Properties

Label 5100.2.k.i
Level $5100$
Weight $2$
Character orbit 5100.k
Analytic conductor $40.724$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5100,2,Mod(4249,5100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5100.4249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta_{3} - 1) q^{7} + q^{9} + ( - \beta_{2} + 3 \beta_1) q^{11} + ( - \beta_{2} + 2 \beta_1) q^{13} + ( - \beta_{3} - 3 \beta_1) q^{17} - 3 q^{19} + (\beta_{3} - 1) q^{21} - 3 \beta_{3} q^{23}+ \cdots + ( - \beta_{2} + 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{7} + 4 q^{9} - 12 q^{19} - 4 q^{21} + 4 q^{27} - 4 q^{37} + 8 q^{49} - 12 q^{57} - 32 q^{59} - 4 q^{63} - 52 q^{73} + 4 q^{81} - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5100\mathbb{Z}\right)^\times\).

\(n\) \(2551\) \(3301\) \(3401\) \(3877\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4249.1
−0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 1.00000 0 0 0 −3.82843 0 1.00000 0
4249.2 0 1.00000 0 0 0 −3.82843 0 1.00000 0
4249.3 0 1.00000 0 0 0 1.82843 0 1.00000 0
4249.4 0 1.00000 0 0 0 1.82843 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5100.2.k.i 4
5.b even 2 1 5100.2.k.h 4
5.c odd 4 1 1020.2.e.d 4
5.c odd 4 1 5100.2.e.f 4
15.e even 4 1 3060.2.e.g 4
17.b even 2 1 5100.2.k.h 4
20.e even 4 1 4080.2.h.n 4
85.c even 2 1 inner 5100.2.k.i 4
85.g odd 4 1 1020.2.e.d 4
85.g odd 4 1 5100.2.e.f 4
255.o even 4 1 3060.2.e.g 4
340.r even 4 1 4080.2.h.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1020.2.e.d 4 5.c odd 4 1
1020.2.e.d 4 85.g odd 4 1
3060.2.e.g 4 15.e even 4 1
3060.2.e.g 4 255.o even 4 1
4080.2.h.n 4 20.e even 4 1
4080.2.h.n 4 340.r even 4 1
5100.2.e.f 4 5.c odd 4 1
5100.2.e.f 4 85.g odd 4 1
5100.2.k.h 4 5.b even 2 1
5100.2.k.h 4 17.b even 2 1
5100.2.k.i 4 1.a even 1 1 trivial
5100.2.k.i 4 85.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5100, [\chi])\):

\( T_{7}^{2} + 2T_{7} - 7 \) Copy content Toggle raw display
\( T_{23}^{2} - 72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2 T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 34T^{2} + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 289 \) Copy content Toggle raw display
$19$ \( (T + 3)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 114T^{2} + 1681 \) Copy content Toggle raw display
$31$ \( T^{4} + 48T^{2} + 64 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 71)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 34T^{2} + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 82T^{2} + 529 \) Copy content Toggle raw display
$53$ \( T^{4} + 274 T^{2} + 14161 \) Copy content Toggle raw display
$59$ \( (T^{2} + 16 T + 56)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 216T^{2} + 1296 \) Copy content Toggle raw display
$71$ \( T^{4} + 96T^{2} + 256 \) Copy content Toggle raw display
$73$ \( (T^{2} + 26 T + 161)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 200)^{2} \) Copy content Toggle raw display
$97$ \( (T + 14)^{4} \) Copy content Toggle raw display
show more
show less