Learn more

Refine search


Results (20 matches)

  displayed columns for results
Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 71
5041.2.a.a 5041.a 1.a $3$ $40.253$ 3.3.257.1 None 71.2.a.a \(-1\) \(1\) \(5\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{1}q^{3}+(1+\beta _{2})q^{4}+(2-\beta _{1}+\cdots)q^{5}+\cdots\)
5041.2.a.b 5041.a 1.a $3$ $40.253$ 3.3.257.1 None 71.2.a.b \(0\) \(-1\) \(-3\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(-\beta _{1}+\beta _{2})q^{3}+(1+\beta _{1}+\cdots)q^{4}+\cdots\)
5041.2.a.c 5041.a 1.a $4$ $40.253$ \(\Q(\zeta_{24})^+\) None 5041.2.a.c \(0\) \(-4\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(-1+\beta _{2})q^{3}+q^{4}+\beta _{2}q^{5}+\cdots\)
5041.2.a.d 5041.a 1.a $6$ $40.253$ 6.6.3359232.1 None 5041.2.a.d \(-6\) \(6\) \(-6\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{4})q^{2}+(1-\beta _{4})q^{3}+(1-\beta _{2}+\cdots)q^{4}+\cdots\)
5041.2.a.e 5041.a 1.a $6$ $40.253$ 6.6.1229312.1 None 5041.2.a.e \(4\) \(-10\) \(6\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{4})q^{2}+(-2-\beta _{2})q^{3}+(1+\beta _{2}+\cdots)q^{4}+\cdots\)
5041.2.a.f 5041.a 1.a $7$ $40.253$ 7.7.\(\cdots\).1 \(\Q(\sqrt{-71}) \) 5041.2.a.f \(0\) \(0\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q-\beta _{1}q^{2}-\beta _{3}q^{3}+(2+\beta _{2})q^{4}-\beta _{5}q^{5}+\cdots\)
5041.2.a.g 5041.a 1.a $7$ $40.253$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 5041.2.a.g \(2\) \(1\) \(-1\) \(-3\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(1+\beta _{2})q^{4}+\beta _{5}q^{5}+\cdots\)
5041.2.a.h 5041.a 1.a $7$ $40.253$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 5041.2.a.g \(2\) \(1\) \(-1\) \(3\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(1+\beta _{2})q^{4}+\beta _{5}q^{5}+\cdots\)
5041.2.a.i 5041.a 1.a $10$ $40.253$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 71.2.c.a \(2\) \(2\) \(-3\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(1+\beta _{4}+\beta _{5})q^{4}+\cdots\)
5041.2.a.j 5041.a 1.a $10$ $40.253$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 71.2.c.a \(2\) \(2\) \(-3\) \(3\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(1+\beta _{4}+\beta _{5})q^{4}+\cdots\)
5041.2.a.k 5041.a 1.a $14$ $40.253$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 5041.2.a.k \(0\) \(6\) \(6\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{5}q^{2}-\beta _{1}q^{3}+(1-\beta _{6}-\beta _{8})q^{4}+\cdots\)
5041.2.a.l 5041.a 1.a $15$ $40.253$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 71.2.d.a \(2\) \(2\) \(-5\) \(-5\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{12}q^{3}+(1+\beta _{7}-\beta _{10}+\cdots)q^{4}+\cdots\)
5041.2.a.m 5041.a 1.a $15$ $40.253$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 71.2.d.a \(2\) \(2\) \(-5\) \(5\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{12}q^{3}+(1+\beta _{7}-\beta _{10}+\cdots)q^{4}+\cdots\)
5041.2.a.n 5041.a 1.a $18$ $40.253$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 5041.2.a.n \(6\) \(3\) \(6\) \(-3\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(1+\beta _{2})q^{4}+\beta _{12}q^{5}+\cdots\)
5041.2.a.o 5041.a 1.a $18$ $40.253$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 5041.2.a.n \(6\) \(3\) \(6\) \(3\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(1+\beta _{2})q^{4}+\beta _{12}q^{5}+\cdots\)
5041.2.a.p 5041.a 1.a $20$ $40.253$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 5041.2.a.p \(-4\) \(-4\) \(-12\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{9}q^{2}+\beta _{10}q^{3}+(1+\beta _{12}+\beta _{15}+\cdots)q^{4}+\cdots\)
5041.2.a.q 5041.a 1.a $36$ $40.253$ None 5041.2.a.q \(0\) \(6\) \(12\) \(0\) $-$ $\mathrm{SU}(2)$
5041.2.a.r 5041.a 1.a $60$ $40.253$ None 5041.2.a.r \(-12\) \(-12\) \(-24\) \(0\) $+$ $\mathrm{SU}(2)$
5041.2.a.s 5041.a 1.a $60$ $40.253$ None 71.2.g.a \(-2\) \(-2\) \(10\) \(-25\) $+$ $\mathrm{SU}(2)$
5041.2.a.t 5041.a 1.a $60$ $40.253$ None 71.2.g.a \(-2\) \(-2\) \(10\) \(25\) $-$ $\mathrm{SU}(2)$
  displayed columns for results