Properties

Label 5096.2.a.bf.1.4
Level $5096$
Weight $2$
Character 5096.1
Self dual yes
Analytic conductor $40.692$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5096,2,Mod(1,5096)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5096, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5096.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5096 = 2^{3} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5096.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-2,0,-6,0,0,0,12,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6917648700\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 19x^{8} + 36x^{7} + 110x^{6} - 188x^{5} - 218x^{4} + 276x^{3} + 154x^{2} - 48x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.67486\) of defining polynomial
Character \(\chi\) \(=\) 5096.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67486 q^{3} +1.96101 q^{5} -0.194860 q^{9} -1.66183 q^{11} -1.00000 q^{13} -3.28441 q^{15} -5.11115 q^{17} +6.48419 q^{19} +1.12806 q^{23} -1.15444 q^{25} +5.35093 q^{27} +6.85814 q^{29} -1.16816 q^{31} +2.78333 q^{33} -2.16513 q^{37} +1.67486 q^{39} -6.12029 q^{41} +4.07691 q^{43} -0.382123 q^{45} -2.90037 q^{47} +8.56044 q^{51} +7.26079 q^{53} -3.25888 q^{55} -10.8601 q^{57} -2.21673 q^{59} -7.33909 q^{61} -1.96101 q^{65} +6.79925 q^{67} -1.88933 q^{69} -6.84306 q^{71} -15.1542 q^{73} +1.93352 q^{75} +0.576410 q^{79} -8.37745 q^{81} -9.76879 q^{83} -10.0230 q^{85} -11.4864 q^{87} +13.8886 q^{89} +1.95650 q^{93} +12.7156 q^{95} -10.7055 q^{97} +0.323826 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{3} - 6 q^{5} + 12 q^{9} - 2 q^{11} - 10 q^{13} + 4 q^{15} - 16 q^{17} - 14 q^{19} + 8 q^{23} + 12 q^{25} - 2 q^{27} + 2 q^{29} - 8 q^{31} - 10 q^{33} - 6 q^{37} + 2 q^{39} - 22 q^{41} + 2 q^{43}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.67486 −0.966978 −0.483489 0.875350i \(-0.660631\pi\)
−0.483489 + 0.875350i \(0.660631\pi\)
\(4\) 0 0
\(5\) 1.96101 0.876991 0.438495 0.898733i \(-0.355512\pi\)
0.438495 + 0.898733i \(0.355512\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.194860 −0.0649535
\(10\) 0 0
\(11\) −1.66183 −0.501062 −0.250531 0.968109i \(-0.580605\pi\)
−0.250531 + 0.968109i \(0.580605\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −3.28441 −0.848031
\(16\) 0 0
\(17\) −5.11115 −1.23964 −0.619818 0.784745i \(-0.712794\pi\)
−0.619818 + 0.784745i \(0.712794\pi\)
\(18\) 0 0
\(19\) 6.48419 1.48758 0.743788 0.668416i \(-0.233027\pi\)
0.743788 + 0.668416i \(0.233027\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.12806 0.235216 0.117608 0.993060i \(-0.462477\pi\)
0.117608 + 0.993060i \(0.462477\pi\)
\(24\) 0 0
\(25\) −1.15444 −0.230888
\(26\) 0 0
\(27\) 5.35093 1.02979
\(28\) 0 0
\(29\) 6.85814 1.27352 0.636762 0.771060i \(-0.280273\pi\)
0.636762 + 0.771060i \(0.280273\pi\)
\(30\) 0 0
\(31\) −1.16816 −0.209808 −0.104904 0.994482i \(-0.533454\pi\)
−0.104904 + 0.994482i \(0.533454\pi\)
\(32\) 0 0
\(33\) 2.78333 0.484516
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.16513 −0.355945 −0.177973 0.984035i \(-0.556954\pi\)
−0.177973 + 0.984035i \(0.556954\pi\)
\(38\) 0 0
\(39\) 1.67486 0.268191
\(40\) 0 0
\(41\) −6.12029 −0.955828 −0.477914 0.878407i \(-0.658607\pi\)
−0.477914 + 0.878407i \(0.658607\pi\)
\(42\) 0 0
\(43\) 4.07691 0.621724 0.310862 0.950455i \(-0.399382\pi\)
0.310862 + 0.950455i \(0.399382\pi\)
\(44\) 0 0
\(45\) −0.382123 −0.0569636
\(46\) 0 0
\(47\) −2.90037 −0.423063 −0.211531 0.977371i \(-0.567845\pi\)
−0.211531 + 0.977371i \(0.567845\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 8.56044 1.19870
\(52\) 0 0
\(53\) 7.26079 0.997347 0.498673 0.866790i \(-0.333821\pi\)
0.498673 + 0.866790i \(0.333821\pi\)
\(54\) 0 0
\(55\) −3.25888 −0.439427
\(56\) 0 0
\(57\) −10.8601 −1.43845
\(58\) 0 0
\(59\) −2.21673 −0.288593 −0.144297 0.989534i \(-0.546092\pi\)
−0.144297 + 0.989534i \(0.546092\pi\)
\(60\) 0 0
\(61\) −7.33909 −0.939675 −0.469837 0.882753i \(-0.655687\pi\)
−0.469837 + 0.882753i \(0.655687\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.96101 −0.243233
\(66\) 0 0
\(67\) 6.79925 0.830661 0.415330 0.909671i \(-0.363666\pi\)
0.415330 + 0.909671i \(0.363666\pi\)
\(68\) 0 0
\(69\) −1.88933 −0.227449
\(70\) 0 0
\(71\) −6.84306 −0.812122 −0.406061 0.913846i \(-0.633098\pi\)
−0.406061 + 0.913846i \(0.633098\pi\)
\(72\) 0 0
\(73\) −15.1542 −1.77366 −0.886832 0.462093i \(-0.847099\pi\)
−0.886832 + 0.462093i \(0.847099\pi\)
\(74\) 0 0
\(75\) 1.93352 0.223263
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.576410 0.0648512 0.0324256 0.999474i \(-0.489677\pi\)
0.0324256 + 0.999474i \(0.489677\pi\)
\(80\) 0 0
\(81\) −8.37745 −0.930828
\(82\) 0 0
\(83\) −9.76879 −1.07226 −0.536132 0.844134i \(-0.680115\pi\)
−0.536132 + 0.844134i \(0.680115\pi\)
\(84\) 0 0
\(85\) −10.0230 −1.08715
\(86\) 0 0
\(87\) −11.4864 −1.23147
\(88\) 0 0
\(89\) 13.8886 1.47219 0.736095 0.676879i \(-0.236668\pi\)
0.736095 + 0.676879i \(0.236668\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.95650 0.202880
\(94\) 0 0
\(95\) 12.7156 1.30459
\(96\) 0 0
\(97\) −10.7055 −1.08698 −0.543488 0.839417i \(-0.682897\pi\)
−0.543488 + 0.839417i \(0.682897\pi\)
\(98\) 0 0
\(99\) 0.323826 0.0325457
\(100\) 0 0
\(101\) −1.64214 −0.163399 −0.0816994 0.996657i \(-0.526035\pi\)
−0.0816994 + 0.996657i \(0.526035\pi\)
\(102\) 0 0
\(103\) 8.20389 0.808353 0.404177 0.914681i \(-0.367558\pi\)
0.404177 + 0.914681i \(0.367558\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3099 1.09337 0.546684 0.837339i \(-0.315890\pi\)
0.546684 + 0.837339i \(0.315890\pi\)
\(108\) 0 0
\(109\) −10.9024 −1.04426 −0.522129 0.852867i \(-0.674862\pi\)
−0.522129 + 0.852867i \(0.674862\pi\)
\(110\) 0 0
\(111\) 3.62628 0.344191
\(112\) 0 0
\(113\) −0.810483 −0.0762439 −0.0381219 0.999273i \(-0.512138\pi\)
−0.0381219 + 0.999273i \(0.512138\pi\)
\(114\) 0 0
\(115\) 2.21213 0.206283
\(116\) 0 0
\(117\) 0.194860 0.0180149
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.23830 −0.748937
\(122\) 0 0
\(123\) 10.2506 0.924265
\(124\) 0 0
\(125\) −12.0689 −1.07948
\(126\) 0 0
\(127\) 3.20808 0.284671 0.142336 0.989818i \(-0.454539\pi\)
0.142336 + 0.989818i \(0.454539\pi\)
\(128\) 0 0
\(129\) −6.82824 −0.601193
\(130\) 0 0
\(131\) −15.6228 −1.36497 −0.682484 0.730901i \(-0.739100\pi\)
−0.682484 + 0.730901i \(0.739100\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 10.4932 0.903113
\(136\) 0 0
\(137\) −1.65545 −0.141435 −0.0707175 0.997496i \(-0.522529\pi\)
−0.0707175 + 0.997496i \(0.522529\pi\)
\(138\) 0 0
\(139\) −11.1733 −0.947705 −0.473852 0.880604i \(-0.657137\pi\)
−0.473852 + 0.880604i \(0.657137\pi\)
\(140\) 0 0
\(141\) 4.85770 0.409092
\(142\) 0 0
\(143\) 1.66183 0.138970
\(144\) 0 0
\(145\) 13.4489 1.11687
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.5646 −0.865486 −0.432743 0.901517i \(-0.642454\pi\)
−0.432743 + 0.901517i \(0.642454\pi\)
\(150\) 0 0
\(151\) −8.15279 −0.663465 −0.331732 0.943374i \(-0.607633\pi\)
−0.331732 + 0.943374i \(0.607633\pi\)
\(152\) 0 0
\(153\) 0.995961 0.0805187
\(154\) 0 0
\(155\) −2.29078 −0.184000
\(156\) 0 0
\(157\) −16.1733 −1.29077 −0.645386 0.763856i \(-0.723304\pi\)
−0.645386 + 0.763856i \(0.723304\pi\)
\(158\) 0 0
\(159\) −12.1608 −0.964412
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 15.1542 1.18697 0.593486 0.804844i \(-0.297751\pi\)
0.593486 + 0.804844i \(0.297751\pi\)
\(164\) 0 0
\(165\) 5.45814 0.424916
\(166\) 0 0
\(167\) 22.0967 1.70990 0.854949 0.518713i \(-0.173589\pi\)
0.854949 + 0.518713i \(0.173589\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −1.26351 −0.0966232
\(172\) 0 0
\(173\) 2.59337 0.197170 0.0985852 0.995129i \(-0.468568\pi\)
0.0985852 + 0.995129i \(0.468568\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.71270 0.279064
\(178\) 0 0
\(179\) 13.5240 1.01083 0.505414 0.862877i \(-0.331340\pi\)
0.505414 + 0.862877i \(0.331340\pi\)
\(180\) 0 0
\(181\) −6.69331 −0.497509 −0.248755 0.968567i \(-0.580021\pi\)
−0.248755 + 0.968567i \(0.580021\pi\)
\(182\) 0 0
\(183\) 12.2919 0.908645
\(184\) 0 0
\(185\) −4.24584 −0.312161
\(186\) 0 0
\(187\) 8.49389 0.621135
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.2145 0.883812 0.441906 0.897061i \(-0.354303\pi\)
0.441906 + 0.897061i \(0.354303\pi\)
\(192\) 0 0
\(193\) 25.6943 1.84951 0.924757 0.380558i \(-0.124268\pi\)
0.924757 + 0.380558i \(0.124268\pi\)
\(194\) 0 0
\(195\) 3.28441 0.235201
\(196\) 0 0
\(197\) −12.7826 −0.910725 −0.455362 0.890306i \(-0.650490\pi\)
−0.455362 + 0.890306i \(0.650490\pi\)
\(198\) 0 0
\(199\) 0.332281 0.0235548 0.0117774 0.999931i \(-0.496251\pi\)
0.0117774 + 0.999931i \(0.496251\pi\)
\(200\) 0 0
\(201\) −11.3878 −0.803230
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0019 −0.838252
\(206\) 0 0
\(207\) −0.219814 −0.0152781
\(208\) 0 0
\(209\) −10.7757 −0.745368
\(210\) 0 0
\(211\) −21.3728 −1.47136 −0.735682 0.677328i \(-0.763138\pi\)
−0.735682 + 0.677328i \(0.763138\pi\)
\(212\) 0 0
\(213\) 11.4611 0.785304
\(214\) 0 0
\(215\) 7.99487 0.545246
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 25.3811 1.71509
\(220\) 0 0
\(221\) 5.11115 0.343813
\(222\) 0 0
\(223\) −1.92719 −0.129054 −0.0645271 0.997916i \(-0.520554\pi\)
−0.0645271 + 0.997916i \(0.520554\pi\)
\(224\) 0 0
\(225\) 0.224954 0.0149970
\(226\) 0 0
\(227\) 7.46734 0.495624 0.247812 0.968808i \(-0.420288\pi\)
0.247812 + 0.968808i \(0.420288\pi\)
\(228\) 0 0
\(229\) −19.7763 −1.30686 −0.653428 0.756989i \(-0.726670\pi\)
−0.653428 + 0.756989i \(0.726670\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.97921 0.522735 0.261368 0.965239i \(-0.415827\pi\)
0.261368 + 0.965239i \(0.415827\pi\)
\(234\) 0 0
\(235\) −5.68766 −0.371022
\(236\) 0 0
\(237\) −0.965403 −0.0627097
\(238\) 0 0
\(239\) −27.5872 −1.78447 −0.892233 0.451575i \(-0.850862\pi\)
−0.892233 + 0.451575i \(0.850862\pi\)
\(240\) 0 0
\(241\) −1.97176 −0.127012 −0.0635062 0.997981i \(-0.520228\pi\)
−0.0635062 + 0.997981i \(0.520228\pi\)
\(242\) 0 0
\(243\) −2.02177 −0.129697
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.48419 −0.412579
\(248\) 0 0
\(249\) 16.3613 1.03686
\(250\) 0 0
\(251\) −24.1574 −1.52480 −0.762399 0.647107i \(-0.775979\pi\)
−0.762399 + 0.647107i \(0.775979\pi\)
\(252\) 0 0
\(253\) −1.87465 −0.117858
\(254\) 0 0
\(255\) 16.7871 1.05125
\(256\) 0 0
\(257\) −7.88181 −0.491654 −0.245827 0.969314i \(-0.579059\pi\)
−0.245827 + 0.969314i \(0.579059\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.33638 −0.0827199
\(262\) 0 0
\(263\) −20.5830 −1.26920 −0.634602 0.772839i \(-0.718836\pi\)
−0.634602 + 0.772839i \(0.718836\pi\)
\(264\) 0 0
\(265\) 14.2385 0.874664
\(266\) 0 0
\(267\) −23.2614 −1.42357
\(268\) 0 0
\(269\) −3.04982 −0.185951 −0.0929754 0.995668i \(-0.529638\pi\)
−0.0929754 + 0.995668i \(0.529638\pi\)
\(270\) 0 0
\(271\) −19.2830 −1.17136 −0.585681 0.810542i \(-0.699173\pi\)
−0.585681 + 0.810542i \(0.699173\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.91848 0.115689
\(276\) 0 0
\(277\) 13.7602 0.826772 0.413386 0.910556i \(-0.364346\pi\)
0.413386 + 0.910556i \(0.364346\pi\)
\(278\) 0 0
\(279\) 0.227628 0.0136278
\(280\) 0 0
\(281\) −7.73565 −0.461470 −0.230735 0.973017i \(-0.574113\pi\)
−0.230735 + 0.973017i \(0.574113\pi\)
\(282\) 0 0
\(283\) −10.9354 −0.650039 −0.325020 0.945707i \(-0.605371\pi\)
−0.325020 + 0.945707i \(0.605371\pi\)
\(284\) 0 0
\(285\) −21.2967 −1.26151
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 9.12387 0.536698
\(290\) 0 0
\(291\) 17.9301 1.05108
\(292\) 0 0
\(293\) −4.51209 −0.263599 −0.131799 0.991276i \(-0.542075\pi\)
−0.131799 + 0.991276i \(0.542075\pi\)
\(294\) 0 0
\(295\) −4.34703 −0.253094
\(296\) 0 0
\(297\) −8.89236 −0.515987
\(298\) 0 0
\(299\) −1.12806 −0.0652373
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.75034 0.158003
\(304\) 0 0
\(305\) −14.3920 −0.824086
\(306\) 0 0
\(307\) −8.14085 −0.464623 −0.232311 0.972641i \(-0.574629\pi\)
−0.232311 + 0.972641i \(0.574629\pi\)
\(308\) 0 0
\(309\) −13.7403 −0.781660
\(310\) 0 0
\(311\) 7.76461 0.440291 0.220145 0.975467i \(-0.429347\pi\)
0.220145 + 0.975467i \(0.429347\pi\)
\(312\) 0 0
\(313\) −20.7421 −1.17241 −0.586205 0.810162i \(-0.699379\pi\)
−0.586205 + 0.810162i \(0.699379\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.282737 0.0158801 0.00794005 0.999968i \(-0.497473\pi\)
0.00794005 + 0.999968i \(0.497473\pi\)
\(318\) 0 0
\(319\) −11.3971 −0.638115
\(320\) 0 0
\(321\) −18.9424 −1.05726
\(322\) 0 0
\(323\) −33.1417 −1.84405
\(324\) 0 0
\(325\) 1.15444 0.0640367
\(326\) 0 0
\(327\) 18.2599 1.00977
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.8450 1.09078 0.545390 0.838182i \(-0.316381\pi\)
0.545390 + 0.838182i \(0.316381\pi\)
\(332\) 0 0
\(333\) 0.421898 0.0231199
\(334\) 0 0
\(335\) 13.3334 0.728481
\(336\) 0 0
\(337\) 3.91104 0.213048 0.106524 0.994310i \(-0.466028\pi\)
0.106524 + 0.994310i \(0.466028\pi\)
\(338\) 0 0
\(339\) 1.35744 0.0737261
\(340\) 0 0
\(341\) 1.94129 0.105127
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.70500 −0.199471
\(346\) 0 0
\(347\) −14.5491 −0.781034 −0.390517 0.920596i \(-0.627704\pi\)
−0.390517 + 0.920596i \(0.627704\pi\)
\(348\) 0 0
\(349\) 15.6952 0.840144 0.420072 0.907491i \(-0.362005\pi\)
0.420072 + 0.907491i \(0.362005\pi\)
\(350\) 0 0
\(351\) −5.35093 −0.285611
\(352\) 0 0
\(353\) −4.47548 −0.238206 −0.119103 0.992882i \(-0.538002\pi\)
−0.119103 + 0.992882i \(0.538002\pi\)
\(354\) 0 0
\(355\) −13.4193 −0.712223
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.6654 −0.826788 −0.413394 0.910552i \(-0.635657\pi\)
−0.413394 + 0.910552i \(0.635657\pi\)
\(360\) 0 0
\(361\) 23.0448 1.21288
\(362\) 0 0
\(363\) 13.7980 0.724205
\(364\) 0 0
\(365\) −29.7175 −1.55549
\(366\) 0 0
\(367\) −32.2933 −1.68569 −0.842847 0.538153i \(-0.819122\pi\)
−0.842847 + 0.538153i \(0.819122\pi\)
\(368\) 0 0
\(369\) 1.19260 0.0620844
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −28.2758 −1.46407 −0.732033 0.681269i \(-0.761428\pi\)
−0.732033 + 0.681269i \(0.761428\pi\)
\(374\) 0 0
\(375\) 20.2137 1.04383
\(376\) 0 0
\(377\) −6.85814 −0.353212
\(378\) 0 0
\(379\) 5.86299 0.301161 0.150581 0.988598i \(-0.451886\pi\)
0.150581 + 0.988598i \(0.451886\pi\)
\(380\) 0 0
\(381\) −5.37308 −0.275271
\(382\) 0 0
\(383\) 14.9135 0.762047 0.381023 0.924565i \(-0.375572\pi\)
0.381023 + 0.924565i \(0.375572\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.794429 −0.0403831
\(388\) 0 0
\(389\) −10.7317 −0.544119 −0.272060 0.962280i \(-0.587705\pi\)
−0.272060 + 0.962280i \(0.587705\pi\)
\(390\) 0 0
\(391\) −5.76568 −0.291583
\(392\) 0 0
\(393\) 26.1659 1.31989
\(394\) 0 0
\(395\) 1.13035 0.0568739
\(396\) 0 0
\(397\) −29.5225 −1.48169 −0.740847 0.671674i \(-0.765576\pi\)
−0.740847 + 0.671674i \(0.765576\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.3814 −0.568360 −0.284180 0.958771i \(-0.591721\pi\)
−0.284180 + 0.958771i \(0.591721\pi\)
\(402\) 0 0
\(403\) 1.16816 0.0581902
\(404\) 0 0
\(405\) −16.4283 −0.816327
\(406\) 0 0
\(407\) 3.59809 0.178351
\(408\) 0 0
\(409\) −15.7081 −0.776714 −0.388357 0.921509i \(-0.626957\pi\)
−0.388357 + 0.921509i \(0.626957\pi\)
\(410\) 0 0
\(411\) 2.77265 0.136765
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −19.1567 −0.940365
\(416\) 0 0
\(417\) 18.7136 0.916410
\(418\) 0 0
\(419\) 34.8495 1.70251 0.851256 0.524751i \(-0.175842\pi\)
0.851256 + 0.524751i \(0.175842\pi\)
\(420\) 0 0
\(421\) 1.28023 0.0623948 0.0311974 0.999513i \(-0.490068\pi\)
0.0311974 + 0.999513i \(0.490068\pi\)
\(422\) 0 0
\(423\) 0.565168 0.0274794
\(424\) 0 0
\(425\) 5.90051 0.286217
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.78333 −0.134381
\(430\) 0 0
\(431\) −36.4027 −1.75346 −0.876729 0.480985i \(-0.840279\pi\)
−0.876729 + 0.480985i \(0.840279\pi\)
\(432\) 0 0
\(433\) −12.0832 −0.580680 −0.290340 0.956924i \(-0.593768\pi\)
−0.290340 + 0.956924i \(0.593768\pi\)
\(434\) 0 0
\(435\) −22.5249 −1.07999
\(436\) 0 0
\(437\) 7.31455 0.349902
\(438\) 0 0
\(439\) 16.5632 0.790516 0.395258 0.918570i \(-0.370655\pi\)
0.395258 + 0.918570i \(0.370655\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.9088 −0.660825 −0.330413 0.943837i \(-0.607188\pi\)
−0.330413 + 0.943837i \(0.607188\pi\)
\(444\) 0 0
\(445\) 27.2357 1.29110
\(446\) 0 0
\(447\) 17.6942 0.836906
\(448\) 0 0
\(449\) 37.0558 1.74877 0.874385 0.485233i \(-0.161265\pi\)
0.874385 + 0.485233i \(0.161265\pi\)
\(450\) 0 0
\(451\) 10.1709 0.478929
\(452\) 0 0
\(453\) 13.6547 0.641556
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.9900 −1.02865 −0.514323 0.857596i \(-0.671957\pi\)
−0.514323 + 0.857596i \(0.671957\pi\)
\(458\) 0 0
\(459\) −27.3494 −1.27656
\(460\) 0 0
\(461\) 20.0228 0.932556 0.466278 0.884638i \(-0.345595\pi\)
0.466278 + 0.884638i \(0.345595\pi\)
\(462\) 0 0
\(463\) 9.26388 0.430529 0.215264 0.976556i \(-0.430939\pi\)
0.215264 + 0.976556i \(0.430939\pi\)
\(464\) 0 0
\(465\) 3.83672 0.177924
\(466\) 0 0
\(467\) 10.4544 0.483773 0.241886 0.970305i \(-0.422234\pi\)
0.241886 + 0.970305i \(0.422234\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 27.0880 1.24815
\(472\) 0 0
\(473\) −6.77516 −0.311522
\(474\) 0 0
\(475\) −7.48560 −0.343463
\(476\) 0 0
\(477\) −1.41484 −0.0647812
\(478\) 0 0
\(479\) −15.8626 −0.724779 −0.362389 0.932027i \(-0.618039\pi\)
−0.362389 + 0.932027i \(0.618039\pi\)
\(480\) 0 0
\(481\) 2.16513 0.0987215
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.9935 −0.953268
\(486\) 0 0
\(487\) −3.18402 −0.144282 −0.0721408 0.997394i \(-0.522983\pi\)
−0.0721408 + 0.997394i \(0.522983\pi\)
\(488\) 0 0
\(489\) −25.3812 −1.14778
\(490\) 0 0
\(491\) −27.8310 −1.25599 −0.627997 0.778216i \(-0.716125\pi\)
−0.627997 + 0.778216i \(0.716125\pi\)
\(492\) 0 0
\(493\) −35.0530 −1.57871
\(494\) 0 0
\(495\) 0.635026 0.0285423
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.71618 0.255891 0.127946 0.991781i \(-0.459162\pi\)
0.127946 + 0.991781i \(0.459162\pi\)
\(500\) 0 0
\(501\) −37.0088 −1.65343
\(502\) 0 0
\(503\) 2.09686 0.0934945 0.0467473 0.998907i \(-0.485114\pi\)
0.0467473 + 0.998907i \(0.485114\pi\)
\(504\) 0 0
\(505\) −3.22025 −0.143299
\(506\) 0 0
\(507\) −1.67486 −0.0743829
\(508\) 0 0
\(509\) −12.4440 −0.551573 −0.275786 0.961219i \(-0.588938\pi\)
−0.275786 + 0.961219i \(0.588938\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 34.6964 1.53189
\(514\) 0 0
\(515\) 16.0879 0.708918
\(516\) 0 0
\(517\) 4.81994 0.211981
\(518\) 0 0
\(519\) −4.34352 −0.190659
\(520\) 0 0
\(521\) −3.25659 −0.142674 −0.0713368 0.997452i \(-0.522727\pi\)
−0.0713368 + 0.997452i \(0.522727\pi\)
\(522\) 0 0
\(523\) −17.4891 −0.764744 −0.382372 0.924009i \(-0.624893\pi\)
−0.382372 + 0.924009i \(0.624893\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.97065 0.260086
\(528\) 0 0
\(529\) −21.7275 −0.944673
\(530\) 0 0
\(531\) 0.431953 0.0187452
\(532\) 0 0
\(533\) 6.12029 0.265099
\(534\) 0 0
\(535\) 22.1788 0.958873
\(536\) 0 0
\(537\) −22.6507 −0.977449
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −43.6895 −1.87836 −0.939179 0.343429i \(-0.888411\pi\)
−0.939179 + 0.343429i \(0.888411\pi\)
\(542\) 0 0
\(543\) 11.2103 0.481081
\(544\) 0 0
\(545\) −21.3797 −0.915804
\(546\) 0 0
\(547\) 22.1623 0.947589 0.473795 0.880635i \(-0.342884\pi\)
0.473795 + 0.880635i \(0.342884\pi\)
\(548\) 0 0
\(549\) 1.43010 0.0610352
\(550\) 0 0
\(551\) 44.4695 1.89446
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 7.11117 0.301853
\(556\) 0 0
\(557\) 22.5647 0.956099 0.478049 0.878333i \(-0.341344\pi\)
0.478049 + 0.878333i \(0.341344\pi\)
\(558\) 0 0
\(559\) −4.07691 −0.172435
\(560\) 0 0
\(561\) −14.2260 −0.600624
\(562\) 0 0
\(563\) −9.71333 −0.409368 −0.204684 0.978828i \(-0.565617\pi\)
−0.204684 + 0.978828i \(0.565617\pi\)
\(564\) 0 0
\(565\) −1.58937 −0.0668651
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.6896 0.909275 0.454637 0.890677i \(-0.349769\pi\)
0.454637 + 0.890677i \(0.349769\pi\)
\(570\) 0 0
\(571\) 37.4493 1.56720 0.783601 0.621264i \(-0.213381\pi\)
0.783601 + 0.621264i \(0.213381\pi\)
\(572\) 0 0
\(573\) −20.4576 −0.854626
\(574\) 0 0
\(575\) −1.30227 −0.0543085
\(576\) 0 0
\(577\) 30.3682 1.26424 0.632122 0.774869i \(-0.282184\pi\)
0.632122 + 0.774869i \(0.282184\pi\)
\(578\) 0 0
\(579\) −43.0342 −1.78844
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0662 −0.499733
\(584\) 0 0
\(585\) 0.382123 0.0157989
\(586\) 0 0
\(587\) −12.3621 −0.510240 −0.255120 0.966909i \(-0.582115\pi\)
−0.255120 + 0.966909i \(0.582115\pi\)
\(588\) 0 0
\(589\) −7.57458 −0.312105
\(590\) 0 0
\(591\) 21.4091 0.880651
\(592\) 0 0
\(593\) 17.0465 0.700015 0.350007 0.936747i \(-0.386179\pi\)
0.350007 + 0.936747i \(0.386179\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.556523 −0.0227770
\(598\) 0 0
\(599\) −37.1138 −1.51643 −0.758214 0.652006i \(-0.773928\pi\)
−0.758214 + 0.652006i \(0.773928\pi\)
\(600\) 0 0
\(601\) 42.0688 1.71602 0.858011 0.513631i \(-0.171700\pi\)
0.858011 + 0.513631i \(0.171700\pi\)
\(602\) 0 0
\(603\) −1.32491 −0.0539543
\(604\) 0 0
\(605\) −16.1554 −0.656811
\(606\) 0 0
\(607\) 13.0426 0.529385 0.264692 0.964333i \(-0.414730\pi\)
0.264692 + 0.964333i \(0.414730\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.90037 0.117337
\(612\) 0 0
\(613\) 5.37525 0.217104 0.108552 0.994091i \(-0.465379\pi\)
0.108552 + 0.994091i \(0.465379\pi\)
\(614\) 0 0
\(615\) 20.1015 0.810572
\(616\) 0 0
\(617\) 10.9605 0.441255 0.220627 0.975358i \(-0.429190\pi\)
0.220627 + 0.975358i \(0.429190\pi\)
\(618\) 0 0
\(619\) −7.48189 −0.300723 −0.150361 0.988631i \(-0.548044\pi\)
−0.150361 + 0.988631i \(0.548044\pi\)
\(620\) 0 0
\(621\) 6.03616 0.242223
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.8951 −0.715803
\(626\) 0 0
\(627\) 18.0477 0.720754
\(628\) 0 0
\(629\) 11.0663 0.441243
\(630\) 0 0
\(631\) 4.71079 0.187534 0.0937668 0.995594i \(-0.470109\pi\)
0.0937668 + 0.995594i \(0.470109\pi\)
\(632\) 0 0
\(633\) 35.7963 1.42278
\(634\) 0 0
\(635\) 6.29109 0.249654
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.33344 0.0527501
\(640\) 0 0
\(641\) −19.4710 −0.769057 −0.384528 0.923113i \(-0.625636\pi\)
−0.384528 + 0.923113i \(0.625636\pi\)
\(642\) 0 0
\(643\) 48.8114 1.92493 0.962467 0.271400i \(-0.0874865\pi\)
0.962467 + 0.271400i \(0.0874865\pi\)
\(644\) 0 0
\(645\) −13.3903 −0.527241
\(646\) 0 0
\(647\) 3.52355 0.138525 0.0692625 0.997598i \(-0.477935\pi\)
0.0692625 + 0.997598i \(0.477935\pi\)
\(648\) 0 0
\(649\) 3.68384 0.144603
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.5848 1.58820 0.794102 0.607784i \(-0.207941\pi\)
0.794102 + 0.607784i \(0.207941\pi\)
\(654\) 0 0
\(655\) −30.6364 −1.19706
\(656\) 0 0
\(657\) 2.95295 0.115206
\(658\) 0 0
\(659\) −40.8875 −1.59275 −0.796375 0.604804i \(-0.793252\pi\)
−0.796375 + 0.604804i \(0.793252\pi\)
\(660\) 0 0
\(661\) 11.7704 0.457816 0.228908 0.973448i \(-0.426485\pi\)
0.228908 + 0.973448i \(0.426485\pi\)
\(662\) 0 0
\(663\) −8.56044 −0.332460
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.73638 0.299554
\(668\) 0 0
\(669\) 3.22777 0.124793
\(670\) 0 0
\(671\) 12.1964 0.470835
\(672\) 0 0
\(673\) 42.0668 1.62156 0.810778 0.585353i \(-0.199044\pi\)
0.810778 + 0.585353i \(0.199044\pi\)
\(674\) 0 0
\(675\) −6.17731 −0.237765
\(676\) 0 0
\(677\) −39.2209 −1.50738 −0.753692 0.657228i \(-0.771729\pi\)
−0.753692 + 0.657228i \(0.771729\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.5067 −0.479258
\(682\) 0 0
\(683\) −26.1992 −1.00248 −0.501242 0.865307i \(-0.667123\pi\)
−0.501242 + 0.865307i \(0.667123\pi\)
\(684\) 0 0
\(685\) −3.24636 −0.124037
\(686\) 0 0
\(687\) 33.1225 1.26370
\(688\) 0 0
\(689\) −7.26079 −0.276614
\(690\) 0 0
\(691\) 23.9778 0.912160 0.456080 0.889939i \(-0.349253\pi\)
0.456080 + 0.889939i \(0.349253\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.9109 −0.831128
\(696\) 0 0
\(697\) 31.2817 1.18488
\(698\) 0 0
\(699\) −13.3640 −0.505473
\(700\) 0 0
\(701\) 43.3312 1.63660 0.818298 0.574795i \(-0.194918\pi\)
0.818298 + 0.574795i \(0.194918\pi\)
\(702\) 0 0
\(703\) −14.0391 −0.529496
\(704\) 0 0
\(705\) 9.52601 0.358770
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.45761 0.355188 0.177594 0.984104i \(-0.443169\pi\)
0.177594 + 0.984104i \(0.443169\pi\)
\(710\) 0 0
\(711\) −0.112320 −0.00421231
\(712\) 0 0
\(713\) −1.31775 −0.0493503
\(714\) 0 0
\(715\) 3.25888 0.121875
\(716\) 0 0
\(717\) 46.2045 1.72554
\(718\) 0 0
\(719\) 29.0483 1.08332 0.541660 0.840598i \(-0.317796\pi\)
0.541660 + 0.840598i \(0.317796\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.30242 0.122818
\(724\) 0 0
\(725\) −7.91729 −0.294041
\(726\) 0 0
\(727\) −19.7593 −0.732833 −0.366417 0.930451i \(-0.619416\pi\)
−0.366417 + 0.930451i \(0.619416\pi\)
\(728\) 0 0
\(729\) 28.5185 1.05624
\(730\) 0 0
\(731\) −20.8377 −0.770711
\(732\) 0 0
\(733\) −11.1158 −0.410571 −0.205286 0.978702i \(-0.565812\pi\)
−0.205286 + 0.978702i \(0.565812\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.2992 −0.416212
\(738\) 0 0
\(739\) −34.8652 −1.28254 −0.641269 0.767316i \(-0.721592\pi\)
−0.641269 + 0.767316i \(0.721592\pi\)
\(740\) 0 0
\(741\) 10.8601 0.398955
\(742\) 0 0
\(743\) 16.7148 0.613206 0.306603 0.951837i \(-0.400808\pi\)
0.306603 + 0.951837i \(0.400808\pi\)
\(744\) 0 0
\(745\) −20.7173 −0.759023
\(746\) 0 0
\(747\) 1.90355 0.0696473
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.8535 −0.687975 −0.343987 0.938974i \(-0.611778\pi\)
−0.343987 + 0.938974i \(0.611778\pi\)
\(752\) 0 0
\(753\) 40.4601 1.47445
\(754\) 0 0
\(755\) −15.9877 −0.581853
\(756\) 0 0
\(757\) −30.3541 −1.10324 −0.551619 0.834096i \(-0.685990\pi\)
−0.551619 + 0.834096i \(0.685990\pi\)
\(758\) 0 0
\(759\) 3.13976 0.113966
\(760\) 0 0
\(761\) 12.3954 0.449333 0.224666 0.974436i \(-0.427871\pi\)
0.224666 + 0.974436i \(0.427871\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.95309 0.0706142
\(766\) 0 0
\(767\) 2.21673 0.0800414
\(768\) 0 0
\(769\) −21.6913 −0.782209 −0.391104 0.920346i \(-0.627907\pi\)
−0.391104 + 0.920346i \(0.627907\pi\)
\(770\) 0 0
\(771\) 13.2009 0.475418
\(772\) 0 0
\(773\) −35.0601 −1.26102 −0.630512 0.776180i \(-0.717155\pi\)
−0.630512 + 0.776180i \(0.717155\pi\)
\(774\) 0 0
\(775\) 1.34857 0.0484420
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −39.6851 −1.42187
\(780\) 0 0
\(781\) 11.3720 0.406923
\(782\) 0 0
\(783\) 36.6974 1.31146
\(784\) 0 0
\(785\) −31.7161 −1.13200
\(786\) 0 0
\(787\) −41.2144 −1.46914 −0.734568 0.678536i \(-0.762615\pi\)
−0.734568 + 0.678536i \(0.762615\pi\)
\(788\) 0 0
\(789\) 34.4736 1.22729
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.33909 0.260619
\(794\) 0 0
\(795\) −23.8474 −0.845781
\(796\) 0 0
\(797\) 4.92718 0.174530 0.0872649 0.996185i \(-0.472187\pi\)
0.0872649 + 0.996185i \(0.472187\pi\)
\(798\) 0 0
\(799\) 14.8242 0.524444
\(800\) 0 0
\(801\) −2.70634 −0.0956238
\(802\) 0 0
\(803\) 25.1838 0.888715
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.10800 0.179810
\(808\) 0 0
\(809\) −21.4872 −0.755450 −0.377725 0.925918i \(-0.623293\pi\)
−0.377725 + 0.925918i \(0.623293\pi\)
\(810\) 0 0
\(811\) −2.66185 −0.0934703 −0.0467352 0.998907i \(-0.514882\pi\)
−0.0467352 + 0.998907i \(0.514882\pi\)
\(812\) 0 0
\(813\) 32.2963 1.13268
\(814\) 0 0
\(815\) 29.7176 1.04096
\(816\) 0 0
\(817\) 26.4355 0.924861
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.84059 −0.0642370 −0.0321185 0.999484i \(-0.510225\pi\)
−0.0321185 + 0.999484i \(0.510225\pi\)
\(822\) 0 0
\(823\) −6.58793 −0.229641 −0.114820 0.993386i \(-0.536629\pi\)
−0.114820 + 0.993386i \(0.536629\pi\)
\(824\) 0 0
\(825\) −3.21318 −0.111869
\(826\) 0 0
\(827\) 3.52260 0.122493 0.0612465 0.998123i \(-0.480492\pi\)
0.0612465 + 0.998123i \(0.480492\pi\)
\(828\) 0 0
\(829\) 45.7282 1.58821 0.794103 0.607783i \(-0.207941\pi\)
0.794103 + 0.607783i \(0.207941\pi\)
\(830\) 0 0
\(831\) −23.0464 −0.799471
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 43.3319 1.49956
\(836\) 0 0
\(837\) −6.25075 −0.216057
\(838\) 0 0
\(839\) −31.8369 −1.09913 −0.549566 0.835451i \(-0.685207\pi\)
−0.549566 + 0.835451i \(0.685207\pi\)
\(840\) 0 0
\(841\) 18.0341 0.621864
\(842\) 0 0
\(843\) 12.9561 0.446231
\(844\) 0 0
\(845\) 1.96101 0.0674608
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 18.3151 0.628574
\(850\) 0 0
\(851\) −2.44239 −0.0837242
\(852\) 0 0
\(853\) −17.1818 −0.588294 −0.294147 0.955760i \(-0.595036\pi\)
−0.294147 + 0.955760i \(0.595036\pi\)
\(854\) 0 0
\(855\) −2.47776 −0.0847377
\(856\) 0 0
\(857\) 16.5113 0.564015 0.282008 0.959412i \(-0.409000\pi\)
0.282008 + 0.959412i \(0.409000\pi\)
\(858\) 0 0
\(859\) 23.5720 0.804268 0.402134 0.915581i \(-0.368269\pi\)
0.402134 + 0.915581i \(0.368269\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.0887 1.39868 0.699338 0.714791i \(-0.253478\pi\)
0.699338 + 0.714791i \(0.253478\pi\)
\(864\) 0 0
\(865\) 5.08563 0.172917
\(866\) 0 0
\(867\) −15.2812 −0.518975
\(868\) 0 0
\(869\) −0.957898 −0.0324945
\(870\) 0 0
\(871\) −6.79925 −0.230384
\(872\) 0 0
\(873\) 2.08607 0.0706029
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 48.1917 1.62732 0.813659 0.581343i \(-0.197473\pi\)
0.813659 + 0.581343i \(0.197473\pi\)
\(878\) 0 0
\(879\) 7.55709 0.254894
\(880\) 0 0
\(881\) 4.84370 0.163188 0.0815942 0.996666i \(-0.473999\pi\)
0.0815942 + 0.996666i \(0.473999\pi\)
\(882\) 0 0
\(883\) 13.8975 0.467688 0.233844 0.972274i \(-0.424869\pi\)
0.233844 + 0.972274i \(0.424869\pi\)
\(884\) 0 0
\(885\) 7.28064 0.244736
\(886\) 0 0
\(887\) 33.1608 1.11343 0.556715 0.830704i \(-0.312062\pi\)
0.556715 + 0.830704i \(0.312062\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 13.9219 0.466402
\(892\) 0 0
\(893\) −18.8066 −0.629338
\(894\) 0 0
\(895\) 26.5206 0.886487
\(896\) 0 0
\(897\) 1.88933 0.0630830
\(898\) 0 0
\(899\) −8.01141 −0.267195
\(900\) 0 0
\(901\) −37.1110 −1.23635
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.1256 −0.436311
\(906\) 0 0
\(907\) 48.9307 1.62472 0.812359 0.583157i \(-0.198183\pi\)
0.812359 + 0.583157i \(0.198183\pi\)
\(908\) 0 0
\(909\) 0.319988 0.0106133
\(910\) 0 0
\(911\) 51.1552 1.69485 0.847423 0.530919i \(-0.178153\pi\)
0.847423 + 0.530919i \(0.178153\pi\)
\(912\) 0 0
\(913\) 16.2341 0.537271
\(914\) 0 0
\(915\) 24.1046 0.796873
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −55.4938 −1.83057 −0.915286 0.402805i \(-0.868035\pi\)
−0.915286 + 0.402805i \(0.868035\pi\)
\(920\) 0 0
\(921\) 13.6347 0.449280
\(922\) 0 0
\(923\) 6.84306 0.225242
\(924\) 0 0
\(925\) 2.49951 0.0821833
\(926\) 0 0
\(927\) −1.59861 −0.0525054
\(928\) 0 0
\(929\) 8.84546 0.290210 0.145105 0.989416i \(-0.453648\pi\)
0.145105 + 0.989416i \(0.453648\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −13.0046 −0.425751
\(934\) 0 0
\(935\) 16.6566 0.544729
\(936\) 0 0
\(937\) −53.3264 −1.74210 −0.871048 0.491197i \(-0.836559\pi\)
−0.871048 + 0.491197i \(0.836559\pi\)
\(938\) 0 0
\(939\) 34.7400 1.13370
\(940\) 0 0
\(941\) 5.56337 0.181361 0.0906804 0.995880i \(-0.471096\pi\)
0.0906804 + 0.995880i \(0.471096\pi\)
\(942\) 0 0
\(943\) −6.90404 −0.224826
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.92116 0.0624293 0.0312146 0.999513i \(-0.490062\pi\)
0.0312146 + 0.999513i \(0.490062\pi\)
\(948\) 0 0
\(949\) 15.1542 0.491926
\(950\) 0 0
\(951\) −0.473544 −0.0153557
\(952\) 0 0
\(953\) 54.6606 1.77063 0.885315 0.464991i \(-0.153942\pi\)
0.885315 + 0.464991i \(0.153942\pi\)
\(954\) 0 0
\(955\) 23.9528 0.775094
\(956\) 0 0
\(957\) 19.0885 0.617043
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.6354 −0.955981
\(962\) 0 0
\(963\) −2.20385 −0.0710181
\(964\) 0 0
\(965\) 50.3867 1.62201
\(966\) 0 0
\(967\) 17.4272 0.560422 0.280211 0.959938i \(-0.409596\pi\)
0.280211 + 0.959938i \(0.409596\pi\)
\(968\) 0 0
\(969\) 55.5075 1.78316
\(970\) 0 0
\(971\) 57.0217 1.82991 0.914957 0.403552i \(-0.132225\pi\)
0.914957 + 0.403552i \(0.132225\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.93352 −0.0619221
\(976\) 0 0
\(977\) −4.51785 −0.144539 −0.0722694 0.997385i \(-0.523024\pi\)
−0.0722694 + 0.997385i \(0.523024\pi\)
\(978\) 0 0
\(979\) −23.0806 −0.737658
\(980\) 0 0
\(981\) 2.12444 0.0678282
\(982\) 0 0
\(983\) 22.3081 0.711517 0.355758 0.934578i \(-0.384223\pi\)
0.355758 + 0.934578i \(0.384223\pi\)
\(984\) 0 0
\(985\) −25.0669 −0.798697
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.59900 0.146240
\(990\) 0 0
\(991\) −34.8858 −1.10819 −0.554093 0.832455i \(-0.686935\pi\)
−0.554093 + 0.832455i \(0.686935\pi\)
\(992\) 0 0
\(993\) −33.2375 −1.05476
\(994\) 0 0
\(995\) 0.651607 0.0206573
\(996\) 0 0
\(997\) 43.7563 1.38577 0.692887 0.721046i \(-0.256338\pi\)
0.692887 + 0.721046i \(0.256338\pi\)
\(998\) 0 0
\(999\) −11.5855 −0.366548
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5096.2.a.bf.1.4 10
7.6 odd 2 5096.2.a.bg.1.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5096.2.a.bf.1.4 10 1.1 even 1 trivial
5096.2.a.bg.1.7 yes 10 7.6 odd 2