Properties

Label 507.2.b.d.337.3
Level $507$
Weight $2$
Character 507.337
Analytic conductor $4.048$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [507,2,Mod(337,507)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("507.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(507, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,-10,0,0,0,0,4,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.3
Root \(1.56155i\) of defining polynomial
Character \(\chi\) \(=\) 507.337
Dual form 507.2.b.d.337.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155i q^{2} +1.00000 q^{3} -0.438447 q^{4} +3.56155i q^{5} +1.56155i q^{6} +0.561553i q^{7} +2.43845i q^{8} +1.00000 q^{9} -5.56155 q^{10} -2.00000i q^{11} -0.438447 q^{12} -0.876894 q^{14} +3.56155i q^{15} -4.68466 q^{16} +1.56155 q^{17} +1.56155i q^{18} -7.12311i q^{19} -1.56155i q^{20} +0.561553i q^{21} +3.12311 q^{22} -2.00000 q^{23} +2.43845i q^{24} -7.68466 q^{25} +1.00000 q^{27} -0.246211i q^{28} +6.68466 q^{29} -5.56155 q^{30} -2.56155i q^{31} -2.43845i q^{32} -2.00000i q^{33} +2.43845i q^{34} -2.00000 q^{35} -0.438447 q^{36} +7.56155i q^{37} +11.1231 q^{38} -8.68466 q^{40} +1.56155i q^{41} -0.876894 q^{42} -4.56155 q^{43} +0.876894i q^{44} +3.56155i q^{45} -3.12311i q^{46} +8.24621i q^{47} -4.68466 q^{48} +6.68466 q^{49} -12.0000i q^{50} +1.56155 q^{51} -0.684658 q^{53} +1.56155i q^{54} +7.12311 q^{55} -1.36932 q^{56} -7.12311i q^{57} +10.4384i q^{58} -2.87689i q^{59} -1.56155i q^{60} +3.87689 q^{61} +4.00000 q^{62} +0.561553i q^{63} -5.56155 q^{64} +3.12311 q^{66} -4.56155i q^{67} -0.684658 q^{68} -2.00000 q^{69} -3.12311i q^{70} -14.0000i q^{71} +2.43845i q^{72} -10.1231i q^{73} -11.8078 q^{74} -7.68466 q^{75} +3.12311i q^{76} +1.12311 q^{77} +5.43845 q^{79} -16.6847i q^{80} +1.00000 q^{81} -2.43845 q^{82} +0.876894i q^{83} -0.246211i q^{84} +5.56155i q^{85} -7.12311i q^{86} +6.68466 q^{87} +4.87689 q^{88} +4.87689i q^{89} -5.56155 q^{90} +0.876894 q^{92} -2.56155i q^{93} -12.8769 q^{94} +25.3693 q^{95} -2.43845i q^{96} +8.56155i q^{97} +10.4384i q^{98} -2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 10 q^{4} + 4 q^{9} - 14 q^{10} - 10 q^{12} - 20 q^{14} + 6 q^{16} - 2 q^{17} - 4 q^{22} - 8 q^{23} - 6 q^{25} + 4 q^{27} + 2 q^{29} - 14 q^{30} - 8 q^{35} - 10 q^{36} + 28 q^{38} - 10 q^{40}+ \cdots + 52 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.56155i 1.10418i 0.833783 + 0.552092i \(0.186170\pi\)
−0.833783 + 0.552092i \(0.813830\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.438447 −0.219224
\(5\) 3.56155i 1.59277i 0.604787 + 0.796387i \(0.293258\pi\)
−0.604787 + 0.796387i \(0.706742\pi\)
\(6\) 1.56155i 0.637501i
\(7\) 0.561553i 0.212247i 0.994353 + 0.106124i \(0.0338439\pi\)
−0.994353 + 0.106124i \(0.966156\pi\)
\(8\) 2.43845i 0.862121i
\(9\) 1.00000 0.333333
\(10\) −5.56155 −1.75872
\(11\) − 2.00000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) −0.438447 −0.126569
\(13\) 0 0
\(14\) −0.876894 −0.234360
\(15\) 3.56155i 0.919589i
\(16\) −4.68466 −1.17116
\(17\) 1.56155 0.378732 0.189366 0.981907i \(-0.439357\pi\)
0.189366 + 0.981907i \(0.439357\pi\)
\(18\) 1.56155i 0.368062i
\(19\) − 7.12311i − 1.63415i −0.576530 0.817076i \(-0.695593\pi\)
0.576530 0.817076i \(-0.304407\pi\)
\(20\) − 1.56155i − 0.349174i
\(21\) 0.561553i 0.122541i
\(22\) 3.12311 0.665848
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 2.43845i 0.497746i
\(25\) −7.68466 −1.53693
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) − 0.246211i − 0.0465296i
\(29\) 6.68466 1.24131 0.620655 0.784084i \(-0.286867\pi\)
0.620655 + 0.784084i \(0.286867\pi\)
\(30\) −5.56155 −1.01540
\(31\) − 2.56155i − 0.460068i −0.973183 0.230034i \(-0.926116\pi\)
0.973183 0.230034i \(-0.0738838\pi\)
\(32\) − 2.43845i − 0.431061i
\(33\) − 2.00000i − 0.348155i
\(34\) 2.43845i 0.418190i
\(35\) −2.00000 −0.338062
\(36\) −0.438447 −0.0730745
\(37\) 7.56155i 1.24311i 0.783370 + 0.621556i \(0.213499\pi\)
−0.783370 + 0.621556i \(0.786501\pi\)
\(38\) 11.1231 1.80441
\(39\) 0 0
\(40\) −8.68466 −1.37317
\(41\) 1.56155i 0.243874i 0.992538 + 0.121937i \(0.0389105\pi\)
−0.992538 + 0.121937i \(0.961089\pi\)
\(42\) −0.876894 −0.135308
\(43\) −4.56155 −0.695630 −0.347815 0.937563i \(-0.613076\pi\)
−0.347815 + 0.937563i \(0.613076\pi\)
\(44\) 0.876894i 0.132197i
\(45\) 3.56155i 0.530925i
\(46\) − 3.12311i − 0.460477i
\(47\) 8.24621i 1.20283i 0.798935 + 0.601417i \(0.205397\pi\)
−0.798935 + 0.601417i \(0.794603\pi\)
\(48\) −4.68466 −0.676172
\(49\) 6.68466 0.954951
\(50\) − 12.0000i − 1.69706i
\(51\) 1.56155 0.218661
\(52\) 0 0
\(53\) −0.684658 −0.0940451 −0.0470225 0.998894i \(-0.514973\pi\)
−0.0470225 + 0.998894i \(0.514973\pi\)
\(54\) 1.56155i 0.212500i
\(55\) 7.12311 0.960479
\(56\) −1.36932 −0.182983
\(57\) − 7.12311i − 0.943478i
\(58\) 10.4384i 1.37064i
\(59\) − 2.87689i − 0.374540i −0.982309 0.187270i \(-0.940036\pi\)
0.982309 0.187270i \(-0.0599639\pi\)
\(60\) − 1.56155i − 0.201596i
\(61\) 3.87689 0.496385 0.248193 0.968711i \(-0.420163\pi\)
0.248193 + 0.968711i \(0.420163\pi\)
\(62\) 4.00000 0.508001
\(63\) 0.561553i 0.0707490i
\(64\) −5.56155 −0.695194
\(65\) 0 0
\(66\) 3.12311 0.384428
\(67\) − 4.56155i − 0.557282i −0.960395 0.278641i \(-0.910116\pi\)
0.960395 0.278641i \(-0.0898840\pi\)
\(68\) −0.684658 −0.0830270
\(69\) −2.00000 −0.240772
\(70\) − 3.12311i − 0.373283i
\(71\) − 14.0000i − 1.66149i −0.556650 0.830747i \(-0.687914\pi\)
0.556650 0.830747i \(-0.312086\pi\)
\(72\) 2.43845i 0.287374i
\(73\) − 10.1231i − 1.18482i −0.805637 0.592410i \(-0.798177\pi\)
0.805637 0.592410i \(-0.201823\pi\)
\(74\) −11.8078 −1.37262
\(75\) −7.68466 −0.887348
\(76\) 3.12311i 0.358245i
\(77\) 1.12311 0.127990
\(78\) 0 0
\(79\) 5.43845 0.611873 0.305937 0.952052i \(-0.401030\pi\)
0.305937 + 0.952052i \(0.401030\pi\)
\(80\) − 16.6847i − 1.86540i
\(81\) 1.00000 0.111111
\(82\) −2.43845 −0.269281
\(83\) 0.876894i 0.0962517i 0.998841 + 0.0481258i \(0.0153248\pi\)
−0.998841 + 0.0481258i \(0.984675\pi\)
\(84\) − 0.246211i − 0.0268638i
\(85\) 5.56155i 0.603235i
\(86\) − 7.12311i − 0.768104i
\(87\) 6.68466 0.716671
\(88\) 4.87689 0.519879
\(89\) 4.87689i 0.516950i 0.966018 + 0.258475i \(0.0832199\pi\)
−0.966018 + 0.258475i \(0.916780\pi\)
\(90\) −5.56155 −0.586239
\(91\) 0 0
\(92\) 0.876894 0.0914226
\(93\) − 2.56155i − 0.265621i
\(94\) −12.8769 −1.32815
\(95\) 25.3693 2.60284
\(96\) − 2.43845i − 0.248873i
\(97\) 8.56155i 0.869294i 0.900601 + 0.434647i \(0.143127\pi\)
−0.900601 + 0.434647i \(0.856873\pi\)
\(98\) 10.4384i 1.05444i
\(99\) − 2.00000i − 0.201008i
\(100\) 3.36932 0.336932
\(101\) 7.56155 0.752403 0.376201 0.926538i \(-0.377230\pi\)
0.376201 + 0.926538i \(0.377230\pi\)
\(102\) 2.43845i 0.241442i
\(103\) 3.43845 0.338800 0.169400 0.985547i \(-0.445817\pi\)
0.169400 + 0.985547i \(0.445817\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) − 1.06913i − 0.103843i
\(107\) −8.24621 −0.797191 −0.398596 0.917127i \(-0.630502\pi\)
−0.398596 + 0.917127i \(0.630502\pi\)
\(108\) −0.438447 −0.0421896
\(109\) 2.80776i 0.268935i 0.990918 + 0.134468i \(0.0429324\pi\)
−0.990918 + 0.134468i \(0.957068\pi\)
\(110\) 11.1231i 1.06055i
\(111\) 7.56155i 0.717711i
\(112\) − 2.63068i − 0.248576i
\(113\) 5.80776 0.546348 0.273174 0.961965i \(-0.411926\pi\)
0.273174 + 0.961965i \(0.411926\pi\)
\(114\) 11.1231 1.04177
\(115\) − 7.12311i − 0.664233i
\(116\) −2.93087 −0.272124
\(117\) 0 0
\(118\) 4.49242 0.413561
\(119\) 0.876894i 0.0803848i
\(120\) −8.68466 −0.792797
\(121\) 7.00000 0.636364
\(122\) 6.05398i 0.548101i
\(123\) 1.56155i 0.140800i
\(124\) 1.12311i 0.100858i
\(125\) − 9.56155i − 0.855211i
\(126\) −0.876894 −0.0781200
\(127\) −5.43845 −0.482584 −0.241292 0.970453i \(-0.577571\pi\)
−0.241292 + 0.970453i \(0.577571\pi\)
\(128\) − 13.5616i − 1.19868i
\(129\) −4.56155 −0.401622
\(130\) 0 0
\(131\) 7.36932 0.643860 0.321930 0.946763i \(-0.395668\pi\)
0.321930 + 0.946763i \(0.395668\pi\)
\(132\) 0.876894i 0.0763239i
\(133\) 4.00000 0.346844
\(134\) 7.12311 0.615343
\(135\) 3.56155i 0.306530i
\(136\) 3.80776i 0.326513i
\(137\) − 5.56155i − 0.475156i −0.971369 0.237578i \(-0.923647\pi\)
0.971369 0.237578i \(-0.0763535\pi\)
\(138\) − 3.12311i − 0.265856i
\(139\) −17.9309 −1.52088 −0.760438 0.649410i \(-0.775016\pi\)
−0.760438 + 0.649410i \(0.775016\pi\)
\(140\) 0.876894 0.0741111
\(141\) 8.24621i 0.694456i
\(142\) 21.8617 1.83460
\(143\) 0 0
\(144\) −4.68466 −0.390388
\(145\) 23.8078i 1.97713i
\(146\) 15.8078 1.30826
\(147\) 6.68466 0.551341
\(148\) − 3.31534i − 0.272519i
\(149\) 2.43845i 0.199765i 0.994999 + 0.0998827i \(0.0318468\pi\)
−0.994999 + 0.0998827i \(0.968153\pi\)
\(150\) − 12.0000i − 0.979796i
\(151\) − 9.36932i − 0.762464i −0.924479 0.381232i \(-0.875500\pi\)
0.924479 0.381232i \(-0.124500\pi\)
\(152\) 17.3693 1.40884
\(153\) 1.56155 0.126244
\(154\) 1.75379i 0.141324i
\(155\) 9.12311 0.732785
\(156\) 0 0
\(157\) 20.3693 1.62565 0.812824 0.582509i \(-0.197929\pi\)
0.812824 + 0.582509i \(0.197929\pi\)
\(158\) 8.49242i 0.675621i
\(159\) −0.684658 −0.0542969
\(160\) 8.68466 0.686583
\(161\) − 1.12311i − 0.0885131i
\(162\) 1.56155i 0.122687i
\(163\) − 4.80776i − 0.376573i −0.982114 0.188287i \(-0.939707\pi\)
0.982114 0.188287i \(-0.0602934\pi\)
\(164\) − 0.684658i − 0.0534628i
\(165\) 7.12311 0.554533
\(166\) −1.36932 −0.106280
\(167\) 10.2462i 0.792876i 0.918062 + 0.396438i \(0.129754\pi\)
−0.918062 + 0.396438i \(0.870246\pi\)
\(168\) −1.36932 −0.105645
\(169\) 0 0
\(170\) −8.68466 −0.666083
\(171\) − 7.12311i − 0.544718i
\(172\) 2.00000 0.152499
\(173\) −20.2462 −1.53929 −0.769645 0.638471i \(-0.779567\pi\)
−0.769645 + 0.638471i \(0.779567\pi\)
\(174\) 10.4384i 0.791337i
\(175\) − 4.31534i − 0.326209i
\(176\) 9.36932i 0.706239i
\(177\) − 2.87689i − 0.216241i
\(178\) −7.61553 −0.570808
\(179\) 4.87689 0.364516 0.182258 0.983251i \(-0.441659\pi\)
0.182258 + 0.983251i \(0.441659\pi\)
\(180\) − 1.56155i − 0.116391i
\(181\) 2.68466 0.199549 0.0997745 0.995010i \(-0.468188\pi\)
0.0997745 + 0.995010i \(0.468188\pi\)
\(182\) 0 0
\(183\) 3.87689 0.286588
\(184\) − 4.87689i − 0.359529i
\(185\) −26.9309 −1.98000
\(186\) 4.00000 0.293294
\(187\) − 3.12311i − 0.228384i
\(188\) − 3.61553i − 0.263689i
\(189\) 0.561553i 0.0408470i
\(190\) 39.6155i 2.87401i
\(191\) −9.12311 −0.660125 −0.330062 0.943959i \(-0.607070\pi\)
−0.330062 + 0.943959i \(0.607070\pi\)
\(192\) −5.56155 −0.401371
\(193\) − 13.4924i − 0.971206i −0.874180 0.485603i \(-0.838600\pi\)
0.874180 0.485603i \(-0.161400\pi\)
\(194\) −13.3693 −0.959861
\(195\) 0 0
\(196\) −2.93087 −0.209348
\(197\) − 13.3693i − 0.952524i −0.879303 0.476262i \(-0.841991\pi\)
0.879303 0.476262i \(-0.158009\pi\)
\(198\) 3.12311 0.221949
\(199\) −22.1771 −1.57209 −0.786046 0.618168i \(-0.787875\pi\)
−0.786046 + 0.618168i \(0.787875\pi\)
\(200\) − 18.7386i − 1.32502i
\(201\) − 4.56155i − 0.321747i
\(202\) 11.8078i 0.830791i
\(203\) 3.75379i 0.263464i
\(204\) −0.684658 −0.0479357
\(205\) −5.56155 −0.388436
\(206\) 5.36932i 0.374098i
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) −14.2462 −0.985431
\(210\) − 3.12311i − 0.215515i
\(211\) 19.6847 1.35515 0.677574 0.735455i \(-0.263031\pi\)
0.677574 + 0.735455i \(0.263031\pi\)
\(212\) 0.300187 0.0206169
\(213\) − 14.0000i − 0.959264i
\(214\) − 12.8769i − 0.880246i
\(215\) − 16.2462i − 1.10798i
\(216\) 2.43845i 0.165915i
\(217\) 1.43845 0.0976482
\(218\) −4.38447 −0.296954
\(219\) − 10.1231i − 0.684056i
\(220\) −3.12311 −0.210560
\(221\) 0 0
\(222\) −11.8078 −0.792485
\(223\) − 8.00000i − 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) 1.36932 0.0914913
\(225\) −7.68466 −0.512311
\(226\) 9.06913i 0.603270i
\(227\) − 7.12311i − 0.472777i −0.971659 0.236389i \(-0.924036\pi\)
0.971659 0.236389i \(-0.0759638\pi\)
\(228\) 3.12311i 0.206833i
\(229\) − 16.2462i − 1.07358i −0.843716 0.536790i \(-0.819637\pi\)
0.843716 0.536790i \(-0.180363\pi\)
\(230\) 11.1231 0.733436
\(231\) 1.12311 0.0738949
\(232\) 16.3002i 1.07016i
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −29.3693 −1.91584
\(236\) 1.26137i 0.0821079i
\(237\) 5.43845 0.353265
\(238\) −1.36932 −0.0887596
\(239\) 25.3693i 1.64100i 0.571643 + 0.820502i \(0.306306\pi\)
−0.571643 + 0.820502i \(0.693694\pi\)
\(240\) − 16.6847i − 1.07699i
\(241\) − 17.8078i − 1.14710i −0.819171 0.573549i \(-0.805566\pi\)
0.819171 0.573549i \(-0.194434\pi\)
\(242\) 10.9309i 0.702663i
\(243\) 1.00000 0.0641500
\(244\) −1.69981 −0.108819
\(245\) 23.8078i 1.52102i
\(246\) −2.43845 −0.155470
\(247\) 0 0
\(248\) 6.24621 0.396635
\(249\) 0.876894i 0.0555709i
\(250\) 14.9309 0.944311
\(251\) −18.7386 −1.18277 −0.591386 0.806389i \(-0.701419\pi\)
−0.591386 + 0.806389i \(0.701419\pi\)
\(252\) − 0.246211i − 0.0155099i
\(253\) 4.00000i 0.251478i
\(254\) − 8.49242i − 0.532862i
\(255\) 5.56155i 0.348278i
\(256\) 10.0540 0.628373
\(257\) −29.1771 −1.82002 −0.910008 0.414590i \(-0.863925\pi\)
−0.910008 + 0.414590i \(0.863925\pi\)
\(258\) − 7.12311i − 0.443465i
\(259\) −4.24621 −0.263847
\(260\) 0 0
\(261\) 6.68466 0.413770
\(262\) 11.5076i 0.710941i
\(263\) 9.36932 0.577737 0.288868 0.957369i \(-0.406721\pi\)
0.288868 + 0.957369i \(0.406721\pi\)
\(264\) 4.87689 0.300152
\(265\) − 2.43845i − 0.149793i
\(266\) 6.24621i 0.382980i
\(267\) 4.87689i 0.298461i
\(268\) 2.00000i 0.122169i
\(269\) −21.3693 −1.30291 −0.651455 0.758687i \(-0.725841\pi\)
−0.651455 + 0.758687i \(0.725841\pi\)
\(270\) −5.56155 −0.338465
\(271\) − 29.9309i − 1.81817i −0.416610 0.909085i \(-0.636782\pi\)
0.416610 0.909085i \(-0.363218\pi\)
\(272\) −7.31534 −0.443558
\(273\) 0 0
\(274\) 8.68466 0.524659
\(275\) 15.3693i 0.926805i
\(276\) 0.876894 0.0527828
\(277\) −5.31534 −0.319368 −0.159684 0.987168i \(-0.551048\pi\)
−0.159684 + 0.987168i \(0.551048\pi\)
\(278\) − 28.0000i − 1.67933i
\(279\) − 2.56155i − 0.153356i
\(280\) − 4.87689i − 0.291450i
\(281\) 17.8078i 1.06232i 0.847271 + 0.531161i \(0.178244\pi\)
−0.847271 + 0.531161i \(0.821756\pi\)
\(282\) −12.8769 −0.766808
\(283\) 13.6847 0.813469 0.406734 0.913547i \(-0.366667\pi\)
0.406734 + 0.913547i \(0.366667\pi\)
\(284\) 6.13826i 0.364239i
\(285\) 25.3693 1.50275
\(286\) 0 0
\(287\) −0.876894 −0.0517614
\(288\) − 2.43845i − 0.143687i
\(289\) −14.5616 −0.856562
\(290\) −37.1771 −2.18311
\(291\) 8.56155i 0.501887i
\(292\) 4.43845i 0.259740i
\(293\) 20.4384i 1.19403i 0.802231 + 0.597013i \(0.203646\pi\)
−0.802231 + 0.597013i \(0.796354\pi\)
\(294\) 10.4384i 0.608783i
\(295\) 10.2462 0.596557
\(296\) −18.4384 −1.07171
\(297\) − 2.00000i − 0.116052i
\(298\) −3.80776 −0.220578
\(299\) 0 0
\(300\) 3.36932 0.194528
\(301\) − 2.56155i − 0.147645i
\(302\) 14.6307 0.841901
\(303\) 7.56155 0.434400
\(304\) 33.3693i 1.91386i
\(305\) 13.8078i 0.790630i
\(306\) 2.43845i 0.139397i
\(307\) 30.8078i 1.75829i 0.476553 + 0.879146i \(0.341886\pi\)
−0.476553 + 0.879146i \(0.658114\pi\)
\(308\) −0.492423 −0.0280584
\(309\) 3.43845 0.195606
\(310\) 14.2462i 0.809130i
\(311\) 19.1231 1.08437 0.542186 0.840259i \(-0.317597\pi\)
0.542186 + 0.840259i \(0.317597\pi\)
\(312\) 0 0
\(313\) −13.6847 −0.773503 −0.386751 0.922184i \(-0.626403\pi\)
−0.386751 + 0.922184i \(0.626403\pi\)
\(314\) 31.8078i 1.79502i
\(315\) −2.00000 −0.112687
\(316\) −2.38447 −0.134137
\(317\) − 14.0540i − 0.789350i −0.918821 0.394675i \(-0.870857\pi\)
0.918821 0.394675i \(-0.129143\pi\)
\(318\) − 1.06913i − 0.0599539i
\(319\) − 13.3693i − 0.748538i
\(320\) − 19.8078i − 1.10729i
\(321\) −8.24621 −0.460259
\(322\) 1.75379 0.0977348
\(323\) − 11.1231i − 0.618906i
\(324\) −0.438447 −0.0243582
\(325\) 0 0
\(326\) 7.50758 0.415806
\(327\) 2.80776i 0.155270i
\(328\) −3.80776 −0.210249
\(329\) −4.63068 −0.255298
\(330\) 11.1231i 0.612307i
\(331\) 3.19224i 0.175461i 0.996144 + 0.0877306i \(0.0279615\pi\)
−0.996144 + 0.0877306i \(0.972039\pi\)
\(332\) − 0.384472i − 0.0211006i
\(333\) 7.56155i 0.414371i
\(334\) −16.0000 −0.875481
\(335\) 16.2462 0.887625
\(336\) − 2.63068i − 0.143516i
\(337\) 6.12311 0.333547 0.166773 0.985995i \(-0.446665\pi\)
0.166773 + 0.985995i \(0.446665\pi\)
\(338\) 0 0
\(339\) 5.80776 0.315434
\(340\) − 2.43845i − 0.132243i
\(341\) −5.12311 −0.277432
\(342\) 11.1231 0.601469
\(343\) 7.68466i 0.414933i
\(344\) − 11.1231i − 0.599718i
\(345\) − 7.12311i − 0.383495i
\(346\) − 31.6155i − 1.69966i
\(347\) 27.6155 1.48248 0.741240 0.671241i \(-0.234238\pi\)
0.741240 + 0.671241i \(0.234238\pi\)
\(348\) −2.93087 −0.157111
\(349\) 6.80776i 0.364411i 0.983260 + 0.182206i \(0.0583237\pi\)
−0.983260 + 0.182206i \(0.941676\pi\)
\(350\) 6.73863 0.360195
\(351\) 0 0
\(352\) −4.87689 −0.259939
\(353\) − 5.31534i − 0.282907i −0.989945 0.141454i \(-0.954822\pi\)
0.989945 0.141454i \(-0.0451776\pi\)
\(354\) 4.49242 0.238770
\(355\) 49.8617 2.64639
\(356\) − 2.13826i − 0.113328i
\(357\) 0.876894i 0.0464102i
\(358\) 7.61553i 0.402493i
\(359\) − 9.36932i − 0.494494i −0.968953 0.247247i \(-0.920474\pi\)
0.968953 0.247247i \(-0.0795258\pi\)
\(360\) −8.68466 −0.457722
\(361\) −31.7386 −1.67045
\(362\) 4.19224i 0.220339i
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 36.0540 1.88715
\(366\) 6.05398i 0.316446i
\(367\) −17.0540 −0.890210 −0.445105 0.895478i \(-0.646834\pi\)
−0.445105 + 0.895478i \(0.646834\pi\)
\(368\) 9.36932 0.488409
\(369\) 1.56155i 0.0812912i
\(370\) − 42.0540i − 2.18628i
\(371\) − 0.384472i − 0.0199608i
\(372\) 1.12311i 0.0582303i
\(373\) 28.3693 1.46891 0.734454 0.678659i \(-0.237438\pi\)
0.734454 + 0.678659i \(0.237438\pi\)
\(374\) 4.87689 0.252178
\(375\) − 9.56155i − 0.493756i
\(376\) −20.1080 −1.03699
\(377\) 0 0
\(378\) −0.876894 −0.0451026
\(379\) − 23.6847i − 1.21660i −0.793708 0.608300i \(-0.791852\pi\)
0.793708 0.608300i \(-0.208148\pi\)
\(380\) −11.1231 −0.570603
\(381\) −5.43845 −0.278620
\(382\) − 14.2462i − 0.728900i
\(383\) 22.7386i 1.16189i 0.813943 + 0.580945i \(0.197317\pi\)
−0.813943 + 0.580945i \(0.802683\pi\)
\(384\) − 13.5616i − 0.692060i
\(385\) 4.00000i 0.203859i
\(386\) 21.0691 1.07239
\(387\) −4.56155 −0.231877
\(388\) − 3.75379i − 0.190570i
\(389\) −34.0540 −1.72661 −0.863303 0.504687i \(-0.831608\pi\)
−0.863303 + 0.504687i \(0.831608\pi\)
\(390\) 0 0
\(391\) −3.12311 −0.157942
\(392\) 16.3002i 0.823284i
\(393\) 7.36932 0.371733
\(394\) 20.8769 1.05176
\(395\) 19.3693i 0.974576i
\(396\) 0.876894i 0.0440656i
\(397\) 25.0540i 1.25742i 0.777639 + 0.628711i \(0.216417\pi\)
−0.777639 + 0.628711i \(0.783583\pi\)
\(398\) − 34.6307i − 1.73588i
\(399\) 4.00000 0.200250
\(400\) 36.0000 1.80000
\(401\) 14.4384i 0.721022i 0.932755 + 0.360511i \(0.117398\pi\)
−0.932755 + 0.360511i \(0.882602\pi\)
\(402\) 7.12311 0.355268
\(403\) 0 0
\(404\) −3.31534 −0.164944
\(405\) 3.56155i 0.176975i
\(406\) −5.86174 −0.290913
\(407\) 15.1231 0.749625
\(408\) 3.80776i 0.188512i
\(409\) − 6.36932i − 0.314942i −0.987524 0.157471i \(-0.949666\pi\)
0.987524 0.157471i \(-0.0503342\pi\)
\(410\) − 8.68466i − 0.428905i
\(411\) − 5.56155i − 0.274331i
\(412\) −1.50758 −0.0742730
\(413\) 1.61553 0.0794949
\(414\) − 3.12311i − 0.153492i
\(415\) −3.12311 −0.153307
\(416\) 0 0
\(417\) −17.9309 −0.878078
\(418\) − 22.2462i − 1.08810i
\(419\) −34.2462 −1.67304 −0.836518 0.547939i \(-0.815413\pi\)
−0.836518 + 0.547939i \(0.815413\pi\)
\(420\) 0.876894 0.0427881
\(421\) − 31.2462i − 1.52285i −0.648255 0.761424i \(-0.724501\pi\)
0.648255 0.761424i \(-0.275499\pi\)
\(422\) 30.7386i 1.49633i
\(423\) 8.24621i 0.400945i
\(424\) − 1.66950i − 0.0810783i
\(425\) −12.0000 −0.582086
\(426\) 21.8617 1.05920
\(427\) 2.17708i 0.105356i
\(428\) 3.61553 0.174763
\(429\) 0 0
\(430\) 25.3693 1.22342
\(431\) 11.1231i 0.535781i 0.963449 + 0.267891i \(0.0863266\pi\)
−0.963449 + 0.267891i \(0.913673\pi\)
\(432\) −4.68466 −0.225391
\(433\) −8.75379 −0.420680 −0.210340 0.977628i \(-0.567457\pi\)
−0.210340 + 0.977628i \(0.567457\pi\)
\(434\) 2.24621i 0.107822i
\(435\) 23.8078i 1.14149i
\(436\) − 1.23106i − 0.0589569i
\(437\) 14.2462i 0.681489i
\(438\) 15.8078 0.755324
\(439\) 13.6847 0.653133 0.326567 0.945174i \(-0.394108\pi\)
0.326567 + 0.945174i \(0.394108\pi\)
\(440\) 17.3693i 0.828050i
\(441\) 6.68466 0.318317
\(442\) 0 0
\(443\) −34.7386 −1.65048 −0.825241 0.564781i \(-0.808961\pi\)
−0.825241 + 0.564781i \(0.808961\pi\)
\(444\) − 3.31534i − 0.157339i
\(445\) −17.3693 −0.823385
\(446\) 12.4924 0.591533
\(447\) 2.43845i 0.115335i
\(448\) − 3.12311i − 0.147553i
\(449\) − 8.24621i − 0.389163i −0.980886 0.194581i \(-0.937665\pi\)
0.980886 0.194581i \(-0.0623348\pi\)
\(450\) − 12.0000i − 0.565685i
\(451\) 3.12311 0.147061
\(452\) −2.54640 −0.119772
\(453\) − 9.36932i − 0.440209i
\(454\) 11.1231 0.522033
\(455\) 0 0
\(456\) 17.3693 0.813393
\(457\) − 12.6155i − 0.590130i −0.955477 0.295065i \(-0.904659\pi\)
0.955477 0.295065i \(-0.0953412\pi\)
\(458\) 25.3693 1.18543
\(459\) 1.56155 0.0728870
\(460\) 3.12311i 0.145616i
\(461\) 16.1922i 0.754148i 0.926183 + 0.377074i \(0.123070\pi\)
−0.926183 + 0.377074i \(0.876930\pi\)
\(462\) 1.75379i 0.0815936i
\(463\) − 14.3153i − 0.665290i −0.943052 0.332645i \(-0.892059\pi\)
0.943052 0.332645i \(-0.107941\pi\)
\(464\) −31.3153 −1.45378
\(465\) 9.12311 0.423074
\(466\) − 40.6004i − 1.88078i
\(467\) 26.0000 1.20314 0.601568 0.798821i \(-0.294543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(468\) 0 0
\(469\) 2.56155 0.118282
\(470\) − 45.8617i − 2.11544i
\(471\) 20.3693 0.938569
\(472\) 7.01515 0.322899
\(473\) 9.12311i 0.419481i
\(474\) 8.49242i 0.390070i
\(475\) 54.7386i 2.51158i
\(476\) − 0.384472i − 0.0176222i
\(477\) −0.684658 −0.0313484
\(478\) −39.6155 −1.81197
\(479\) 10.2462i 0.468161i 0.972217 + 0.234081i \(0.0752080\pi\)
−0.972217 + 0.234081i \(0.924792\pi\)
\(480\) 8.68466 0.396399
\(481\) 0 0
\(482\) 27.8078 1.26661
\(483\) − 1.12311i − 0.0511031i
\(484\) −3.06913 −0.139506
\(485\) −30.4924 −1.38459
\(486\) 1.56155i 0.0708335i
\(487\) − 7.12311i − 0.322779i −0.986891 0.161389i \(-0.948403\pi\)
0.986891 0.161389i \(-0.0515975\pi\)
\(488\) 9.45360i 0.427944i
\(489\) − 4.80776i − 0.217415i
\(490\) −37.1771 −1.67949
\(491\) 36.2462 1.63577 0.817884 0.575383i \(-0.195147\pi\)
0.817884 + 0.575383i \(0.195147\pi\)
\(492\) − 0.684658i − 0.0308668i
\(493\) 10.4384 0.470124
\(494\) 0 0
\(495\) 7.12311 0.320160
\(496\) 12.0000i 0.538816i
\(497\) 7.86174 0.352647
\(498\) −1.36932 −0.0613606
\(499\) − 4.49242i − 0.201108i −0.994932 0.100554i \(-0.967938\pi\)
0.994932 0.100554i \(-0.0320616\pi\)
\(500\) 4.19224i 0.187482i
\(501\) 10.2462i 0.457767i
\(502\) − 29.2614i − 1.30600i
\(503\) −28.2462 −1.25944 −0.629718 0.776824i \(-0.716830\pi\)
−0.629718 + 0.776824i \(0.716830\pi\)
\(504\) −1.36932 −0.0609942
\(505\) 26.9309i 1.19841i
\(506\) −6.24621 −0.277678
\(507\) 0 0
\(508\) 2.38447 0.105794
\(509\) 13.8078i 0.612018i 0.952029 + 0.306009i \(0.0989938\pi\)
−0.952029 + 0.306009i \(0.901006\pi\)
\(510\) −8.68466 −0.384563
\(511\) 5.68466 0.251474
\(512\) − 11.4233i − 0.504843i
\(513\) − 7.12311i − 0.314493i
\(514\) − 45.5616i − 2.00963i
\(515\) 12.2462i 0.539633i
\(516\) 2.00000 0.0880451
\(517\) 16.4924 0.725336
\(518\) − 6.63068i − 0.291335i
\(519\) −20.2462 −0.888710
\(520\) 0 0
\(521\) −9.06913 −0.397326 −0.198663 0.980068i \(-0.563660\pi\)
−0.198663 + 0.980068i \(0.563660\pi\)
\(522\) 10.4384i 0.456878i
\(523\) 33.8617 1.48067 0.740335 0.672238i \(-0.234667\pi\)
0.740335 + 0.672238i \(0.234667\pi\)
\(524\) −3.23106 −0.141149
\(525\) − 4.31534i − 0.188337i
\(526\) 14.6307i 0.637928i
\(527\) − 4.00000i − 0.174243i
\(528\) 9.36932i 0.407747i
\(529\) −19.0000 −0.826087
\(530\) 3.80776 0.165399
\(531\) − 2.87689i − 0.124847i
\(532\) −1.75379 −0.0760364
\(533\) 0 0
\(534\) −7.61553 −0.329556
\(535\) − 29.3693i − 1.26975i
\(536\) 11.1231 0.480445
\(537\) 4.87689 0.210454
\(538\) − 33.3693i − 1.43865i
\(539\) − 13.3693i − 0.575857i
\(540\) − 1.56155i − 0.0671985i
\(541\) 19.7386i 0.848630i 0.905515 + 0.424315i \(0.139485\pi\)
−0.905515 + 0.424315i \(0.860515\pi\)
\(542\) 46.7386 2.00760
\(543\) 2.68466 0.115210
\(544\) − 3.80776i − 0.163257i
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) 3.93087 0.168072 0.0840359 0.996463i \(-0.473219\pi\)
0.0840359 + 0.996463i \(0.473219\pi\)
\(548\) 2.43845i 0.104165i
\(549\) 3.87689 0.165462
\(550\) −24.0000 −1.02336
\(551\) − 47.6155i − 2.02849i
\(552\) − 4.87689i − 0.207574i
\(553\) 3.05398i 0.129868i
\(554\) − 8.30019i − 0.352641i
\(555\) −26.9309 −1.14315
\(556\) 7.86174 0.333412
\(557\) − 42.9309i − 1.81904i −0.415661 0.909520i \(-0.636450\pi\)
0.415661 0.909520i \(-0.363550\pi\)
\(558\) 4.00000 0.169334
\(559\) 0 0
\(560\) 9.36932 0.395926
\(561\) − 3.12311i − 0.131858i
\(562\) −27.8078 −1.17300
\(563\) 23.3693 0.984899 0.492450 0.870341i \(-0.336102\pi\)
0.492450 + 0.870341i \(0.336102\pi\)
\(564\) − 3.61553i − 0.152241i
\(565\) 20.6847i 0.870210i
\(566\) 21.3693i 0.898219i
\(567\) 0.561553i 0.0235830i
\(568\) 34.1383 1.43241
\(569\) 8.73863 0.366343 0.183171 0.983081i \(-0.441364\pi\)
0.183171 + 0.983081i \(0.441364\pi\)
\(570\) 39.6155i 1.65931i
\(571\) 5.36932 0.224699 0.112349 0.993669i \(-0.464162\pi\)
0.112349 + 0.993669i \(0.464162\pi\)
\(572\) 0 0
\(573\) −9.12311 −0.381123
\(574\) − 1.36932i − 0.0571542i
\(575\) 15.3693 0.640945
\(576\) −5.56155 −0.231731
\(577\) 17.3153i 0.720847i 0.932789 + 0.360424i \(0.117368\pi\)
−0.932789 + 0.360424i \(0.882632\pi\)
\(578\) − 22.7386i − 0.945802i
\(579\) − 13.4924i − 0.560726i
\(580\) − 10.4384i − 0.433433i
\(581\) −0.492423 −0.0204291
\(582\) −13.3693 −0.554176
\(583\) 1.36932i 0.0567113i
\(584\) 24.6847 1.02146
\(585\) 0 0
\(586\) −31.9157 −1.31843
\(587\) − 39.3693i − 1.62495i −0.582999 0.812473i \(-0.698121\pi\)
0.582999 0.812473i \(-0.301879\pi\)
\(588\) −2.93087 −0.120867
\(589\) −18.2462 −0.751822
\(590\) 16.0000i 0.658710i
\(591\) − 13.3693i − 0.549940i
\(592\) − 35.4233i − 1.45589i
\(593\) − 17.4233i − 0.715489i −0.933820 0.357744i \(-0.883546\pi\)
0.933820 0.357744i \(-0.116454\pi\)
\(594\) 3.12311 0.128143
\(595\) −3.12311 −0.128035
\(596\) − 1.06913i − 0.0437933i
\(597\) −22.1771 −0.907648
\(598\) 0 0
\(599\) −41.6155 −1.70036 −0.850182 0.526489i \(-0.823508\pi\)
−0.850182 + 0.526489i \(0.823508\pi\)
\(600\) − 18.7386i − 0.765002i
\(601\) −7.06913 −0.288356 −0.144178 0.989552i \(-0.546054\pi\)
−0.144178 + 0.989552i \(0.546054\pi\)
\(602\) 4.00000 0.163028
\(603\) − 4.56155i − 0.185761i
\(604\) 4.10795i 0.167150i
\(605\) 24.9309i 1.01358i
\(606\) 11.8078i 0.479658i
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −17.3693 −0.704419
\(609\) 3.75379i 0.152111i
\(610\) −21.5616 −0.873002
\(611\) 0 0
\(612\) −0.684658 −0.0276757
\(613\) 34.8617i 1.40805i 0.710174 + 0.704026i \(0.248616\pi\)
−0.710174 + 0.704026i \(0.751384\pi\)
\(614\) −48.1080 −1.94148
\(615\) −5.56155 −0.224263
\(616\) 2.73863i 0.110343i
\(617\) − 9.80776i − 0.394846i −0.980318 0.197423i \(-0.936743\pi\)
0.980318 0.197423i \(-0.0632572\pi\)
\(618\) 5.36932i 0.215986i
\(619\) 29.3002i 1.17767i 0.808252 + 0.588837i \(0.200414\pi\)
−0.808252 + 0.588837i \(0.799586\pi\)
\(620\) −4.00000 −0.160644
\(621\) −2.00000 −0.0802572
\(622\) 29.8617i 1.19735i
\(623\) −2.73863 −0.109721
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) − 21.3693i − 0.854090i
\(627\) −14.2462 −0.568939
\(628\) −8.93087 −0.356380
\(629\) 11.8078i 0.470806i
\(630\) − 3.12311i − 0.124428i
\(631\) − 18.5616i − 0.738924i −0.929246 0.369462i \(-0.879542\pi\)
0.929246 0.369462i \(-0.120458\pi\)
\(632\) 13.2614i 0.527509i
\(633\) 19.6847 0.782395
\(634\) 21.9460 0.871588
\(635\) − 19.3693i − 0.768648i
\(636\) 0.300187 0.0119032
\(637\) 0 0
\(638\) 20.8769 0.826524
\(639\) − 14.0000i − 0.553831i
\(640\) 48.3002 1.90923
\(641\) 19.1771 0.757449 0.378725 0.925509i \(-0.376363\pi\)
0.378725 + 0.925509i \(0.376363\pi\)
\(642\) − 12.8769i − 0.508210i
\(643\) 31.5464i 1.24407i 0.782990 + 0.622034i \(0.213694\pi\)
−0.782990 + 0.622034i \(0.786306\pi\)
\(644\) 0.492423i 0.0194042i
\(645\) − 16.2462i − 0.639694i
\(646\) 17.3693 0.683387
\(647\) 6.38447 0.250999 0.125500 0.992094i \(-0.459947\pi\)
0.125500 + 0.992094i \(0.459947\pi\)
\(648\) 2.43845i 0.0957913i
\(649\) −5.75379 −0.225856
\(650\) 0 0
\(651\) 1.43845 0.0563772
\(652\) 2.10795i 0.0825537i
\(653\) 23.1231 0.904877 0.452439 0.891796i \(-0.350554\pi\)
0.452439 + 0.891796i \(0.350554\pi\)
\(654\) −4.38447 −0.171446
\(655\) 26.2462i 1.02552i
\(656\) − 7.31534i − 0.285616i
\(657\) − 10.1231i − 0.394940i
\(658\) − 7.23106i − 0.281896i
\(659\) −2.24621 −0.0875000 −0.0437500 0.999043i \(-0.513930\pi\)
−0.0437500 + 0.999043i \(0.513930\pi\)
\(660\) −3.12311 −0.121567
\(661\) 5.63068i 0.219008i 0.993986 + 0.109504i \(0.0349263\pi\)
−0.993986 + 0.109504i \(0.965074\pi\)
\(662\) −4.98485 −0.193742
\(663\) 0 0
\(664\) −2.13826 −0.0829806
\(665\) 14.2462i 0.552444i
\(666\) −11.8078 −0.457542
\(667\) −13.3693 −0.517662
\(668\) − 4.49242i − 0.173817i
\(669\) − 8.00000i − 0.309298i
\(670\) 25.3693i 0.980102i
\(671\) − 7.75379i − 0.299332i
\(672\) 1.36932 0.0528225
\(673\) 23.2462 0.896076 0.448038 0.894015i \(-0.352123\pi\)
0.448038 + 0.894015i \(0.352123\pi\)
\(674\) 9.56155i 0.368297i
\(675\) −7.68466 −0.295783
\(676\) 0 0
\(677\) −15.6155 −0.600153 −0.300077 0.953915i \(-0.597012\pi\)
−0.300077 + 0.953915i \(0.597012\pi\)
\(678\) 9.06913i 0.348298i
\(679\) −4.80776 −0.184505
\(680\) −13.5616 −0.520062
\(681\) − 7.12311i − 0.272958i
\(682\) − 8.00000i − 0.306336i
\(683\) − 38.1080i − 1.45816i −0.684428 0.729080i \(-0.739948\pi\)
0.684428 0.729080i \(-0.260052\pi\)
\(684\) 3.12311i 0.119415i
\(685\) 19.8078 0.756816
\(686\) −12.0000 −0.458162
\(687\) − 16.2462i − 0.619832i
\(688\) 21.3693 0.814698
\(689\) 0 0
\(690\) 11.1231 0.423449
\(691\) 51.3002i 1.95155i 0.218774 + 0.975776i \(0.429794\pi\)
−0.218774 + 0.975776i \(0.570206\pi\)
\(692\) 8.87689 0.337449
\(693\) 1.12311 0.0426633
\(694\) 43.1231i 1.63693i
\(695\) − 63.8617i − 2.42241i
\(696\) 16.3002i 0.617857i
\(697\) 2.43845i 0.0923628i
\(698\) −10.6307 −0.402377
\(699\) −26.0000 −0.983410
\(700\) 1.89205i 0.0715127i
\(701\) 5.36932 0.202796 0.101398 0.994846i \(-0.467668\pi\)
0.101398 + 0.994846i \(0.467668\pi\)
\(702\) 0 0
\(703\) 53.8617 2.03143
\(704\) 11.1231i 0.419218i
\(705\) −29.3693 −1.10611
\(706\) 8.30019 0.312382
\(707\) 4.24621i 0.159695i
\(708\) 1.26137i 0.0474050i
\(709\) − 7.49242i − 0.281384i −0.990053 0.140692i \(-0.955067\pi\)
0.990053 0.140692i \(-0.0449327\pi\)
\(710\) 77.8617i 2.92210i
\(711\) 5.43845 0.203958
\(712\) −11.8920 −0.445673
\(713\) 5.12311i 0.191862i
\(714\) −1.36932 −0.0512454
\(715\) 0 0
\(716\) −2.13826 −0.0799106
\(717\) 25.3693i 0.947435i
\(718\) 14.6307 0.546012
\(719\) 23.3693 0.871528 0.435764 0.900061i \(-0.356478\pi\)
0.435764 + 0.900061i \(0.356478\pi\)
\(720\) − 16.6847i − 0.621801i
\(721\) 1.93087i 0.0719093i
\(722\) − 49.5616i − 1.84449i
\(723\) − 17.8078i − 0.662278i
\(724\) −1.17708 −0.0437459
\(725\) −51.3693 −1.90781
\(726\) 10.9309i 0.405683i
\(727\) 38.6695 1.43417 0.717086 0.696984i \(-0.245475\pi\)
0.717086 + 0.696984i \(0.245475\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 56.3002i 2.08376i
\(731\) −7.12311 −0.263458
\(732\) −1.69981 −0.0628269
\(733\) − 20.5076i − 0.757465i −0.925506 0.378732i \(-0.876360\pi\)
0.925506 0.378732i \(-0.123640\pi\)
\(734\) − 26.6307i − 0.982956i
\(735\) 23.8078i 0.878163i
\(736\) 4.87689i 0.179765i
\(737\) −9.12311 −0.336054
\(738\) −2.43845 −0.0897605
\(739\) 10.2462i 0.376913i 0.982082 + 0.188456i \(0.0603484\pi\)
−0.982082 + 0.188456i \(0.939652\pi\)
\(740\) 11.8078 0.434062
\(741\) 0 0
\(742\) 0.600373 0.0220404
\(743\) 12.6307i 0.463375i 0.972790 + 0.231687i \(0.0744247\pi\)
−0.972790 + 0.231687i \(0.925575\pi\)
\(744\) 6.24621 0.228997
\(745\) −8.68466 −0.318181
\(746\) 44.3002i 1.62195i
\(747\) 0.876894i 0.0320839i
\(748\) 1.36932i 0.0500672i
\(749\) − 4.63068i − 0.169201i
\(750\) 14.9309 0.545198
\(751\) −44.1080 −1.60952 −0.804761 0.593599i \(-0.797707\pi\)
−0.804761 + 0.593599i \(0.797707\pi\)
\(752\) − 38.6307i − 1.40872i
\(753\) −18.7386 −0.682874
\(754\) 0 0
\(755\) 33.3693 1.21443
\(756\) − 0.246211i − 0.00895462i
\(757\) 30.0000 1.09037 0.545184 0.838316i \(-0.316460\pi\)
0.545184 + 0.838316i \(0.316460\pi\)
\(758\) 36.9848 1.34335
\(759\) 4.00000i 0.145191i
\(760\) 61.8617i 2.24396i
\(761\) 9.36932i 0.339637i 0.985475 + 0.169819i \(0.0543182\pi\)
−0.985475 + 0.169819i \(0.945682\pi\)
\(762\) − 8.49242i − 0.307648i
\(763\) −1.57671 −0.0570807
\(764\) 4.00000 0.144715
\(765\) 5.56155i 0.201078i
\(766\) −35.5076 −1.28294
\(767\) 0 0
\(768\) 10.0540 0.362792
\(769\) 18.0000i 0.649097i 0.945869 + 0.324548i \(0.105212\pi\)
−0.945869 + 0.324548i \(0.894788\pi\)
\(770\) −6.24621 −0.225098
\(771\) −29.1771 −1.05079
\(772\) 5.91571i 0.212911i
\(773\) 24.2462i 0.872076i 0.899928 + 0.436038i \(0.143619\pi\)
−0.899928 + 0.436038i \(0.856381\pi\)
\(774\) − 7.12311i − 0.256035i
\(775\) 19.6847i 0.707094i
\(776\) −20.8769 −0.749437
\(777\) −4.24621 −0.152332
\(778\) − 53.1771i − 1.90649i
\(779\) 11.1231 0.398527
\(780\) 0 0
\(781\) −28.0000 −1.00192
\(782\) − 4.87689i − 0.174397i
\(783\) 6.68466 0.238890
\(784\) −31.3153 −1.11841
\(785\) 72.5464i 2.58929i
\(786\) 11.5076i 0.410462i
\(787\) 44.1771i 1.57474i 0.616479 + 0.787371i \(0.288559\pi\)
−0.616479 + 0.787371i \(0.711441\pi\)
\(788\) 5.86174i 0.208816i
\(789\) 9.36932 0.333557
\(790\) −30.2462 −1.07611
\(791\) 3.26137i 0.115961i
\(792\) 4.87689 0.173293
\(793\) 0 0
\(794\) −39.1231 −1.38843
\(795\) − 2.43845i − 0.0864828i
\(796\) 9.72348 0.344640
\(797\) 0.384472 0.0136187 0.00680935 0.999977i \(-0.497833\pi\)
0.00680935 + 0.999977i \(0.497833\pi\)
\(798\) 6.24621i 0.221113i
\(799\) 12.8769i 0.455552i
\(800\) 18.7386i 0.662511i
\(801\) 4.87689i 0.172317i
\(802\) −22.5464 −0.796141
\(803\) −20.2462 −0.714473
\(804\) 2.00000i 0.0705346i
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) −21.3693 −0.752236
\(808\) 18.4384i 0.648662i
\(809\) −16.3002 −0.573084 −0.286542 0.958068i \(-0.592506\pi\)
−0.286542 + 0.958068i \(0.592506\pi\)
\(810\) −5.56155 −0.195413
\(811\) − 2.56155i − 0.0899483i −0.998988 0.0449741i \(-0.985679\pi\)
0.998988 0.0449741i \(-0.0143205\pi\)
\(812\) − 1.64584i − 0.0577576i
\(813\) − 29.9309i − 1.04972i
\(814\) 23.6155i 0.827724i
\(815\) 17.1231 0.599796
\(816\) −7.31534 −0.256088
\(817\) 32.4924i 1.13677i
\(818\) 9.94602 0.347755
\(819\) 0 0
\(820\) 2.43845 0.0851543
\(821\) − 6.49242i − 0.226587i −0.993562 0.113294i \(-0.963860\pi\)
0.993562 0.113294i \(-0.0361401\pi\)
\(822\) 8.68466 0.302912
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 8.38447i 0.292087i
\(825\) 15.3693i 0.535091i
\(826\) 2.52273i 0.0877771i
\(827\) − 14.7386i − 0.512513i −0.966609 0.256256i \(-0.917511\pi\)
0.966609 0.256256i \(-0.0824891\pi\)
\(828\) 0.876894 0.0304742
\(829\) −13.4924 −0.468611 −0.234306 0.972163i \(-0.575282\pi\)
−0.234306 + 0.972163i \(0.575282\pi\)
\(830\) − 4.87689i − 0.169279i
\(831\) −5.31534 −0.184387
\(832\) 0 0
\(833\) 10.4384 0.361671
\(834\) − 28.0000i − 0.969561i
\(835\) −36.4924 −1.26287
\(836\) 6.24621 0.216030
\(837\) − 2.56155i − 0.0885402i
\(838\) − 53.4773i − 1.84734i
\(839\) 21.6155i 0.746251i 0.927781 + 0.373125i \(0.121714\pi\)
−0.927781 + 0.373125i \(0.878286\pi\)
\(840\) − 4.87689i − 0.168269i
\(841\) 15.6847 0.540850
\(842\) 48.7926 1.68150
\(843\) 17.8078i 0.613332i
\(844\) −8.63068 −0.297080
\(845\) 0 0
\(846\) −12.8769 −0.442717
\(847\) 3.93087i 0.135066i
\(848\) 3.20739 0.110142
\(849\) 13.6847 0.469656
\(850\) − 18.7386i − 0.642730i
\(851\) − 15.1231i − 0.518413i
\(852\) 6.13826i 0.210293i
\(853\) 2.12311i 0.0726938i 0.999339 + 0.0363469i \(0.0115721\pi\)
−0.999339 + 0.0363469i \(0.988428\pi\)
\(854\) −3.39963 −0.116333
\(855\) 25.3693 0.867612
\(856\) − 20.1080i − 0.687276i
\(857\) −35.5616 −1.21476 −0.607380 0.794412i \(-0.707779\pi\)
−0.607380 + 0.794412i \(0.707779\pi\)
\(858\) 0 0
\(859\) 24.5616 0.838029 0.419015 0.907979i \(-0.362376\pi\)
0.419015 + 0.907979i \(0.362376\pi\)
\(860\) 7.12311i 0.242896i
\(861\) −0.876894 −0.0298845
\(862\) −17.3693 −0.591601
\(863\) − 30.4924i − 1.03797i −0.854782 0.518987i \(-0.826309\pi\)
0.854782 0.518987i \(-0.173691\pi\)
\(864\) − 2.43845i − 0.0829577i
\(865\) − 72.1080i − 2.45174i
\(866\) − 13.6695i − 0.464509i
\(867\) −14.5616 −0.494536
\(868\) −0.630683 −0.0214068
\(869\) − 10.8769i − 0.368973i
\(870\) −37.1771 −1.26042
\(871\) 0 0
\(872\) −6.84658 −0.231855
\(873\) 8.56155i 0.289765i
\(874\) −22.2462 −0.752489
\(875\) 5.36932 0.181516
\(876\) 4.43845i 0.149961i
\(877\) − 23.5616i − 0.795617i −0.917468 0.397809i \(-0.869771\pi\)
0.917468 0.397809i \(-0.130229\pi\)
\(878\) 21.3693i 0.721180i
\(879\) 20.4384i 0.689372i
\(880\) −33.3693 −1.12488
\(881\) 9.06913 0.305547 0.152773 0.988261i \(-0.451180\pi\)
0.152773 + 0.988261i \(0.451180\pi\)
\(882\) 10.4384i 0.351481i
\(883\) −8.80776 −0.296405 −0.148202 0.988957i \(-0.547349\pi\)
−0.148202 + 0.988957i \(0.547349\pi\)
\(884\) 0 0
\(885\) 10.2462 0.344423
\(886\) − 54.2462i − 1.82244i
\(887\) 24.6307 0.827017 0.413509 0.910500i \(-0.364303\pi\)
0.413509 + 0.910500i \(0.364303\pi\)
\(888\) −18.4384 −0.618754
\(889\) − 3.05398i − 0.102427i
\(890\) − 27.1231i − 0.909169i
\(891\) − 2.00000i − 0.0670025i
\(892\) 3.50758i 0.117442i
\(893\) 58.7386 1.96561
\(894\) −3.80776 −0.127351
\(895\) 17.3693i 0.580592i
\(896\) 7.61553 0.254417
\(897\) 0 0
\(898\) 12.8769 0.429708
\(899\) − 17.1231i − 0.571088i
\(900\) 3.36932 0.112311
\(901\) −1.06913 −0.0356179
\(902\) 4.87689i 0.162383i
\(903\) − 2.56155i − 0.0852431i
\(904\) 14.1619i 0.471019i
\(905\) 9.56155i 0.317837i
\(906\) 14.6307 0.486072
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 3.12311i 0.103644i
\(909\) 7.56155 0.250801
\(910\) 0 0
\(911\) 38.7386 1.28347 0.641734 0.766927i \(-0.278215\pi\)
0.641734 + 0.766927i \(0.278215\pi\)
\(912\) 33.3693i 1.10497i
\(913\) 1.75379 0.0580419
\(914\) 19.6998 0.651612
\(915\) 13.8078i 0.456471i
\(916\) 7.12311i 0.235354i
\(917\) 4.13826i 0.136657i
\(918\) 2.43845i 0.0804807i
\(919\) 11.5076 0.379600 0.189800 0.981823i \(-0.439216\pi\)
0.189800 + 0.981823i \(0.439216\pi\)
\(920\) 17.3693 0.572649
\(921\) 30.8078i 1.01515i
\(922\) −25.2850 −0.832718
\(923\) 0 0
\(924\) −0.492423 −0.0161995
\(925\) − 58.1080i − 1.91058i
\(926\) 22.3542 0.734603
\(927\) 3.43845 0.112933
\(928\) − 16.3002i − 0.535080i
\(929\) 7.80776i 0.256164i 0.991764 + 0.128082i \(0.0408821\pi\)
−0.991764 + 0.128082i \(0.959118\pi\)
\(930\) 14.2462i 0.467152i
\(931\) − 47.6155i − 1.56054i
\(932\) 11.3996 0.373407
\(933\) 19.1231 0.626062
\(934\) 40.6004i 1.32848i
\(935\) 11.1231 0.363764
\(936\) 0 0
\(937\) −7.56155 −0.247025 −0.123513 0.992343i \(-0.539416\pi\)
−0.123513 + 0.992343i \(0.539416\pi\)
\(938\) 4.00000i 0.130605i
\(939\) −13.6847 −0.446582
\(940\) 12.8769 0.419998
\(941\) − 30.4924i − 0.994025i −0.867744 0.497012i \(-0.834430\pi\)
0.867744 0.497012i \(-0.165570\pi\)
\(942\) 31.8078i 1.03635i
\(943\) − 3.12311i − 0.101702i
\(944\) 13.4773i 0.438648i
\(945\) −2.00000 −0.0650600
\(946\) −14.2462 −0.463184
\(947\) − 38.7386i − 1.25884i −0.777067 0.629418i \(-0.783293\pi\)
0.777067 0.629418i \(-0.216707\pi\)
\(948\) −2.38447 −0.0774440
\(949\) 0 0
\(950\) −85.4773 −2.77325
\(951\) − 14.0540i − 0.455731i
\(952\) −2.13826 −0.0693014
\(953\) −30.9848 −1.00370 −0.501849 0.864955i \(-0.667347\pi\)
−0.501849 + 0.864955i \(0.667347\pi\)
\(954\) − 1.06913i − 0.0346144i
\(955\) − 32.4924i − 1.05143i
\(956\) − 11.1231i − 0.359747i
\(957\) − 13.3693i − 0.432169i
\(958\) −16.0000 −0.516937
\(959\) 3.12311 0.100850
\(960\) − 19.8078i − 0.639293i
\(961\) 24.4384 0.788337
\(962\) 0 0
\(963\) −8.24621 −0.265730
\(964\) 7.80776i 0.251471i
\(965\) 48.0540 1.54691
\(966\) 1.75379 0.0564272
\(967\) 0.876894i 0.0281990i 0.999901 + 0.0140995i \(0.00448816\pi\)
−0.999901 + 0.0140995i \(0.995512\pi\)
\(968\) 17.0691i 0.548623i
\(969\) − 11.1231i − 0.357326i
\(970\) − 47.6155i − 1.52884i
\(971\) −12.9848 −0.416704 −0.208352 0.978054i \(-0.566810\pi\)
−0.208352 + 0.978054i \(0.566810\pi\)
\(972\) −0.438447 −0.0140632
\(973\) − 10.0691i − 0.322801i
\(974\) 11.1231 0.356407
\(975\) 0 0
\(976\) −18.1619 −0.581349
\(977\) − 61.1771i − 1.95723i −0.205705 0.978614i \(-0.565949\pi\)
0.205705 0.978614i \(-0.434051\pi\)
\(978\) 7.50758 0.240066
\(979\) 9.75379 0.311732
\(980\) − 10.4384i − 0.333444i
\(981\) 2.80776i 0.0896450i
\(982\) 56.6004i 1.80619i
\(983\) 13.6155i 0.434268i 0.976142 + 0.217134i \(0.0696708\pi\)
−0.976142 + 0.217134i \(0.930329\pi\)
\(984\) −3.80776 −0.121387
\(985\) 47.6155 1.51716
\(986\) 16.3002i 0.519104i
\(987\) −4.63068 −0.147396
\(988\) 0 0
\(989\) 9.12311 0.290098
\(990\) 11.1231i 0.353516i
\(991\) −50.3542 −1.59955 −0.799776 0.600298i \(-0.795049\pi\)
−0.799776 + 0.600298i \(0.795049\pi\)
\(992\) −6.24621 −0.198317
\(993\) 3.19224i 0.101303i
\(994\) 12.2765i 0.389388i
\(995\) − 78.9848i − 2.50399i
\(996\) − 0.384472i − 0.0121825i
\(997\) −20.6155 −0.652900 −0.326450 0.945214i \(-0.605853\pi\)
−0.326450 + 0.945214i \(0.605853\pi\)
\(998\) 7.01515 0.222061
\(999\) 7.56155i 0.239237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.b.d.337.3 4
3.2 odd 2 1521.2.b.h.1351.2 4
13.2 odd 12 507.2.e.g.22.1 4
13.3 even 3 507.2.j.g.316.2 8
13.4 even 6 507.2.j.g.361.2 8
13.5 odd 4 507.2.a.d.1.2 2
13.6 odd 12 507.2.e.g.484.1 4
13.7 odd 12 39.2.e.b.16.2 4
13.8 odd 4 507.2.a.g.1.1 2
13.9 even 3 507.2.j.g.361.3 8
13.10 even 6 507.2.j.g.316.3 8
13.11 odd 12 39.2.e.b.22.2 yes 4
13.12 even 2 inner 507.2.b.d.337.2 4
39.5 even 4 1521.2.a.m.1.1 2
39.8 even 4 1521.2.a.g.1.2 2
39.11 even 12 117.2.g.c.100.1 4
39.20 even 12 117.2.g.c.55.1 4
39.38 odd 2 1521.2.b.h.1351.3 4
52.7 even 12 624.2.q.h.289.1 4
52.11 even 12 624.2.q.h.529.1 4
52.31 even 4 8112.2.a.bo.1.2 2
52.47 even 4 8112.2.a.bk.1.1 2
65.7 even 12 975.2.bb.i.874.2 8
65.24 odd 12 975.2.i.k.451.1 4
65.33 even 12 975.2.bb.i.874.3 8
65.37 even 12 975.2.bb.i.724.3 8
65.59 odd 12 975.2.i.k.601.1 4
65.63 even 12 975.2.bb.i.724.2 8
156.11 odd 12 1872.2.t.r.1153.2 4
156.59 odd 12 1872.2.t.r.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.e.b.16.2 4 13.7 odd 12
39.2.e.b.22.2 yes 4 13.11 odd 12
117.2.g.c.55.1 4 39.20 even 12
117.2.g.c.100.1 4 39.11 even 12
507.2.a.d.1.2 2 13.5 odd 4
507.2.a.g.1.1 2 13.8 odd 4
507.2.b.d.337.2 4 13.12 even 2 inner
507.2.b.d.337.3 4 1.1 even 1 trivial
507.2.e.g.22.1 4 13.2 odd 12
507.2.e.g.484.1 4 13.6 odd 12
507.2.j.g.316.2 8 13.3 even 3
507.2.j.g.316.3 8 13.10 even 6
507.2.j.g.361.2 8 13.4 even 6
507.2.j.g.361.3 8 13.9 even 3
624.2.q.h.289.1 4 52.7 even 12
624.2.q.h.529.1 4 52.11 even 12
975.2.i.k.451.1 4 65.24 odd 12
975.2.i.k.601.1 4 65.59 odd 12
975.2.bb.i.724.2 8 65.63 even 12
975.2.bb.i.724.3 8 65.37 even 12
975.2.bb.i.874.2 8 65.7 even 12
975.2.bb.i.874.3 8 65.33 even 12
1521.2.a.g.1.2 2 39.8 even 4
1521.2.a.m.1.1 2 39.5 even 4
1521.2.b.h.1351.2 4 3.2 odd 2
1521.2.b.h.1351.3 4 39.38 odd 2
1872.2.t.r.289.2 4 156.59 odd 12
1872.2.t.r.1153.2 4 156.11 odd 12
8112.2.a.bk.1.1 2 52.47 even 4
8112.2.a.bo.1.2 2 52.31 even 4