Newspace parameters
Level: | \( N \) | \(=\) | \( 51 = 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 51.h (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.17957481046\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −7.76922 | − | 7.76922i | −8.31492 | + | 3.44415i | 88.7215i | 1.79786 | + | 4.34041i | 91.3588 | + | 37.8420i | −2.94505 | + | 7.10998i | 440.682 | − | 440.682i | 57.2756 | − | 57.2756i | 19.7537 | − | 47.6896i | ||
19.2 | −6.70687 | − | 6.70687i | 8.31492 | − | 3.44415i | 57.9642i | 14.8469 | + | 35.8437i | −78.8665 | − | 32.6676i | 90.1287 | − | 217.590i | 174.139 | − | 174.139i | 57.2756 | − | 57.2756i | 140.822 | − | 339.975i | ||
19.3 | −4.62537 | − | 4.62537i | −8.31492 | + | 3.44415i | 10.7882i | 6.51557 | + | 15.7300i | 54.3901 | + | 22.5291i | −31.5050 | + | 76.0599i | −98.1126 | + | 98.1126i | 57.2756 | − | 57.2756i | 42.6201 | − | 102.894i | ||
19.4 | −4.34108 | − | 4.34108i | −8.31492 | + | 3.44415i | 5.69003i | −29.2662 | − | 70.6549i | 51.0471 | + | 21.1444i | 43.1831 | − | 104.253i | −114.214 | + | 114.214i | 57.2756 | − | 57.2756i | −179.672 | + | 433.766i | ||
19.5 | −3.44799 | − | 3.44799i | 8.31492 | − | 3.44415i | − | 8.22272i | 33.9684 | + | 82.0071i | −40.5452 | − | 16.7944i | −45.3741 | + | 109.543i | −138.688 | + | 138.688i | 57.2756 | − | 57.2756i | 165.637 | − | 399.883i | |
19.6 | −1.90101 | − | 1.90101i | 8.31492 | − | 3.44415i | − | 24.7723i | −15.9904 | − | 38.6041i | −22.3541 | − | 9.25937i | −7.02861 | + | 16.9686i | −107.925 | + | 107.925i | 57.2756 | − | 57.2756i | −42.9890 | + | 103.785i | |
19.7 | −1.06332 | − | 1.06332i | −8.31492 | + | 3.44415i | − | 29.7387i | 29.0694 | + | 70.1798i | 12.5037 | + | 5.17918i | 48.3729 | − | 116.783i | −65.6480 | + | 65.6480i | 57.2756 | − | 57.2756i | 43.7135 | − | 105.534i | |
19.8 | 0.568402 | + | 0.568402i | −8.31492 | + | 3.44415i | − | 31.3538i | 14.2339 | + | 34.3638i | −6.68388 | − | 2.76855i | −45.3488 | + | 109.482i | 36.0105 | − | 36.0105i | 57.2756 | − | 57.2756i | −11.4418 | + | 27.6231i | |
19.9 | 1.70560 | + | 1.70560i | 8.31492 | − | 3.44415i | − | 26.1818i | 18.8073 | + | 45.4050i | 20.0563 | + | 8.30758i | 31.6187 | − | 76.3343i | 99.2350 | − | 99.2350i | 57.2756 | − | 57.2756i | −45.3649 | + | 109.521i | |
19.10 | 3.88932 | + | 3.88932i | −8.31492 | + | 3.44415i | − | 1.74633i | −17.4864 | − | 42.2159i | −45.7348 | − | 18.9440i | 37.7648 | − | 91.1724i | 131.250 | − | 131.250i | 57.2756 | − | 57.2756i | 96.1811 | − | 232.202i | |
19.11 | 4.00033 | + | 4.00033i | 8.31492 | − | 3.44415i | 0.00529928i | −26.4070 | − | 63.7521i | 47.0402 | + | 19.4847i | 33.4286 | − | 80.7039i | 127.989 | − | 127.989i | 57.2756 | − | 57.2756i | 149.393 | − | 360.666i | ||
19.12 | 5.68094 | + | 5.68094i | 8.31492 | − | 3.44415i | 32.5461i | 5.40158 | + | 13.0406i | 66.8025 | + | 27.6705i | −93.5505 | + | 225.851i | −3.10250 | + | 3.10250i | 57.2756 | − | 57.2756i | −43.3966 | + | 104.769i | ||
19.13 | 6.80846 | + | 6.80846i | −8.31492 | + | 3.44415i | 60.7102i | 3.21855 | + | 7.77028i | −80.0611 | − | 33.1624i | −45.3056 | + | 109.377i | −195.472 | + | 195.472i | 57.2756 | − | 57.2756i | −30.9902 | + | 74.8170i | ||
19.14 | 7.20182 | + | 7.20182i | 8.31492 | − | 3.44415i | 71.7323i | 24.1431 | + | 58.2867i | 84.6866 | + | 35.0784i | 69.9994 | − | 168.994i | −286.145 | + | 286.145i | 57.2756 | − | 57.2756i | −245.895 | + | 593.644i | ||
25.1 | −7.65585 | + | 7.65585i | 3.44415 | − | 8.31492i | − | 85.2240i | −89.6080 | − | 37.1168i | 37.2898 | + | 90.0256i | −8.69145 | + | 3.60012i | 407.474 | + | 407.474i | −57.2756 | − | 57.2756i | 970.186 | − | 401.864i | |
25.2 | −5.79991 | + | 5.79991i | −3.44415 | + | 8.31492i | − | 35.2780i | −42.7660 | − | 17.7142i | −28.2500 | − | 68.2015i | 151.688 | − | 62.8311i | 19.0118 | + | 19.0118i | −57.2756 | − | 57.2756i | 350.780 | − | 145.298i | |
25.3 | −5.30075 | + | 5.30075i | 3.44415 | − | 8.31492i | − | 24.1960i | 28.6013 | + | 11.8471i | 25.8187 | + | 62.3319i | −117.456 | + | 48.6520i | −41.3672 | − | 41.3672i | −57.2756 | − | 57.2756i | −214.407 | + | 88.8103i | |
25.4 | −4.75794 | + | 4.75794i | −3.44415 | + | 8.31492i | − | 13.2760i | −13.0733 | − | 5.41515i | −23.1748 | − | 55.9489i | −112.019 | + | 46.3996i | −89.0879 | − | 89.0879i | −57.2756 | − | 57.2756i | 87.9671 | − | 36.4371i | |
25.5 | −2.64592 | + | 2.64592i | −3.44415 | + | 8.31492i | 17.9983i | 96.6645 | + | 40.0397i | −12.8876 | − | 31.1135i | 132.408 | − | 54.8452i | −132.291 | − | 132.291i | −57.2756 | − | 57.2756i | −361.708 | + | 149.824i | ||
25.6 | −1.51861 | + | 1.51861i | 3.44415 | − | 8.31492i | 27.3876i | 21.2252 | + | 8.79177i | 7.39681 | + | 17.8575i | −38.4004 | + | 15.9060i | −90.1869 | − | 90.1869i | −57.2756 | − | 57.2756i | −45.5842 | + | 18.8816i | ||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 51.6.h.a | ✓ | 56 |
17.d | even | 8 | 1 | inner | 51.6.h.a | ✓ | 56 |
17.e | odd | 16 | 1 | 867.6.a.t | 28 | ||
17.e | odd | 16 | 1 | 867.6.a.u | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.6.h.a | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
51.6.h.a | ✓ | 56 | 17.d | even | 8 | 1 | inner |
867.6.a.t | 28 | 17.e | odd | 16 | 1 | ||
867.6.a.u | 28 | 17.e | odd | 16 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(51, [\chi])\).