Properties

Label 5041.2.a.f
Level $5041$
Weight $2$
Character orbit 5041.a
Self dual yes
Analytic conductor $40.253$
Analytic rank $0$
Dimension $7$
CM discriminant -71
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5041,2,Mod(1,5041)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5041.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5041, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5041 = 71^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5041.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,0,14,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.2525876589\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: 7.7.294755098673.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 14x^{5} + 56x^{3} - 56x - 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{3} q^{3} + (\beta_{2} + 2) q^{4} - \beta_{5} q^{5} + (\beta_{5} + \beta_{4} + \beta_{2}) q^{6} + ( - \beta_{4} - \beta_{3} - 2 \beta_1) q^{8} + ( - \beta_{6} + 3) q^{9} + (\beta_{6} - \beta_{4} + \beta_{3} - \beta_1) q^{10}+ \cdots + 7 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 14 q^{4} + 21 q^{9} + 28 q^{16} + 7 q^{18} + 21 q^{20} + 35 q^{24} + 35 q^{25} - 49 q^{30} + 42 q^{36} + 63 q^{38} - 77 q^{48} - 49 q^{49} - 91 q^{60} + 56 q^{64} + 14 q^{72} + 105 q^{74} + 28 q^{75}+ \cdots + 70 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 14x^{5} + 56x^{3} - 56x - 21 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 8\nu^{2} + 6\nu + 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 8\nu^{2} - 12\nu - 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 10\nu^{3} - 3\nu^{2} + 20\nu + 12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 12\nu^{4} + 36\nu^{2} - 5\nu - 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 2\beta_{3} + 8\beta_{2} + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 10\beta_{4} + 10\beta_{3} + 3\beta_{2} + 40\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 12\beta_{4} + 24\beta_{3} + 60\beta_{2} + 5\beta _1 + 160 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.82423
1.88136
1.64039
−0.478208
−0.778691
−2.47768
−2.61140
−2.82423 −2.22920 5.97625 1.03268 6.29575 0 −11.2298 1.96932 −2.91653
1.2 −1.88136 3.15890 1.53952 4.01238 −5.94303 0 0.866336 6.97864 −7.54874
1.3 −1.64039 0.857975 0.690885 −4.47197 −1.40741 0 2.14746 −2.26388 7.33578
1.4 0.478208 −3.46294 −1.77132 −2.81836 −1.65601 0 −1.80347 8.99196 −1.34776
1.5 0.778691 0.683179 −1.39364 0.957531 0.531985 0 −2.64260 −2.53327 0.745620
1.6 2.47768 3.08111 4.13888 −2.75809 7.63398 0 5.29945 6.49322 −6.83366
1.7 2.61140 −2.08902 4.81943 4.04583 −5.45528 0 7.36266 1.36401 10.5653
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(71\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
71.b odd 2 1 CM by \(\Q(\sqrt{-71}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5041.2.a.f 7
71.b odd 2 1 CM 5041.2.a.f 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5041.2.a.f 7 1.a even 1 1 trivial
5041.2.a.f 7 71.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5041))\):

\( T_{2}^{7} - 14T_{2}^{5} + 56T_{2}^{3} - 56T_{2} + 21 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 14 T^{5} + \cdots + 21 \) Copy content Toggle raw display
$3$ \( T^{7} - 21 T^{5} + \cdots + 92 \) Copy content Toggle raw display
$5$ \( T^{7} - 35 T^{5} + \cdots + 558 \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} \) Copy content Toggle raw display
$13$ \( T^{7} \) Copy content Toggle raw display
$17$ \( T^{7} \) Copy content Toggle raw display
$19$ \( T^{7} - 133 T^{5} + \cdots + 10316 \) Copy content Toggle raw display
$23$ \( T^{7} \) Copy content Toggle raw display
$29$ \( T^{7} - 203 T^{5} + \cdots + 37194 \) Copy content Toggle raw display
$31$ \( T^{7} \) Copy content Toggle raw display
$37$ \( T^{7} - 259 T^{5} + \cdots - 419186 \) Copy content Toggle raw display
$41$ \( T^{7} \) Copy content Toggle raw display
$43$ \( T^{7} - 301 T^{5} + \cdots - 488348 \) Copy content Toggle raw display
$47$ \( T^{7} \) Copy content Toggle raw display
$53$ \( T^{7} \) Copy content Toggle raw display
$59$ \( T^{7} \) Copy content Toggle raw display
$61$ \( T^{7} \) Copy content Toggle raw display
$67$ \( T^{7} \) Copy content Toggle raw display
$71$ \( T^{7} \) Copy content Toggle raw display
$73$ \( T^{7} - 511 T^{5} + \cdots + 2294102 \) Copy content Toggle raw display
$79$ \( T^{7} - 553 T^{5} + \cdots - 8763256 \) Copy content Toggle raw display
$83$ \( T^{7} - 581 T^{5} + \cdots - 8683452 \) Copy content Toggle raw display
$89$ \( T^{7} - 623 T^{5} + \cdots + 8955930 \) Copy content Toggle raw display
$97$ \( T^{7} \) Copy content Toggle raw display
show more
show less