Properties

Label 5096.2.a.bc.1.6
Level $5096$
Weight $2$
Character 5096.1
Self dual yes
Analytic conductor $40.692$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5096,2,Mod(1,5096)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5096, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5096.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5096 = 2^{3} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5096.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,2,0,0,0,6,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.6917648700\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 13x^{6} + 20x^{5} + 56x^{4} - 60x^{3} - 74x^{2} + 60x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.75049\) of defining polynomial
Character \(\chi\) \(=\) 5096.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.75049 q^{3} +1.15117 q^{5} +0.0642006 q^{9} -2.15117 q^{11} +1.00000 q^{13} +2.01511 q^{15} +0.277589 q^{17} +3.01226 q^{19} -8.07284 q^{23} -3.67480 q^{25} -5.13908 q^{27} -4.51541 q^{29} -10.8566 q^{31} -3.76560 q^{33} -9.04636 q^{37} +1.75049 q^{39} -3.70349 q^{41} -5.16225 q^{43} +0.0739060 q^{45} +1.10775 q^{47} +0.485916 q^{51} +1.09278 q^{53} -2.47637 q^{55} +5.27291 q^{57} -4.26585 q^{59} +7.83823 q^{61} +1.15117 q^{65} -4.73127 q^{67} -14.1314 q^{69} -1.10022 q^{71} +3.23759 q^{73} -6.43269 q^{75} +16.6935 q^{79} -9.18848 q^{81} +10.8669 q^{83} +0.319553 q^{85} -7.90416 q^{87} +8.92564 q^{89} -19.0043 q^{93} +3.46763 q^{95} +4.03001 q^{97} -0.138107 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 2 q^{5} + 6 q^{9} - 10 q^{11} + 8 q^{13} - 4 q^{15} - 14 q^{19} - 8 q^{23} - 2 q^{25} - 14 q^{27} - 2 q^{29} - 20 q^{31} + 6 q^{33} + 2 q^{37} - 2 q^{39} + 2 q^{41} - 2 q^{43} - 18 q^{45}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.75049 1.01064 0.505322 0.862931i \(-0.331374\pi\)
0.505322 + 0.862931i \(0.331374\pi\)
\(4\) 0 0
\(5\) 1.15117 0.514820 0.257410 0.966302i \(-0.417131\pi\)
0.257410 + 0.966302i \(0.417131\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.0642006 0.0214002
\(10\) 0 0
\(11\) −2.15117 −0.648603 −0.324301 0.945954i \(-0.605129\pi\)
−0.324301 + 0.945954i \(0.605129\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 2.01511 0.520299
\(16\) 0 0
\(17\) 0.277589 0.0673252 0.0336626 0.999433i \(-0.489283\pi\)
0.0336626 + 0.999433i \(0.489283\pi\)
\(18\) 0 0
\(19\) 3.01226 0.691059 0.345530 0.938408i \(-0.387699\pi\)
0.345530 + 0.938408i \(0.387699\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.07284 −1.68330 −0.841652 0.540020i \(-0.818417\pi\)
−0.841652 + 0.540020i \(0.818417\pi\)
\(24\) 0 0
\(25\) −3.67480 −0.734961
\(26\) 0 0
\(27\) −5.13908 −0.989015
\(28\) 0 0
\(29\) −4.51541 −0.838490 −0.419245 0.907873i \(-0.637705\pi\)
−0.419245 + 0.907873i \(0.637705\pi\)
\(30\) 0 0
\(31\) −10.8566 −1.94990 −0.974952 0.222417i \(-0.928605\pi\)
−0.974952 + 0.222417i \(0.928605\pi\)
\(32\) 0 0
\(33\) −3.76560 −0.655506
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.04636 −1.48721 −0.743606 0.668618i \(-0.766886\pi\)
−0.743606 + 0.668618i \(0.766886\pi\)
\(38\) 0 0
\(39\) 1.75049 0.280302
\(40\) 0 0
\(41\) −3.70349 −0.578388 −0.289194 0.957270i \(-0.593387\pi\)
−0.289194 + 0.957270i \(0.593387\pi\)
\(42\) 0 0
\(43\) −5.16225 −0.787235 −0.393618 0.919274i \(-0.628777\pi\)
−0.393618 + 0.919274i \(0.628777\pi\)
\(44\) 0 0
\(45\) 0.0739060 0.0110173
\(46\) 0 0
\(47\) 1.10775 0.161581 0.0807907 0.996731i \(-0.474255\pi\)
0.0807907 + 0.996731i \(0.474255\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.485916 0.0680418
\(52\) 0 0
\(53\) 1.09278 0.150105 0.0750523 0.997180i \(-0.476088\pi\)
0.0750523 + 0.997180i \(0.476088\pi\)
\(54\) 0 0
\(55\) −2.47637 −0.333914
\(56\) 0 0
\(57\) 5.27291 0.698414
\(58\) 0 0
\(59\) −4.26585 −0.555367 −0.277683 0.960673i \(-0.589567\pi\)
−0.277683 + 0.960673i \(0.589567\pi\)
\(60\) 0 0
\(61\) 7.83823 1.00358 0.501791 0.864989i \(-0.332675\pi\)
0.501791 + 0.864989i \(0.332675\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.15117 0.142785
\(66\) 0 0
\(67\) −4.73127 −0.578016 −0.289008 0.957327i \(-0.593325\pi\)
−0.289008 + 0.957327i \(0.593325\pi\)
\(68\) 0 0
\(69\) −14.1314 −1.70122
\(70\) 0 0
\(71\) −1.10022 −0.130573 −0.0652863 0.997867i \(-0.520796\pi\)
−0.0652863 + 0.997867i \(0.520796\pi\)
\(72\) 0 0
\(73\) 3.23759 0.378931 0.189466 0.981887i \(-0.439324\pi\)
0.189466 + 0.981887i \(0.439324\pi\)
\(74\) 0 0
\(75\) −6.43269 −0.742783
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.6935 1.87817 0.939083 0.343690i \(-0.111677\pi\)
0.939083 + 0.343690i \(0.111677\pi\)
\(80\) 0 0
\(81\) −9.18848 −1.02094
\(82\) 0 0
\(83\) 10.8669 1.19280 0.596399 0.802688i \(-0.296597\pi\)
0.596399 + 0.802688i \(0.296597\pi\)
\(84\) 0 0
\(85\) 0.319553 0.0346604
\(86\) 0 0
\(87\) −7.90416 −0.847414
\(88\) 0 0
\(89\) 8.92564 0.946116 0.473058 0.881031i \(-0.343150\pi\)
0.473058 + 0.881031i \(0.343150\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −19.0043 −1.97066
\(94\) 0 0
\(95\) 3.46763 0.355771
\(96\) 0 0
\(97\) 4.03001 0.409185 0.204593 0.978847i \(-0.434413\pi\)
0.204593 + 0.978847i \(0.434413\pi\)
\(98\) 0 0
\(99\) −0.138107 −0.0138802
\(100\) 0 0
\(101\) 8.38900 0.834737 0.417369 0.908737i \(-0.362952\pi\)
0.417369 + 0.908737i \(0.362952\pi\)
\(102\) 0 0
\(103\) 4.77695 0.470687 0.235343 0.971912i \(-0.424379\pi\)
0.235343 + 0.971912i \(0.424379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.82255 0.272866 0.136433 0.990649i \(-0.456436\pi\)
0.136433 + 0.990649i \(0.456436\pi\)
\(108\) 0 0
\(109\) 7.75463 0.742759 0.371380 0.928481i \(-0.378885\pi\)
0.371380 + 0.928481i \(0.378885\pi\)
\(110\) 0 0
\(111\) −15.8355 −1.50304
\(112\) 0 0
\(113\) 19.2213 1.80819 0.904093 0.427337i \(-0.140548\pi\)
0.904093 + 0.427337i \(0.140548\pi\)
\(114\) 0 0
\(115\) −9.29323 −0.866598
\(116\) 0 0
\(117\) 0.0642006 0.00593535
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −6.37246 −0.579314
\(122\) 0 0
\(123\) −6.48291 −0.584544
\(124\) 0 0
\(125\) −9.98619 −0.893192
\(126\) 0 0
\(127\) 3.13730 0.278390 0.139195 0.990265i \(-0.455548\pi\)
0.139195 + 0.990265i \(0.455548\pi\)
\(128\) 0 0
\(129\) −9.03644 −0.795614
\(130\) 0 0
\(131\) 1.23406 0.107820 0.0539099 0.998546i \(-0.482832\pi\)
0.0539099 + 0.998546i \(0.482832\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.91596 −0.509165
\(136\) 0 0
\(137\) −16.0509 −1.37132 −0.685659 0.727923i \(-0.740486\pi\)
−0.685659 + 0.727923i \(0.740486\pi\)
\(138\) 0 0
\(139\) −18.3234 −1.55417 −0.777085 0.629396i \(-0.783302\pi\)
−0.777085 + 0.629396i \(0.783302\pi\)
\(140\) 0 0
\(141\) 1.93909 0.163301
\(142\) 0 0
\(143\) −2.15117 −0.179890
\(144\) 0 0
\(145\) −5.19801 −0.431671
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.8510 −1.05280 −0.526398 0.850238i \(-0.676458\pi\)
−0.526398 + 0.850238i \(0.676458\pi\)
\(150\) 0 0
\(151\) −18.8615 −1.53493 −0.767465 0.641091i \(-0.778482\pi\)
−0.767465 + 0.641091i \(0.778482\pi\)
\(152\) 0 0
\(153\) 0.0178214 0.00144077
\(154\) 0 0
\(155\) −12.4978 −1.00385
\(156\) 0 0
\(157\) −18.4088 −1.46918 −0.734590 0.678511i \(-0.762625\pi\)
−0.734590 + 0.678511i \(0.762625\pi\)
\(158\) 0 0
\(159\) 1.91289 0.151702
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.95863 0.388390 0.194195 0.980963i \(-0.437791\pi\)
0.194195 + 0.980963i \(0.437791\pi\)
\(164\) 0 0
\(165\) −4.33485 −0.337468
\(166\) 0 0
\(167\) 12.9778 1.00425 0.502126 0.864794i \(-0.332551\pi\)
0.502126 + 0.864794i \(0.332551\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0.193389 0.0147888
\(172\) 0 0
\(173\) 2.53742 0.192917 0.0964584 0.995337i \(-0.469249\pi\)
0.0964584 + 0.995337i \(0.469249\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −7.46731 −0.561278
\(178\) 0 0
\(179\) −0.702711 −0.0525231 −0.0262616 0.999655i \(-0.508360\pi\)
−0.0262616 + 0.999655i \(0.508360\pi\)
\(180\) 0 0
\(181\) 1.53149 0.113835 0.0569175 0.998379i \(-0.481873\pi\)
0.0569175 + 0.998379i \(0.481873\pi\)
\(182\) 0 0
\(183\) 13.7207 1.01426
\(184\) 0 0
\(185\) −10.4139 −0.765646
\(186\) 0 0
\(187\) −0.597142 −0.0436673
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.59657 0.404954 0.202477 0.979287i \(-0.435101\pi\)
0.202477 + 0.979287i \(0.435101\pi\)
\(192\) 0 0
\(193\) 19.1089 1.37549 0.687743 0.725954i \(-0.258602\pi\)
0.687743 + 0.725954i \(0.258602\pi\)
\(194\) 0 0
\(195\) 2.01511 0.144305
\(196\) 0 0
\(197\) 6.04551 0.430724 0.215362 0.976534i \(-0.430907\pi\)
0.215362 + 0.976534i \(0.430907\pi\)
\(198\) 0 0
\(199\) −22.1575 −1.57071 −0.785353 0.619048i \(-0.787519\pi\)
−0.785353 + 0.619048i \(0.787519\pi\)
\(200\) 0 0
\(201\) −8.28202 −0.584168
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.26336 −0.297766
\(206\) 0 0
\(207\) −0.518282 −0.0360231
\(208\) 0 0
\(209\) −6.47988 −0.448223
\(210\) 0 0
\(211\) 18.5581 1.27759 0.638795 0.769377i \(-0.279433\pi\)
0.638795 + 0.769377i \(0.279433\pi\)
\(212\) 0 0
\(213\) −1.92593 −0.131962
\(214\) 0 0
\(215\) −5.94263 −0.405284
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.66736 0.382964
\(220\) 0 0
\(221\) 0.277589 0.0186727
\(222\) 0 0
\(223\) −16.8866 −1.13081 −0.565406 0.824813i \(-0.691280\pi\)
−0.565406 + 0.824813i \(0.691280\pi\)
\(224\) 0 0
\(225\) −0.235925 −0.0157283
\(226\) 0 0
\(227\) −19.4371 −1.29009 −0.645043 0.764146i \(-0.723161\pi\)
−0.645043 + 0.764146i \(0.723161\pi\)
\(228\) 0 0
\(229\) −6.55450 −0.433134 −0.216567 0.976268i \(-0.569486\pi\)
−0.216567 + 0.976268i \(0.569486\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.24416 0.474581 0.237290 0.971439i \(-0.423741\pi\)
0.237290 + 0.971439i \(0.423741\pi\)
\(234\) 0 0
\(235\) 1.27521 0.0831853
\(236\) 0 0
\(237\) 29.2217 1.89816
\(238\) 0 0
\(239\) 19.2566 1.24561 0.622804 0.782378i \(-0.285993\pi\)
0.622804 + 0.782378i \(0.285993\pi\)
\(240\) 0 0
\(241\) 16.6327 1.07141 0.535705 0.844405i \(-0.320046\pi\)
0.535705 + 0.844405i \(0.320046\pi\)
\(242\) 0 0
\(243\) −0.667079 −0.0427931
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.01226 0.191665
\(248\) 0 0
\(249\) 19.0224 1.20549
\(250\) 0 0
\(251\) −4.26389 −0.269134 −0.134567 0.990904i \(-0.542964\pi\)
−0.134567 + 0.990904i \(0.542964\pi\)
\(252\) 0 0
\(253\) 17.3661 1.09180
\(254\) 0 0
\(255\) 0.559373 0.0350293
\(256\) 0 0
\(257\) 0.690745 0.0430875 0.0215437 0.999768i \(-0.493142\pi\)
0.0215437 + 0.999768i \(0.493142\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.289892 −0.0179439
\(262\) 0 0
\(263\) −12.1588 −0.749743 −0.374871 0.927077i \(-0.622313\pi\)
−0.374871 + 0.927077i \(0.622313\pi\)
\(264\) 0 0
\(265\) 1.25798 0.0772768
\(266\) 0 0
\(267\) 15.6242 0.956186
\(268\) 0 0
\(269\) 6.58964 0.401777 0.200889 0.979614i \(-0.435617\pi\)
0.200889 + 0.979614i \(0.435617\pi\)
\(270\) 0 0
\(271\) −12.1686 −0.739189 −0.369594 0.929193i \(-0.620503\pi\)
−0.369594 + 0.929193i \(0.620503\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.90513 0.476697
\(276\) 0 0
\(277\) −22.5460 −1.35466 −0.677328 0.735681i \(-0.736862\pi\)
−0.677328 + 0.735681i \(0.736862\pi\)
\(278\) 0 0
\(279\) −0.697001 −0.0417283
\(280\) 0 0
\(281\) 10.2755 0.612983 0.306491 0.951873i \(-0.400845\pi\)
0.306491 + 0.951873i \(0.400845\pi\)
\(282\) 0 0
\(283\) −11.4001 −0.677668 −0.338834 0.940846i \(-0.610032\pi\)
−0.338834 + 0.940846i \(0.610032\pi\)
\(284\) 0 0
\(285\) 6.07003 0.359558
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9229 −0.995467
\(290\) 0 0
\(291\) 7.05447 0.413540
\(292\) 0 0
\(293\) 26.4525 1.54537 0.772686 0.634788i \(-0.218913\pi\)
0.772686 + 0.634788i \(0.218913\pi\)
\(294\) 0 0
\(295\) −4.91073 −0.285914
\(296\) 0 0
\(297\) 11.0550 0.641478
\(298\) 0 0
\(299\) −8.07284 −0.466865
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 14.6848 0.843622
\(304\) 0 0
\(305\) 9.02315 0.516664
\(306\) 0 0
\(307\) −6.91144 −0.394457 −0.197228 0.980358i \(-0.563194\pi\)
−0.197228 + 0.980358i \(0.563194\pi\)
\(308\) 0 0
\(309\) 8.36198 0.475697
\(310\) 0 0
\(311\) −21.5264 −1.22065 −0.610324 0.792152i \(-0.708961\pi\)
−0.610324 + 0.792152i \(0.708961\pi\)
\(312\) 0 0
\(313\) −25.6908 −1.45213 −0.726066 0.687625i \(-0.758653\pi\)
−0.726066 + 0.687625i \(0.758653\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.2807 −0.745916 −0.372958 0.927848i \(-0.621656\pi\)
−0.372958 + 0.927848i \(0.621656\pi\)
\(318\) 0 0
\(319\) 9.71342 0.543847
\(320\) 0 0
\(321\) 4.94083 0.275770
\(322\) 0 0
\(323\) 0.836170 0.0465257
\(324\) 0 0
\(325\) −3.67480 −0.203841
\(326\) 0 0
\(327\) 13.5744 0.750665
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.01061 −0.0555481 −0.0277741 0.999614i \(-0.508842\pi\)
−0.0277741 + 0.999614i \(0.508842\pi\)
\(332\) 0 0
\(333\) −0.580782 −0.0318267
\(334\) 0 0
\(335\) −5.44650 −0.297574
\(336\) 0 0
\(337\) 14.0001 0.762633 0.381316 0.924445i \(-0.375471\pi\)
0.381316 + 0.924445i \(0.375471\pi\)
\(338\) 0 0
\(339\) 33.6466 1.82743
\(340\) 0 0
\(341\) 23.3544 1.26471
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −16.2677 −0.875822
\(346\) 0 0
\(347\) 8.65254 0.464493 0.232246 0.972657i \(-0.425392\pi\)
0.232246 + 0.972657i \(0.425392\pi\)
\(348\) 0 0
\(349\) −23.8062 −1.27432 −0.637158 0.770734i \(-0.719890\pi\)
−0.637158 + 0.770734i \(0.719890\pi\)
\(350\) 0 0
\(351\) −5.13908 −0.274304
\(352\) 0 0
\(353\) −25.1275 −1.33740 −0.668702 0.743531i \(-0.733150\pi\)
−0.668702 + 0.743531i \(0.733150\pi\)
\(354\) 0 0
\(355\) −1.26655 −0.0672214
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.1431 1.48534 0.742668 0.669660i \(-0.233560\pi\)
0.742668 + 0.669660i \(0.233560\pi\)
\(360\) 0 0
\(361\) −9.92631 −0.522437
\(362\) 0 0
\(363\) −11.1549 −0.585480
\(364\) 0 0
\(365\) 3.72702 0.195081
\(366\) 0 0
\(367\) 7.25779 0.378854 0.189427 0.981895i \(-0.439337\pi\)
0.189427 + 0.981895i \(0.439337\pi\)
\(368\) 0 0
\(369\) −0.237767 −0.0123776
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8.57217 0.443850 0.221925 0.975064i \(-0.428766\pi\)
0.221925 + 0.975064i \(0.428766\pi\)
\(374\) 0 0
\(375\) −17.4807 −0.902699
\(376\) 0 0
\(377\) −4.51541 −0.232555
\(378\) 0 0
\(379\) −7.23298 −0.371533 −0.185767 0.982594i \(-0.559477\pi\)
−0.185767 + 0.982594i \(0.559477\pi\)
\(380\) 0 0
\(381\) 5.49180 0.281353
\(382\) 0 0
\(383\) −3.30880 −0.169072 −0.0845358 0.996420i \(-0.526941\pi\)
−0.0845358 + 0.996420i \(0.526941\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.331420 −0.0168470
\(388\) 0 0
\(389\) −22.0416 −1.11756 −0.558778 0.829318i \(-0.688729\pi\)
−0.558778 + 0.829318i \(0.688729\pi\)
\(390\) 0 0
\(391\) −2.24093 −0.113329
\(392\) 0 0
\(393\) 2.16020 0.108967
\(394\) 0 0
\(395\) 19.2171 0.966917
\(396\) 0 0
\(397\) 13.7354 0.689360 0.344680 0.938720i \(-0.387987\pi\)
0.344680 + 0.938720i \(0.387987\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.1233 −0.954971 −0.477486 0.878640i \(-0.658452\pi\)
−0.477486 + 0.878640i \(0.658452\pi\)
\(402\) 0 0
\(403\) −10.8566 −0.540806
\(404\) 0 0
\(405\) −10.5775 −0.525601
\(406\) 0 0
\(407\) 19.4603 0.964610
\(408\) 0 0
\(409\) 15.4547 0.764184 0.382092 0.924124i \(-0.375204\pi\)
0.382092 + 0.924124i \(0.375204\pi\)
\(410\) 0 0
\(411\) −28.0968 −1.38591
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.5097 0.614077
\(416\) 0 0
\(417\) −32.0748 −1.57071
\(418\) 0 0
\(419\) 12.9026 0.630335 0.315167 0.949036i \(-0.397939\pi\)
0.315167 + 0.949036i \(0.397939\pi\)
\(420\) 0 0
\(421\) 16.7332 0.815524 0.407762 0.913088i \(-0.366309\pi\)
0.407762 + 0.913088i \(0.366309\pi\)
\(422\) 0 0
\(423\) 0.0711180 0.00345787
\(424\) 0 0
\(425\) −1.02009 −0.0494814
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.76560 −0.181805
\(430\) 0 0
\(431\) 0.339922 0.0163735 0.00818673 0.999966i \(-0.497394\pi\)
0.00818673 + 0.999966i \(0.497394\pi\)
\(432\) 0 0
\(433\) 20.8557 1.00226 0.501130 0.865372i \(-0.332918\pi\)
0.501130 + 0.865372i \(0.332918\pi\)
\(434\) 0 0
\(435\) −9.09904 −0.436266
\(436\) 0 0
\(437\) −24.3175 −1.16326
\(438\) 0 0
\(439\) −39.8047 −1.89977 −0.949887 0.312592i \(-0.898803\pi\)
−0.949887 + 0.312592i \(0.898803\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.88642 0.137138 0.0685690 0.997646i \(-0.478157\pi\)
0.0685690 + 0.997646i \(0.478157\pi\)
\(444\) 0 0
\(445\) 10.2749 0.487079
\(446\) 0 0
\(447\) −22.4955 −1.06400
\(448\) 0 0
\(449\) 28.4309 1.34174 0.670869 0.741576i \(-0.265921\pi\)
0.670869 + 0.741576i \(0.265921\pi\)
\(450\) 0 0
\(451\) 7.96685 0.375144
\(452\) 0 0
\(453\) −33.0168 −1.55127
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.9619 1.58867 0.794334 0.607481i \(-0.207820\pi\)
0.794334 + 0.607481i \(0.207820\pi\)
\(458\) 0 0
\(459\) −1.42655 −0.0665857
\(460\) 0 0
\(461\) 23.2828 1.08439 0.542193 0.840254i \(-0.317594\pi\)
0.542193 + 0.840254i \(0.317594\pi\)
\(462\) 0 0
\(463\) −7.65725 −0.355863 −0.177931 0.984043i \(-0.556941\pi\)
−0.177931 + 0.984043i \(0.556941\pi\)
\(464\) 0 0
\(465\) −21.8773 −1.01453
\(466\) 0 0
\(467\) −31.8356 −1.47318 −0.736588 0.676342i \(-0.763564\pi\)
−0.736588 + 0.676342i \(0.763564\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −32.2243 −1.48482
\(472\) 0 0
\(473\) 11.1049 0.510603
\(474\) 0 0
\(475\) −11.0695 −0.507901
\(476\) 0 0
\(477\) 0.0701570 0.00321227
\(478\) 0 0
\(479\) −20.6657 −0.944242 −0.472121 0.881534i \(-0.656511\pi\)
−0.472121 + 0.881534i \(0.656511\pi\)
\(480\) 0 0
\(481\) −9.04636 −0.412478
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.63923 0.210657
\(486\) 0 0
\(487\) 14.0233 0.635456 0.317728 0.948182i \(-0.397080\pi\)
0.317728 + 0.948182i \(0.397080\pi\)
\(488\) 0 0
\(489\) 8.68001 0.392524
\(490\) 0 0
\(491\) −19.0073 −0.857790 −0.428895 0.903354i \(-0.641097\pi\)
−0.428895 + 0.903354i \(0.641097\pi\)
\(492\) 0 0
\(493\) −1.25343 −0.0564515
\(494\) 0 0
\(495\) −0.158984 −0.00714582
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.07654 0.182491 0.0912456 0.995828i \(-0.470915\pi\)
0.0912456 + 0.995828i \(0.470915\pi\)
\(500\) 0 0
\(501\) 22.7175 1.01494
\(502\) 0 0
\(503\) −22.4568 −1.00130 −0.500649 0.865651i \(-0.666905\pi\)
−0.500649 + 0.865651i \(0.666905\pi\)
\(504\) 0 0
\(505\) 9.65719 0.429739
\(506\) 0 0
\(507\) 1.75049 0.0777418
\(508\) 0 0
\(509\) 11.4832 0.508982 0.254491 0.967075i \(-0.418092\pi\)
0.254491 + 0.967075i \(0.418092\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −15.4802 −0.683468
\(514\) 0 0
\(515\) 5.49909 0.242319
\(516\) 0 0
\(517\) −2.38295 −0.104802
\(518\) 0 0
\(519\) 4.44172 0.194970
\(520\) 0 0
\(521\) 6.51060 0.285235 0.142617 0.989778i \(-0.454448\pi\)
0.142617 + 0.989778i \(0.454448\pi\)
\(522\) 0 0
\(523\) 18.1105 0.791917 0.395958 0.918268i \(-0.370412\pi\)
0.395958 + 0.918268i \(0.370412\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.01367 −0.131278
\(528\) 0 0
\(529\) 42.1708 1.83351
\(530\) 0 0
\(531\) −0.273870 −0.0118850
\(532\) 0 0
\(533\) −3.70349 −0.160416
\(534\) 0 0
\(535\) 3.24924 0.140477
\(536\) 0 0
\(537\) −1.23009 −0.0530821
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.3984 0.748017 0.374009 0.927425i \(-0.377983\pi\)
0.374009 + 0.927425i \(0.377983\pi\)
\(542\) 0 0
\(543\) 2.68086 0.115047
\(544\) 0 0
\(545\) 8.92692 0.382387
\(546\) 0 0
\(547\) −35.7778 −1.52975 −0.764874 0.644180i \(-0.777199\pi\)
−0.764874 + 0.644180i \(0.777199\pi\)
\(548\) 0 0
\(549\) 0.503219 0.0214769
\(550\) 0 0
\(551\) −13.6016 −0.579446
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −18.2294 −0.773795
\(556\) 0 0
\(557\) −17.1063 −0.724816 −0.362408 0.932019i \(-0.618045\pi\)
−0.362408 + 0.932019i \(0.618045\pi\)
\(558\) 0 0
\(559\) −5.16225 −0.218340
\(560\) 0 0
\(561\) −1.04529 −0.0441321
\(562\) 0 0
\(563\) 28.9259 1.21908 0.609542 0.792754i \(-0.291354\pi\)
0.609542 + 0.792754i \(0.291354\pi\)
\(564\) 0 0
\(565\) 22.1270 0.930890
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 29.5554 1.23903 0.619514 0.784986i \(-0.287330\pi\)
0.619514 + 0.784986i \(0.287330\pi\)
\(570\) 0 0
\(571\) −22.6210 −0.946661 −0.473330 0.880885i \(-0.656948\pi\)
−0.473330 + 0.880885i \(0.656948\pi\)
\(572\) 0 0
\(573\) 9.79672 0.409264
\(574\) 0 0
\(575\) 29.6661 1.23716
\(576\) 0 0
\(577\) 35.4983 1.47781 0.738907 0.673808i \(-0.235342\pi\)
0.738907 + 0.673808i \(0.235342\pi\)
\(578\) 0 0
\(579\) 33.4498 1.39013
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.35075 −0.0973582
\(584\) 0 0
\(585\) 0.0739060 0.00305564
\(586\) 0 0
\(587\) −4.30442 −0.177662 −0.0888312 0.996047i \(-0.528313\pi\)
−0.0888312 + 0.996047i \(0.528313\pi\)
\(588\) 0 0
\(589\) −32.7029 −1.34750
\(590\) 0 0
\(591\) 10.5826 0.435309
\(592\) 0 0
\(593\) −25.4430 −1.04482 −0.522409 0.852695i \(-0.674967\pi\)
−0.522409 + 0.852695i \(0.674967\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −38.7865 −1.58742
\(598\) 0 0
\(599\) −30.4434 −1.24388 −0.621942 0.783063i \(-0.713656\pi\)
−0.621942 + 0.783063i \(0.713656\pi\)
\(600\) 0 0
\(601\) 26.6195 1.08583 0.542916 0.839787i \(-0.317320\pi\)
0.542916 + 0.839787i \(0.317320\pi\)
\(602\) 0 0
\(603\) −0.303750 −0.0123697
\(604\) 0 0
\(605\) −7.33580 −0.298243
\(606\) 0 0
\(607\) −3.25515 −0.132123 −0.0660613 0.997816i \(-0.521043\pi\)
−0.0660613 + 0.997816i \(0.521043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.10775 0.0448146
\(612\) 0 0
\(613\) 27.0816 1.09381 0.546907 0.837193i \(-0.315805\pi\)
0.546907 + 0.837193i \(0.315805\pi\)
\(614\) 0 0
\(615\) −7.46295 −0.300935
\(616\) 0 0
\(617\) 33.6782 1.35583 0.677916 0.735140i \(-0.262883\pi\)
0.677916 + 0.735140i \(0.262883\pi\)
\(618\) 0 0
\(619\) 1.19738 0.0481268 0.0240634 0.999710i \(-0.492340\pi\)
0.0240634 + 0.999710i \(0.492340\pi\)
\(620\) 0 0
\(621\) 41.4869 1.66481
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.87819 0.275128
\(626\) 0 0
\(627\) −11.3429 −0.452994
\(628\) 0 0
\(629\) −2.51117 −0.100127
\(630\) 0 0
\(631\) 5.33704 0.212464 0.106232 0.994341i \(-0.466121\pi\)
0.106232 + 0.994341i \(0.466121\pi\)
\(632\) 0 0
\(633\) 32.4856 1.29119
\(634\) 0 0
\(635\) 3.61157 0.143321
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.0706351 −0.00279428
\(640\) 0 0
\(641\) 9.33636 0.368764 0.184382 0.982855i \(-0.440972\pi\)
0.184382 + 0.982855i \(0.440972\pi\)
\(642\) 0 0
\(643\) 1.65709 0.0653491 0.0326746 0.999466i \(-0.489598\pi\)
0.0326746 + 0.999466i \(0.489598\pi\)
\(644\) 0 0
\(645\) −10.4025 −0.409598
\(646\) 0 0
\(647\) −28.2282 −1.10977 −0.554883 0.831929i \(-0.687237\pi\)
−0.554883 + 0.831929i \(0.687237\pi\)
\(648\) 0 0
\(649\) 9.17658 0.360212
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.6210 −1.70702 −0.853511 0.521075i \(-0.825531\pi\)
−0.853511 + 0.521075i \(0.825531\pi\)
\(654\) 0 0
\(655\) 1.42061 0.0555078
\(656\) 0 0
\(657\) 0.207855 0.00810921
\(658\) 0 0
\(659\) −12.5006 −0.486956 −0.243478 0.969906i \(-0.578288\pi\)
−0.243478 + 0.969906i \(0.578288\pi\)
\(660\) 0 0
\(661\) −40.2077 −1.56390 −0.781949 0.623343i \(-0.785774\pi\)
−0.781949 + 0.623343i \(0.785774\pi\)
\(662\) 0 0
\(663\) 0.485916 0.0188714
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.4522 1.41143
\(668\) 0 0
\(669\) −29.5598 −1.14285
\(670\) 0 0
\(671\) −16.8614 −0.650927
\(672\) 0 0
\(673\) −28.8405 −1.11172 −0.555859 0.831277i \(-0.687611\pi\)
−0.555859 + 0.831277i \(0.687611\pi\)
\(674\) 0 0
\(675\) 18.8851 0.726887
\(676\) 0 0
\(677\) 44.2757 1.70166 0.850828 0.525445i \(-0.176101\pi\)
0.850828 + 0.525445i \(0.176101\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −34.0244 −1.30382
\(682\) 0 0
\(683\) −20.2385 −0.774403 −0.387201 0.921995i \(-0.626558\pi\)
−0.387201 + 0.921995i \(0.626558\pi\)
\(684\) 0 0
\(685\) −18.4773 −0.705982
\(686\) 0 0
\(687\) −11.4736 −0.437744
\(688\) 0 0
\(689\) 1.09278 0.0416315
\(690\) 0 0
\(691\) 2.45852 0.0935266 0.0467633 0.998906i \(-0.485109\pi\)
0.0467633 + 0.998906i \(0.485109\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.0934 −0.800117
\(696\) 0 0
\(697\) −1.02805 −0.0389401
\(698\) 0 0
\(699\) 12.6808 0.479632
\(700\) 0 0
\(701\) −44.6070 −1.68478 −0.842392 0.538866i \(-0.818853\pi\)
−0.842392 + 0.538866i \(0.818853\pi\)
\(702\) 0 0
\(703\) −27.2500 −1.02775
\(704\) 0 0
\(705\) 2.23223 0.0840706
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 34.4310 1.29308 0.646542 0.762878i \(-0.276215\pi\)
0.646542 + 0.762878i \(0.276215\pi\)
\(710\) 0 0
\(711\) 1.07173 0.0401932
\(712\) 0 0
\(713\) 87.6436 3.28228
\(714\) 0 0
\(715\) −2.47637 −0.0926110
\(716\) 0 0
\(717\) 33.7085 1.25887
\(718\) 0 0
\(719\) −12.4355 −0.463768 −0.231884 0.972743i \(-0.574489\pi\)
−0.231884 + 0.972743i \(0.574489\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 29.1154 1.08281
\(724\) 0 0
\(725\) 16.5932 0.616257
\(726\) 0 0
\(727\) −20.6343 −0.765286 −0.382643 0.923896i \(-0.624986\pi\)
−0.382643 + 0.923896i \(0.624986\pi\)
\(728\) 0 0
\(729\) 26.3977 0.977694
\(730\) 0 0
\(731\) −1.43298 −0.0530008
\(732\) 0 0
\(733\) 33.3515 1.23187 0.615933 0.787798i \(-0.288779\pi\)
0.615933 + 0.787798i \(0.288779\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.1778 0.374903
\(738\) 0 0
\(739\) 16.9868 0.624871 0.312436 0.949939i \(-0.398855\pi\)
0.312436 + 0.949939i \(0.398855\pi\)
\(740\) 0 0
\(741\) 5.27291 0.193705
\(742\) 0 0
\(743\) −22.6209 −0.829880 −0.414940 0.909849i \(-0.636197\pi\)
−0.414940 + 0.909849i \(0.636197\pi\)
\(744\) 0 0
\(745\) −14.7937 −0.542000
\(746\) 0 0
\(747\) 0.697663 0.0255262
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10.7578 0.392558 0.196279 0.980548i \(-0.437114\pi\)
0.196279 + 0.980548i \(0.437114\pi\)
\(752\) 0 0
\(753\) −7.46388 −0.271999
\(754\) 0 0
\(755\) −21.7129 −0.790212
\(756\) 0 0
\(757\) 4.32885 0.157335 0.0786673 0.996901i \(-0.474934\pi\)
0.0786673 + 0.996901i \(0.474934\pi\)
\(758\) 0 0
\(759\) 30.3991 1.10342
\(760\) 0 0
\(761\) 11.7791 0.426992 0.213496 0.976944i \(-0.431515\pi\)
0.213496 + 0.976944i \(0.431515\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.0205155 0.000741739 0
\(766\) 0 0
\(767\) −4.26585 −0.154031
\(768\) 0 0
\(769\) −18.0232 −0.649935 −0.324967 0.945725i \(-0.605353\pi\)
−0.324967 + 0.945725i \(0.605353\pi\)
\(770\) 0 0
\(771\) 1.20914 0.0435461
\(772\) 0 0
\(773\) 8.19242 0.294661 0.147330 0.989087i \(-0.452932\pi\)
0.147330 + 0.989087i \(0.452932\pi\)
\(774\) 0 0
\(775\) 39.8959 1.43310
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.1559 −0.399701
\(780\) 0 0
\(781\) 2.36677 0.0846898
\(782\) 0 0
\(783\) 23.2050 0.829280
\(784\) 0 0
\(785\) −21.1917 −0.756363
\(786\) 0 0
\(787\) 30.0481 1.07110 0.535550 0.844504i \(-0.320104\pi\)
0.535550 + 0.844504i \(0.320104\pi\)
\(788\) 0 0
\(789\) −21.2838 −0.757723
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.83823 0.278344
\(794\) 0 0
\(795\) 2.20207 0.0780993
\(796\) 0 0
\(797\) −35.3707 −1.25289 −0.626447 0.779464i \(-0.715492\pi\)
−0.626447 + 0.779464i \(0.715492\pi\)
\(798\) 0 0
\(799\) 0.307498 0.0108785
\(800\) 0 0
\(801\) 0.573032 0.0202471
\(802\) 0 0
\(803\) −6.96461 −0.245776
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 11.5351 0.406054
\(808\) 0 0
\(809\) 29.8850 1.05070 0.525350 0.850886i \(-0.323934\pi\)
0.525350 + 0.850886i \(0.323934\pi\)
\(810\) 0 0
\(811\) 27.3665 0.960966 0.480483 0.877004i \(-0.340461\pi\)
0.480483 + 0.877004i \(0.340461\pi\)
\(812\) 0 0
\(813\) −21.3009 −0.747056
\(814\) 0 0
\(815\) 5.70824 0.199951
\(816\) 0 0
\(817\) −15.5500 −0.544026
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −33.7956 −1.17948 −0.589738 0.807595i \(-0.700769\pi\)
−0.589738 + 0.807595i \(0.700769\pi\)
\(822\) 0 0
\(823\) −40.1006 −1.39782 −0.698910 0.715210i \(-0.746331\pi\)
−0.698910 + 0.715210i \(0.746331\pi\)
\(824\) 0 0
\(825\) 13.8378 0.481771
\(826\) 0 0
\(827\) −30.8171 −1.07162 −0.535808 0.844340i \(-0.679993\pi\)
−0.535808 + 0.844340i \(0.679993\pi\)
\(828\) 0 0
\(829\) −34.3633 −1.19349 −0.596744 0.802432i \(-0.703539\pi\)
−0.596744 + 0.802432i \(0.703539\pi\)
\(830\) 0 0
\(831\) −39.4664 −1.36907
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 14.9397 0.517009
\(836\) 0 0
\(837\) 55.7929 1.92848
\(838\) 0 0
\(839\) 31.6835 1.09384 0.546918 0.837186i \(-0.315801\pi\)
0.546918 + 0.837186i \(0.315801\pi\)
\(840\) 0 0
\(841\) −8.61110 −0.296935
\(842\) 0 0
\(843\) 17.9870 0.619507
\(844\) 0 0
\(845\) 1.15117 0.0396015
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −19.9558 −0.684880
\(850\) 0 0
\(851\) 73.0298 2.50343
\(852\) 0 0
\(853\) −30.7057 −1.05134 −0.525672 0.850688i \(-0.676186\pi\)
−0.525672 + 0.850688i \(0.676186\pi\)
\(854\) 0 0
\(855\) 0.222624 0.00761357
\(856\) 0 0
\(857\) 7.39148 0.252488 0.126244 0.991999i \(-0.459708\pi\)
0.126244 + 0.991999i \(0.459708\pi\)
\(858\) 0 0
\(859\) −52.6089 −1.79499 −0.897496 0.441023i \(-0.854616\pi\)
−0.897496 + 0.441023i \(0.854616\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37.5546 −1.27837 −0.639187 0.769051i \(-0.720729\pi\)
−0.639187 + 0.769051i \(0.720729\pi\)
\(864\) 0 0
\(865\) 2.92101 0.0993173
\(866\) 0 0
\(867\) −29.6234 −1.00606
\(868\) 0 0
\(869\) −35.9106 −1.21818
\(870\) 0 0
\(871\) −4.73127 −0.160313
\(872\) 0 0
\(873\) 0.258729 0.00875665
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.0254 1.21649 0.608245 0.793749i \(-0.291874\pi\)
0.608245 + 0.793749i \(0.291874\pi\)
\(878\) 0 0
\(879\) 46.3048 1.56182
\(880\) 0 0
\(881\) 41.9078 1.41191 0.705956 0.708256i \(-0.250518\pi\)
0.705956 + 0.708256i \(0.250518\pi\)
\(882\) 0 0
\(883\) −52.1294 −1.75429 −0.877147 0.480222i \(-0.840556\pi\)
−0.877147 + 0.480222i \(0.840556\pi\)
\(884\) 0 0
\(885\) −8.59616 −0.288957
\(886\) 0 0
\(887\) 8.50230 0.285479 0.142740 0.989760i \(-0.454409\pi\)
0.142740 + 0.989760i \(0.454409\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 19.7660 0.662186
\(892\) 0 0
\(893\) 3.33681 0.111662
\(894\) 0 0
\(895\) −0.808942 −0.0270399
\(896\) 0 0
\(897\) −14.1314 −0.471834
\(898\) 0 0
\(899\) 49.0220 1.63497
\(900\) 0 0
\(901\) 0.303343 0.0101058
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.76301 0.0586045
\(906\) 0 0
\(907\) −14.9906 −0.497755 −0.248877 0.968535i \(-0.580062\pi\)
−0.248877 + 0.968535i \(0.580062\pi\)
\(908\) 0 0
\(909\) 0.538579 0.0178636
\(910\) 0 0
\(911\) −52.4345 −1.73723 −0.868616 0.495486i \(-0.834990\pi\)
−0.868616 + 0.495486i \(0.834990\pi\)
\(912\) 0 0
\(913\) −23.3766 −0.773653
\(914\) 0 0
\(915\) 15.7949 0.522163
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −12.5300 −0.413327 −0.206663 0.978412i \(-0.566260\pi\)
−0.206663 + 0.978412i \(0.566260\pi\)
\(920\) 0 0
\(921\) −12.0984 −0.398655
\(922\) 0 0
\(923\) −1.10022 −0.0362143
\(924\) 0 0
\(925\) 33.2436 1.09304
\(926\) 0 0
\(927\) 0.306683 0.0100728
\(928\) 0 0
\(929\) 56.6403 1.85831 0.929154 0.369694i \(-0.120537\pi\)
0.929154 + 0.369694i \(0.120537\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −37.6816 −1.23364
\(934\) 0 0
\(935\) −0.687413 −0.0224808
\(936\) 0 0
\(937\) −34.2713 −1.11959 −0.559797 0.828630i \(-0.689121\pi\)
−0.559797 + 0.828630i \(0.689121\pi\)
\(938\) 0 0
\(939\) −44.9714 −1.46759
\(940\) 0 0
\(941\) −27.2877 −0.889554 −0.444777 0.895641i \(-0.646717\pi\)
−0.444777 + 0.895641i \(0.646717\pi\)
\(942\) 0 0
\(943\) 29.8977 0.973603
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.25569 −0.268274 −0.134137 0.990963i \(-0.542826\pi\)
−0.134137 + 0.990963i \(0.542826\pi\)
\(948\) 0 0
\(949\) 3.23759 0.105097
\(950\) 0 0
\(951\) −23.2476 −0.753855
\(952\) 0 0
\(953\) 19.6589 0.636813 0.318406 0.947954i \(-0.396852\pi\)
0.318406 + 0.947954i \(0.396852\pi\)
\(954\) 0 0
\(955\) 6.44262 0.208478
\(956\) 0 0
\(957\) 17.0032 0.549635
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 86.8658 2.80212
\(962\) 0 0
\(963\) 0.181210 0.00583939
\(964\) 0 0
\(965\) 21.9976 0.708127
\(966\) 0 0
\(967\) 33.3260 1.07169 0.535846 0.844316i \(-0.319993\pi\)
0.535846 + 0.844316i \(0.319993\pi\)
\(968\) 0 0
\(969\) 1.46370 0.0470209
\(970\) 0 0
\(971\) 50.0974 1.60770 0.803851 0.594831i \(-0.202781\pi\)
0.803851 + 0.594831i \(0.202781\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.43269 −0.206011
\(976\) 0 0
\(977\) 31.7318 1.01519 0.507595 0.861596i \(-0.330535\pi\)
0.507595 + 0.861596i \(0.330535\pi\)
\(978\) 0 0
\(979\) −19.2006 −0.613653
\(980\) 0 0
\(981\) 0.497852 0.0158952
\(982\) 0 0
\(983\) −21.5721 −0.688042 −0.344021 0.938962i \(-0.611789\pi\)
−0.344021 + 0.938962i \(0.611789\pi\)
\(984\) 0 0
\(985\) 6.95942 0.221745
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.6740 1.32516
\(990\) 0 0
\(991\) −62.6841 −1.99123 −0.995613 0.0935694i \(-0.970172\pi\)
−0.995613 + 0.0935694i \(0.970172\pi\)
\(992\) 0 0
\(993\) −1.76906 −0.0561393
\(994\) 0 0
\(995\) −25.5071 −0.808631
\(996\) 0 0
\(997\) 10.9614 0.347150 0.173575 0.984821i \(-0.444468\pi\)
0.173575 + 0.984821i \(0.444468\pi\)
\(998\) 0 0
\(999\) 46.4899 1.47088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5096.2.a.bc.1.6 8
7.6 odd 2 5096.2.a.bd.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5096.2.a.bc.1.6 8 1.1 even 1 trivial
5096.2.a.bd.1.3 yes 8 7.6 odd 2