373236\pi\)
0.387798 + 0.921744i \(0.373236\pi\)
\(992\) −2.31194 −0.0734043
\(993\) −72.4663 −2.29965
\(994\) −17.6656 −0.560320
\(995\) −5.22714 −0.165712
\(996\) 22.9254 0.726419
\(997\) 20.9978 0.665008 0.332504 0.943102i \(-0.392106\pi\)
0.332504 + 0.943102i \(0.392106\pi\)
\(998\) −40.2921 −1.27542
\(999\) −116.672 −3.69134
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 511.2.a.f.1.7 10
3.2 odd 2 4599.2.a.q.1.4 10
4.3 odd 2 8176.2.a.t.1.1 10
7.6 odd 2 3577.2.a.i.1.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
511.2.a.f.1.7 10 1.1 even 1 trivial
3577.2.a.i.1.7 10 7.6 odd 2
4599.2.a.q.1.4 10 3.2 odd 2
8176.2.a.t.1.1 10 4.3 odd 2